Homework 1 AERE331 Spring 2020 Due 1/24(F) SOLUTION
Note: The solution to each part of a given problem (including all figures) must be placed directly beneath that part. If it is
placed elsewhere it will be ignored. Unless stated otherwise, place all Matlab code in the Appendix.

PROBLEM 1 (25pts) The mathematics in this course centers on two topics: (i) differential equations, and (ii)
polynomials. The goal of this problem is to get you to understand their connection. Suppose that a function of time x(t) is

differentiable [i.e. dx/dtiX(t) exists], and that it has the initial condition x(t:O,)ixo.The Laplace transform of X(t) is

defined as: /(x)(s) = Tx(t)efstdti X (s)» Where s = o +iw is allowed to be a complex number.
t=0_

(a)(5pts) Recall from integral calculus: integration by parts: j udv=uv - jv du . Use this to show that, so long as

t—o0

limx(t)e™ =0, we have the following Laplace transform relation for x(t):  y(x) = TX(t)e‘“dt= SX(s)—X,
=0

t

Solution: Let u = x(t)and dv=e*'dt. Then y=_Z¢=tand du= >'<(t) dt. It follows that

©

+

wilikFk ulk

Ix(t)e‘s‘dt = —@e‘St
4 s

+ 2[x@ e dt=
S 0

7 ‘O><

]O'i(t) e~idt . Rearranging this gives: /(x) =s X (s) —X,-
0

t=0

A
(b)(5pts) Define g(t)=x(t) with initial condition g(0_) =g, = X%,. Use (@) to show that /(%) = s*>X (s) — X, — X, -
Solution: From (a) we have ¢(g) =sG(s) —g,. Which is exactly: ¢(x) =s¢(x) — %, Substituting the result in (a) gives
£(X) = S[SX(8) = X,] — %, = S* X (S) —SX, — X, -

(c)(5pts) From (a-b) it should be clear that the Laplace transform of x(™(t) includes the term s"x (s) plus other terms that
include the initial conditions. To see how polynomials enter into the picture, consider the second order differential
equation: X+ 2x+25x=10f (t) with initial conditions % and x,. Take the Laplace transform of this equation, and solve it
for the variable X (s). Express X (s) as the sum of TWO parts: one that depends on F(s)and one that depends on (x,,X,)-
Solution: ¢(X)+2L(X)+25L(x) =10¢(f) = [s*X(S)—SX, —X,]+2[sX(S)—X,]+ 25X (s) =10F (s) . Gathering terms

10 }F(s)+(s+2)x°+x° _

gives: (s? +2s+25)X (s) = F(s) +[2(s +1)x, + X,]- Hence:  x(s) =(
s2+25+25 s2+25+25

(d)(5pts) Your answer in (c) should involve the polynomial p(s)is2 +2s+25. This is called the system characteristic
polynomial. In fact, p(s) should be present in the denominator of each of the terms. Hence, when s =c +iwis a root of
p(s), these terms ‘explode’. Use the Matlab command ‘roots’ to obtain the roots of p(s). [Include your code HERE.]
Solution: >> p=[1 2 25]; >> rp=roots(p) rp = -1.0000 +/- 4.8990i

6

(e)(5pts) Part (d) involved a polynomial, but in an almost trivial way since it .| mlgg;za ]

was a quadratic. Consider the polynomial p(s) =s®+2s?+25s+ K . Write a

Matlab code that will plot the roots (use * not lines!) of p(s)for K=0:0.1:100.

Then use the data cursor to find the values of the purely imaginary roots when of

they hit the imaginary axis. Finally, substitute one of those purely imaginary

values into p(s), and solve it for the corresponding K value.

Solution: [See code @ 1(e).] “ 1

p(s =i5) = (i5)° + 2(i5)? + 25(i5) + K =0= K =50 . T—

Figtire 1{e) Roots of p(s) as afunction 6f K.
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PROBLEM 2 (25pts) The goal of this problem is to give you an appreciation for the u(t) [, 1 v(t) [mph]
value of using Laplace transforms to solve O.D.E.s. This will be couched in the context l m >
of the figure at right. A force input u(t) is applied to a mass, m, causing its velocity f (1) = bv(t)

(the output) to move with a velocity v(t). The only retarding force is viscous friction, f, (t) =bv(t), between the mass and
the surface. A force balance gives the O.D.E.: mv+bv =u, with initial condition v, .

ts+1 | rs+1
Solution: /[mv+bv=u]= m[sV(s)—V,]+bV(s) =U(s) = (rs+V(s) =7V, + g.U(s) . The result follows.

