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Homework 3   AERE331   Spring 2020  Due 2/28(F)     SOLUTION 

PROBLEM 1(35pts). In Example 6.14 on pp.382-385 of the book, 

the authors design a spacecraft attitude control system. For the unity 

feedback control system shown at the right, the authors propose the 

PD controller  )05.(2.0)(  ssGc
 to satisfy the closed loop (CL) 

 command system specifications (S1) good damping, and (S2) a bandwidth        Figure 1. Closed loop block diagram. 

 (BW) of approximately 0.2 rad/sec.  

 

(a)(5pts) Use a Bode plot of the command system to (i) assess 

how well (S2) is satisfied, per the authors’ definition of BW. 

Specifically, compute the percent error relative to (S2). Then 

discuss whether that error is a good error or a bad error. 

Solution: [See code @ 1(a).]  

The -3dB BW is 0.247rad/sec. which is %5.23%100
2.

2.247.








   

greater than (S2). Because it is greater than (S2), it’s a good 

error. [Higher BW is usually a good thing.] 

 Figure 1(a) CL Bode plot with BW data. 

 

(b)(6pts) Use the open loop FRF to obtain the command 

system CL gain margin (GM) and phase margin (PM). 

Solution: [See code @ 1(b).] 

Because the open loop phase never crosses -180o, the 

closed loop GM . From the data cursor, 

180 104 76o o oPM    . 

 

 

 

             Figure 1(b) OL Bode plot with CL GM/PM data. 

 

 

(c)(6pts)  Plot the disturbance system FRF, then use the data 

cursor to estimate the system (i) static again, (ii) -3dB BW, 

and (iii) resonant frequency, and amplification (re: static 

gain) at resonance. 

Solution: [See code @ 1(c).] 

(i)  40dB

sg dB [i.e. 100sg .]  (ii) 0.04 /BW r s  

(iii)There is no resonance. [Both CL roots are at -1+i0.] 

               Figure 1(c) Disturbance FRF. 
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(d)(10pts) Consider a unit step command input, )(1)( ttR   

plus a disturbance input )01sin(.001.)( ttd  . Let the 

observation time be the interval )6000,0[ seconds, with a 

sampling interval .sec3142.0 (i) Plot the command 

response. Then (ii) use the ‘lsim’ command to compute the 

disturbance response, and then add this to the command 

response and overlay it on your noiseless command response. 

Solution: [See code @ 1(d).] 

       Figure 1(d) CL step response without and with noise. 

(e)(8pts) The disturbance input in (d) had an amplitude 1/1000th of the command input. (i) Use your FRF in (c) to explain 

why the disturbance response is as large as it is. Then (ii) Use your answer in (c) to point out a fundamental problem with 

this feedback control system. 

Solution:  

(i) At sec/01. radn  the disturbance amplification is 40 dB; which is equivalent to a factor of 40/2010 100 . Hence, the 

disturbance input amplitude .001 will yield an output amplitude 0.1 (as is observed in the plot). 

 

(ii) The disturbance system has a low frequency gain of 40dB, or a gain of 100. This is huge! The system is extremely 

sensitive to small low frequency disturbance inputs.  
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PROBLEM 2(25pts) (Book Problem 6.2 on p.389) Consider a system with transfer function 
10

1
)(




s
sG . 

(a)(8pts) Develop the expressions for the magnitude (in dB) and phase (in degrees) of )( iG .  

Solution: The magnitude is: )100log(10|)(log(|20)()100(
|10|

1
|)(| 25.02 


 


  iGM

i
iG dB

. 

The phase is: )10/(tan)/180(0)( 1   o . 

 

(b)(7pts) Use your expressions in (a) to write a simple Matlab code to compute the numerical values of these expressions 

at the 7 radial frequencies }100,50,20,10,5,2,1{ . [Give magnitude in dB and phase in degrees.] 

Solution: [Include your code HERE.] 

w = [1 2 5 10 20 50 100]; M = -10*log10(100 + w.^2); th = -(180/pi)*atan(w/10); 

[M ; th]. Running this code gives: 

 

Magnitude (dB):    -20.0432    -20.1703    -20.9691    -23.0103    -26.9897    -34.1497    -40.0432 

Phase (degrees):       -5.7106   -11.3099    -26.5651    -45.0000    -63.4349    -78.6901    -84.2894 

 

(c)(10pts) Construct straight-line approximations of the Bode plot over the frequency range [0.1,1000] /r s  and overlay 

your numbers from (b) on it. 

Solution: [See code @ 2(c).] 

The magnitude break frequency is 10 r/s. The phase break 

frequencies are: {0.1 , 1.0  , 100 , 1000}. The low frequency 

system gain is 0.1 = -20dB. The plot was constructed with the 

simple Matlab code included in the Appendix. 

 

 

 

    Figure 2(c) Straight line Bode plot and data from (b). 
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PROBLEM 3(40pts) The Root Locus-based pole placement method was used to design a unity-feedback control system 

for the plant 
)2(

10
)(




ss
sGp

. The result was a lead controller 
55.9

)75.2(13.4
)(






s

s
sGc

. The resulting OL and CL transfer 

functions are: 
)55.9)(2(

)75.2(3.41
)()()(






sss

s
sGsGsG pc

   and    
57.1134.6055.11

57.1133.41
)(

23 




sss

s
sW . 

In this problem, you will analyze that design in the frequency domain. 

 

(a)(5pts) Give the plant Bode plot, and use it to estimate 

GM and PM of the corresponding closed loop transfer 

function obtained by incorporating unity feedback alone 

(i.e. with ( ) 1cG s   ). 

Solution: [See code @ 3(a).] 

