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Homework 2   Spring 2020     DUE 2/7/20           SOLUTION 

 

PROBLEM 1. (15 pts) Consider the system described by: 0.2 100 10y y y x
 

     

 

(a)(3 pts) Give the system transfer function:          2( ) 10 / ( 0.2 100)pG s s s    

 

(b)(2 pts) Give the system static gain:                     (0) 0.1s pg G   

 

(c)(2 pts) Give the system undamped natural frequency:     100 10n    

 

(d)(3 pts) Compute the system damping ratio: : 2 0.2 0.1 0.1/10 0.01n n            

 

(e)(2 pts) Compute the system damped natural frequency: 21 10 0.9999 10d n       

 

(e)(3 pts) The two poles of ( )pG s in (a) are 1, 2 n ds i    . Express these in polar coordinates: 

 
2 2 1 2 1

1 ( ) & tan ( 1 / cos ( )i

n d ns e where                          ;  2

is e    

 

 

 

PROBLEM 2(15 pts)  
 

(a)(8pts) A plot of a car’s speed, in response to an accelerator pedal  

displacement is shown at right. Arrive at a differential equation that will  

model this behavior. 

 

 Solution: Since the response appears to be exponential, I assume a 1st  

order O.D.E: 

5 20sec    4sec  ; / 40 / 20 [ / deg.]ss ss sv g mph    2 . 

 

Hence , my model is: 4 2 ( )v v t   

 

     Figure 2(a) Pedal position & speed plots. 

 

 

(b)(7pts) The initial condition response of a satellite solar panel is shown at 

right. Use the log decrement method to estimate the damping ratio  . 

Solution: 

2
(2) 2.6 ny ce


  and (2 3 )

(8) 0.4 n T
y ce

 
  . So 

2
3

(2 3 )

(2)
6.5

(8)

n

n

n

T

T

y ce
e

y ce








 
   

 

 where 
2

2 2

1

n

n

d

T
 


 

 


. So 
2

6
ln(6.5)

1








. Squaring and solving for 

 gives: 
2 2

ln(6.5)
0.099

ln(6.5) (6 )



  


0.1  

 

    Figure 2(b) Panel initial condition response.  
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PROBLEM 3(15pts) The thrust/speed transfer function of a certain land vehicle is
5

( ) /
0.25

p fG s mph lb
s

   
.The 

vehicle speed sensor has a transfer function  ( ) /s sG s c mv mph .  

The command speed dial, which is a rotary potentiometer, has a  

transfer function  ( ) /d dG s c mv mph . The feedback control block 

diagram is shown at right. 

 

(a)(5pts) Ideally, we have
s dc c c  . In this case, arrive at block diagram of a unity feedback control system that is 

mathematically the same as the above block diagram. 

 

Solution: The summing junction output that goes into the controller  

is [ ( ) ( )]cc v t v t . Hence, we can frame the above diagram as shown at right. 

 

 

 

 

(b)(5pts) The thrust from the controller to the plant will be countered by  

gravity-related forces such as hills. This can be modeled by the block  

diagram at right. In this part we will assume
s dc c c  . As you should have  

shown in (a), this constant can be mathematically lumped together with ( )cG s  

Show that the speed/disturbance transfer function  

is: 
( )( )

( )
( ) 1 ( ) ( )

pd

d

c p

G sV s
W s

D s G s G s



 


. [Note: As shown in the figure, this assumes that ( ) 0cv t  .] 

Solution:  

Since ( ) 0cv t  , we can replace the command summing junction by a block with  

a gain of -1. We can then transfer this sign to be a subtraction sign for the controller  

output into the disturbance summing junction. This results in the block diagram at right. 

 

The forward loop transfer function is ( )pG s and the feedback loop transfer function ( )cG s . Hence, the input to ( )pG s is 

( ) ( ) ( )c dD s G s V s . Hence the output from ( )pG s is ( ) ( )[ ( ) ( ) ( )]d p c dV s G s D s G s V s  . This results in ( )( )

( ) 1 ( ) ( )

pd

c p

G sV s

D s G s G s



. 