(a)(5pts) Show that V(S)ZVOT{QS}U(S) , where we have defined r=m/b and gsillb

(b)(5pts) From (a), we see that V (s) [hence v(t)] is composed of two terms. Let v (s) 2 V%T | Identify the appropriate
75+1

entry in the Table of Laplace Transforms inside the front cover of the book. Then use it to show that v, (t) =v,e ™.
Solution: Entry #7 is: 1 e, Hence Vl(s)i Vol _ Yo v, (t) =v,e™'".
s+a rs+1 s+1/7 °

(c)(5pts) Let V, (s) 2 9. Y \where we have assumed the force input is a step u(t) = u,1(t) with Laplace transform

s+l s
U(s) =u,/s . Give the appropriate table entry # and expression. Then use it to show that v, (t) = g.u,(1—e™"'").
Solution: Entry #11is: & ., 1_g-2t. Hence, Vz(s)i 9. U _(A/0)gu, v, (t) = g.u, 1—e'")-
s(s+a) rs+1s  s(s+1/7) )

A
Remark 2(c): The system step response includes two parameters. The parameter g =1/b is called the system static gain.
It is the ratio of the steady state (i.e. ‘static’) output divided by the steady state (i.e. ‘static’) input. The parameter

A
r=m/bis called the system time constant. The response will be within ~2% of the steady state response at time t = 4r
(since e =0.0183=0.02).

(d)(5pts) Since V (s) =V, (s) +V,(s) , from (b-c) we have v(t) =v,(t) +Vv,(t) =v,e " +g.u,(l—e 7). In words, v(t)is the

superposition of the i.c. response and the force step response. In this part assume that v, = 0. Then the steady state mass

velocity will be v_ =lim v(t) = g.u, - Suppose that the viscous damping coefficient is b =10[Ib, /mph] . Find the value of
t—owo

U, such that v =50 mph.
Solution: v, =50mph=g,u,=u,/b = u, =50(b)=50(10) =5001b -

(e)(5pts) Find the maximum value of the weight (in units of pounds) associated with the mass, m, such that
|V, —V(t) |< 0.5 mph forall t>20sec. [Hint: Recall that the units of b are Ib, /mph & those of  are sec.]
Vs ~V(20) _05 _ 01, s0that 7 =-20/In(0.01) = 4.34 sec.
gsuo 50
Ib; —sec—hr 3600sec  Imile Ib;
i X X =29.6
miles hr 5280 ft ft/s?

SOIUtion: Vss —V(ZO) — Vss _ gsuo (1_e—20/r) — gsuoe—ZOIT = e—ZO/r —

or

A
Since z=m/b, we have m=1rb =4.34 sec x10 Ib, / mph = 43.4

Ib, 2 "
w=mg =29.6 x32.18ft/s? =952.5.
ft/

SZ



PROBLEM 3 (25pts) This course is all about transfer functions. For a system defined by the O.D.E.
b,y™ +b, .y +...+by+by=a,x™ +a, ,x™ +...+ax+a,x, the system transfer function is the ratio

Y(s) _a,s"+a, " +...+as+a  Notice that this is obtained by taking the Laplace transform of the O.D.E. under zero
X(s) b,s"+b, ,s"M+...+bs+hy

initial conditions, and solving for the ratio v (s)/ X (s). Let Y (s)/ x(s)ie(s). Then for any specified input X (s), the output
is simply v (s) =G(s)X (s) . To arrive at y(t) one can simply use a table of Laplace transform pairs. In this problem we will

consider the transfer function: Ge=2G___ 10 (1)
F(s) s®+4s+25

(a)(5pts) Suppose that the input to this system is chosen to be a unit impulse: f (t)=s(t). It is then reasonable to refer to
the resulting output y(t) as the system impulse response. Show that for any arbitrary transfer function, G(s), the impulse
response is simply g(t). [Hint: See the entry for an impulse in the Table of Laplace Transform pairs.]

Solution: Since f(t)=s(t) <« F(s)=1, then X(s)=G(s)F(s)=G(s) . Hence, x(t)=g(t)-

(b)(5pts) Identify the most appropriate entry in the table of Laplace transforms, and then use it to arrive at the impulse
response associated with (1). [Hint: The system poles are a complex conjugate pair.]
Solution: Write p(s)=s?+2s+25 as a completed square: p(s)=s?+4s+4+21=(s+2)? +4.5826>. We can then use entry #20

to arrive at g(t): G(s)= -0 :[ 10 ) 45820 §(t)=2.18¢ % sin(4.5826t)
2 +45+25 \4.5826 ) (s+2)° + 45626

Impulse Response
T T

(c)(5pts) Overlay a plot of your expression in (b) against a plot obtained *2|
using the Matlab commands ‘tf* and ‘impulse’. Comment on how well |
they compare. o8
Solution: [See code @ 3(c).] 06

Comment: They are identical. 02

= Matlab g(t) | -|

—-%—- Theory g(t)

o 0.5 1 1.5 2 2.5 3 3.5
Time (sec)

Figure 3(c) Matlab and theoretical impulse response.

Step Response
0.6 T

(d)(5pts) Use the Matlab command ‘step’ to obtain a plot of the system
response to a unit step. Then, from this plot use the data cursor to estimate”” / L Time (scconds): 2.96

Amplitude: 0.399

the system static gain, and compare it to what it should be. 0.4 e =N
Solution: [See code @ 3(d).]