The open loop gain crossover frequency is ~2.8r/s, and 

so the closed loop PM is ~40o. The GM is infinite, since 

the open loop phase never crosses -180o. 

 

 Figure 3(a) OL Bode plot and arrows to show CL GM and PM. 

(b)(10pts) Give the controller Bode plot, and use it to 

estimate (i) the frequency, max  at which the controller 

phase is maximum, (ii) the value of this maximum 

phase, max , and (iii) the relative gain of the controller 

from low to high frequencies, dB . 

Solution: [See code @ 3(b).] 

From the plot at the right, we have: 

sr /65.4max   ; o35max   ; dBdB 8.11  

 

    Figure 3(b) Controller Bode plot with data cursor information.  

(c)(5pts) Give the open loop (i.e. the plant/controller 

combination) Bode plot, and use it to determine (i) the 

lead-controller-based closed loop GM and PM,  and (ii) 

how much phase the controller contributed to the PM. 

 Solution: [See code @ 3(c).] 

GM ; oPM 60  @ srco /35.4 . 

Hence, the controller contributed ~20o, which is 80% of 

its maximum phase.  

 

 

      Figure 3(c) OL Bode plot with data cursor information. 
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(d)(10pts) (i) Overlay the CL Bode plots associated with (a) 

and (c). (ii) Use the data cursor to estimate the 3dB  

bandwidth of each system. (iii) Use the data cursor to 

estimate the Q factor of each system. 

Solution: The CL BW re: (a) is 3.0 r/s and that for (c) is 6.74 

r/s. The Q factor for (a) is 4.31dB or 1.66. For (b) you could 

also say it has no Q factor. However, were one to go a little 

deeper in relation to 
1

2
Q





 [See Lecture 10]: 

 
( ) 3 2

41.3 113.6
( )

11.55 60.4 113.6
b

s
W s

s s s




  
 has poles:  

roots([1 11.55 60.4 113.6]) =  -4.0000 +/- 4.0000i; -3.55.  

It is critically damped. So, in fact, 0.5Q  . Figure 3(d) CL Bode plots re: (a) and (c) with data cursor information. 

 

(e)(10pts) You should have found that the CL PM re: (a) was 

~40o, while that re: (c) was ~60o. It is often claimed that a CL 

PM of ~40o is a good design goal. From overlaid CL step 

responses, comment on this claim, based on numbers. 

Solution:  

The settling time re: (a) is 4 times that of (c).  

The response re: (a) has over twice the overshoot as (b) has.  

The response re(a) has notable oscillations.  

Hence, I would conclude that the claim is not well-founded. 

 

 Figure 3(e) CL Bode plots re: (a) and (c). 
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Appendix   Matlab code 

% PROGRAM NAME: hw3.m   2/10/20 

% PROBLEM 1: 

% 1(a): 

Gp = tf(1,[1 0 0]); 

Gc = 0.2*tf([1 .05],1); 

G = Gc*Gp; 

H = tf(1,1); 

W = feedback(G,H); 

figure(10) 

bode(W) 

grid 

title('Command System FRF with PD Control') 

% 1(b): 

figure(11) 

bode(G) 

grid 

title('Open Loop FRF with PD Control') 

% 1(c): 

Wd = feedback(Gp,Gc); 

figure(12) 

bode(Wd) 

grid 

title('Disturbance System FRF with PD Control') 

% 1(d) 

T = 6000; % Observation time 

dt = pi/10; % sampling interval 

n = fix(T/dt); 

tvec = 0:dt:(n-1)*dt; 

thc = step(W,tvec); 

%d = normrnd(0,.01,n,1); 

d = .001*sin(.01*tvec); 

thd = lsim(Wd,d,tvec); 

th = thc + thd; 

figure(13) 

plot(tvec,thc,tvec,th,'r') 

grid 

xlabel('Time (sec)') 

title('Command Response w/o (blue) and w/ (red) the Disturbance') 

%============================================= 

%PROBLEM 2 

%(b): 

w=[1 2 5 10 20 50 100]; 

M=-10*log10(100+w.^2); 

PH=-atand(w/10); 

[M;PH] 

%(c); 

%MAGNITUDE: 

W1=10^-1; W2=10^3; %Plot frequency range 

wb=10; %break frequency 

wM=[W1 wb W2]; 

MSL=[-20 -20 -60]; 

figure(20) 

subplot(2,1,1), semilogx(wM,MSL,'b','LineWidth',2) 

title('M(w)') 

ylabel('dB') 

grid 

hold on 

semilogx(w,M,'r*','LineWidth',2) 

%PHASE: 

wPH=[W1 0.1*wb 10*wb W2]; 

PHSL=[0 0 -90 -90]; 

subplot(2,1,2), semilogx(wPH,PHSL,'b','LineWidth',2) 

title('TH(w)') 

ylabel('degrees') 

xlabel('Frequency (r/s)') 

grid 

hold on 

semilogx(w,PH,'r*','LineWidth',2) 

%========================================== 

% PROBLEM 3: 

Gp = tf(10,[1 2 0]); 
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Gc = 4.13*tf([1 2.75],[1 9.55]); 

G = Gc*Gp; 

%(a): 

figure(30) 

bode(Gp) 

grid 

%(b): 

figure(31) 

bode(Gc) 

grid 

%(c): 

figure(32) 

bode(G) 

grid 

%(d): 

H = tf(1,1); 

W1 = feedback(Gp,H); 

W2 = feedback(G,H); 

figure(33) 

bode(W1) 

hold on 

bode(W2) 

title('CL Bode Plots') 

legend('W with Gc=1','W with Gc') 

grid 

%(e): 

figure(34) 

step(W1) 

hold on 

step(W2) 

title('CL Step Responses') 

legend('W with Gc=1','W with Gc') 

grid 

 

 