 

 

 

(c)(5pts) Consider the block diagram at right that includes both disturbance 

and sensor noise. Using the same reasoning as should have been used in 

(b), it follows that the speed/sensor noise transfer function is: 

 
( ) 1

( ) 1 ( ) ( )

d

c p

V s

D s G s G s



. Suppose that the sensor noise is random and has a  

specified standard deviation [ ]s mv  . Explain why this is not the standard deviation of ( )s t shown in the figure. Then 

determine what the standard deviation of that ( )s t is. 

Explanation:  

The units of ( )s t in the picture must be in mph. It makes no sense to add mph and mv. One needs to convert the units 

of [ ]s mv  to units of mph via /
mphs c  . 

 

 

 

 

 

 

( )cv t ( )v t 
dc

sc

( )pG s( )cG s

( )cv t ( )v t 
c ( )pG s( )cG s

 ( )dv t
( )pG s( )cG s

( )d t

( )cv t

( )v t

 
( )pG s( )cG s

( )d t

 

 
( )s t

 ( ) 0cv t  ( )v t 
( )pG s( )cG s

( )d t
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PROBLEM 4(35pts) The position/torque transfer function for a robotic arm is
2

( ) 10
( )

( ) 0.2 100
p

Y s
G s

T s s s



 
 

. It is desired 

to design a unity feedback control system using a PD controller ( )c p dG s K K s  . 

 

(a)(3pts) Give the closed loop system transfer function). 

Answer: 

                         
2

10( )( )
( )

( ) 1 (0.2 10 ) (100 10 )

c p d p

r c p d p

G G K s KY s
W s

Y s G G s K s K

 
  

    
 

 

(b)(5pts) Find the value of Kp so that the closed loop static gain is 0.95. 

Solution:     

                         
10

(0) 0.95 95 9.5 10
100 10

p

p p

p

K
W K K

K
     


p

K = 190 . 

 

(c)(8pts) For the value of Kp you found in (b), find the value of Kd such that the poles of the closed loop system are real 

and repeated (i.e. the system is critically damped). 

Solution: 

    

From (a) we have: 2 100 10(190) 2000n n      44.72 . We also have: 2 0.2 10n dK   . Since repeated real roots 

requires that 1  , we obtain 2(44.72) 0.2 10 dK  . Hence: 
d

K = 8.924 . 

 

 

(d)(10pts) For the controller gains you obtained in (b) and (c), (i) 

use Matlab to compute and then plot the closed loop unit-step 

response. Then (ii) use this plot to validate the design static gain. 

Finally, (iii) discuss consequences of the critical damping 

specification on the response dynamics. 

Solution: [See code @ 4(d).] 

 

(i) W =(89.24 s + 1900)/(s^2 + 89.44 s + 2000). See BLUE @ right. 

 

(ii) The dotted line shows that the static gain is 0.95. 

 

(iii) The response does not oscillate, but it has notable overshoot. 

     Figure 4(d & e) Unit step responses. 

 

 

(e)(6pts) Remove the s-term from the numerator of your closed loop transfer function, and (i) overlay a plot of the step 

response for this system on the one in (d). Then (ii) discuss how it influences the response. 

Solution: [See code @ 4(e).] 

(i)For
2

1900
( )

89.44 2000
W s

s s
 

 
 see above plot. (ii) The closed loop zero was responsible for the overshoot. This is 

because it is equivalent to the derivative of the input. In the case of a step, this is an impulse. 

 

(f)(3pts) While overshoot is not desirable, you should have observed that it does have an advantage, in that the time it 

takes the response to achieved 90% of its steady state value is much smaller than if the closed loop zero were absent. 

From your two plots estimate how much faster it achieves this. 

 

Solution: 90% of 0.95 is 0.855. The times at which the response cross this line are approximately .015 an .09. Hence, the 

system zero allows this level is achieved ~6 times faster. 
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PROBLEM 5(20pts) 

 

(a)(6pts) In 1(e) of Homework 1, you wrote a code to compute the roots 

of Kssssp  252)( 23 as a function of K. Now consider the following 

equalities: 3 2

3 2
2 25 0 1 0

2 25

K
s s s K

s s s
      

 
. So, 

define
3 2

1
( )

2 25
G s

s s s




 

. Then the roots of Kssssp  252)( 23 are 

identical to the values of s that satisfy 1 ( ) 0KG s  . Even though we do 

not have any transfer functions, one can view this ( )KG s as an open loop 

transfer function associated with a closed loop system.  

With this view, the values of s than satisfy 1 ( ) 0KG s  are the closed loop 

system poles. (i) Use the command ‘rlocus’ to obtain a plot of these poles 

as a function of K. Then (ii) discuss how this plot compares to the plot 

obtained from your code in 1(e). 

Solution: [See code @ 5(a).]  (ii) The plot is the same as in 1(e). Figure 5(a) Root locus for K=0:0.1:100. 

 

 

(b)(15pts) A certain DC motor position/voltage transfer function
10

( )
( 4)

pG s
s s




. You are to use a forward loop PD 

controller
1( ) ( )cG s K s   so that the closed loop system has optimal damping (i.e. 0.707  ) and a time 

constant 0.25 sec    

 

(i)(5pts) Obtain the value of 1 using the root locus angle criterion. 

    Provide a sketch to show how you arrive at the answer.  

    Solution: 

 

     1(135 90 ) 180 45o o o o

z z          8  

 

 

 

(ii)(5pts) Use the root locus magnitude criterion to find K. 

     Solution: 

 

       
10 ( 4) 10 4 2

1 2.5 .
( 4) (4 2)(4)

K s K
K

s s


    


K 0 4  

 

 

 

(iii)(5pts) Plot the resulting closed loop step response. Then use it to 

      Validate your design. [See code @ 5(b).] 

      Solution: [See code @ 5(b).] 

 

 

     The response has little overshoot and achieves steady stat in ~1.2 sec. 

     This validates the design.  

 

 

 

 

 Figure 5(b) Closed loop step response. 

 

 

0.707 

41

0.25 
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Appendix     Matlab Code 

 
%PROGRAM NAME: hw2.m 

%PROBLEM 2: 

%(a): IN SOLUTION ONLY 

tau=4; gs=2; 

tho=20; 

Ga=tf(gs,[tau 1]); 

[v,t]=step(tho*Ga); 

nt=length(t); 

th=tho*ones(nt,1); 

%----------------- 

fig = figure(200); 

left_color = [0 0 0]; 

right_color = [0 0 0]; 

set(fig,'defaultAxesColorOrder',[left_color; right_color]); 

figure(200) 

yyaxis left 

plot(t,v,'k','LineWidth',2) 

ylabel('mph','Color','k') 

yyaxis right 

plot(t,th,'k--','LineWidth',2) 

ylabel('degrees','Color','k') 

grid 

title('Plot of Pedal Position and Resulting Speed') 

xlabel('Time (sec)') 

%----------------- 

%(b): 

Td=2; %Damped natural period 

wd=2*pi/Td; 

z=0.1; %Damping ratio 

wn=wd/sqrt(1-z^2); 

%For initial condition yo, compute Gb numerator: 

yo=5; 

Gb=tf([1 2*z*wn]*yo,[1 2*z*wn wn^2]); 

[y,t]=impulse(Gb); 

figure(201) 

plot(t,y,'k','LineWidth',2) 

title('Panel Initial Condition Response') 

grid on 

set(gca, 'yminorgrid', 'on') 

set(gca, 'xminorgrid', 'on') 

%set(gca,'MinorGridLineStyle','..') 

set(gca,'GridLineStyle','-') 

%============================ 

%PROBLEM 4: 

%(d): 

Gp=tf(10,[1 .2 100]); 

Kp=190; Kd=8.924; 

Gc=tf([Kd Kp],1); 

G=Gc*Gp; 

W=feedback(G,1); 

figure(40) 

step(W) 

%(e): 

[n,d]=tfdata(W,'v'); 

ne=n(3); 

We=tf(ne,d); 

hold on 

step(We) 

grid 

%============================ 

%PROBLEM 5: 

%(a):  

G=tf(1,[1 2 25 0]); 

K=0:.1:100; 

figure(50) 

rlocus(G,K) 
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%--------- 

%(b): 

Gp=tf(10,[1 4 0]); 

s=tf('s'); 

K=.253; w1=8; 

Gc=K*(s+w1); 

W=feedback(Gc*Gp,1); 

figure(51) 

step(W) 

 