Amplitude
(=]
w
T~

The true static gain is G(s =0) =10/25=0.4. This compares well to that  °=+ /
given in the plot. oal |/

o 0.5 1 1.5 2 2.5 3
Time (seconds)

Figure 3(d) Unit step response.



Step Response
s

(e)(5pts) Use your plot in 3(d) [or include a new one here] to 050

estimate the system time constant and the damped natural o s 0685

frequency. Compare them to the values associated with your . Pl

theoretical response in (b). :

Solution: :

g(t)=2.18e"sin(4.5826t) = r=1/2sec & w,=4.5826r/s 04" P

From the information in the plot we have: e g
% 030 Amplitude: 0.374
£

4r=2sec = r=1/2sec, Which is exactly what we should get.

T,/2=135-0685 = T,=133sec = a,=27/T, =4.72r/s. « -

This is slightly higher than the true value 4.5826 r/s.

oo i+
( 05 1 1.5
Time (seconds)

RS I, S P |
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PROBLEM 4 (25pts) Consider the feedback control system at right.

(a)(5pts) The beauty of transfer functions is that in the Laplace domain
You simply multiply blocks. For example, the input to the controller block G,(s)

is the error E(s)iY,(s)—GS(s)Y (s). When this input is run through the controller and the plant blocks, the output is simply

Y(5) =G, (5)G.(s)E(s) - Use these relations to show that the closed loop transfer function is yy (g2 Y(8) _ G,(s)Gc(s) |
Y () 1+G,(s)G.(s)G,(s)

SOIUtioN: Y (s) = G, ()G, (S)IY, (8) =G ()Y (S)] = [L+G, ()G, (S)G: ()IY (5) = G, ()G (5)Y, () - The result follows immediately.

(b)(5pts) The closed loop system poles are the values of s that make w (s) =, While the closed loop zeros are the values
of s that make w (s) =0. It should be clear that the poles must satisfy 1+ G, (s)G,(s)G,(s) =0- Suppose that we have the

1
s(s® + 25+ 25)
polynomial whose roots are the closed loop poles.

following specific transfer functions: G,(s)= » G,(s)=K(s+5), and G,(s) =1. Find the expression for the

Solution: 1, G, (5)6,(5)G,(5)=0=1+ -T2 §(s2+25+ 25 +K(s+5)=0-
S(s“+2s+25)
Hence:  p(s)=s(s® +2s+25)+ K(s+5) =%+ 25 + (K + 25)s + 5K .
o - Root Locus 40
(c)(5pts) The closed loop system will be stable if all the poles are in the oip 08 0085 o om8 00% 0 01A35
proper Left Half Plane (LHP). Your polynomial in (b) should be a cubic =0 Gain- 166 i
polynomial, and should include the controller gain parameter K. You had _ , 026 P o0ss 0
a similar situation in PROBLEM 1(e), and so you could modify that code 4 Quetshocl (k008 ¢
to find the range of K values such that the system will be stable. Instead ~ § " °° e
of using such a code, use the Matlab command ‘rlocus’ to obtain a plot 2 o
of the closed loop poles as a function of K. Then use the data cursor to ‘%710 - R
identify the largest value of K such that the system will be stable. [Note: 5 , 12 \
The rlocus argument is the open loop transfer function G, (5)G,(5)G,(s) with £-207¢5 , 20 }
K set to 1.0. With this argument, the ‘rlocus’ code computes the s-values -0 s : §§
that satisfy 1+ KG,(5)G, (5)G, (s) —ofor a range of K-values [i.e. it does Lol oMs 0085 00 003 0_0162% ‘ |
exactly what your code in 1(e) did]. T Rent s tsaconds) e
Solution: [See code @ 4(c).] The maximum K is 16.6. Figure 4(c) Closed loop root locus.
Root Locus
(d)(5pts) | used the data cursor to find the gain K (=5.31) that would [ Toms | ooss 0056 003 207838 ]
. . . . . ° stem: 30
result in complex-conjugate closed loop poles having a damping ratio or iyamf 51 _ 25
¢ =0.1. The data cursor data also gives the corresponding pole £ 2002 Damping 0,001 20 )
R 2 Overshoot (%): 72.7
valuess, , =-0547+i5.39. | then used the cursor to find the value of the g oo Froavency (s 341 Ty —
third real pole s, =-0.907 for this value of K. The conjugate poles havea £ ° ° yotom: & fs
time constant, ;_, and the real pole has a time constant, ;_. Arrive atthe 5 °° 5;50392017 AN
H . : E 2014526 Overshot (%): 0 20 ‘
values for these two time constants. ol Frequency (rad/s): 0.907 25
0 017 ) 0.115 0] 085‘ 0,055 0.036 0 01622‘ ) ‘ |
Solution: The time constant associated with a pole is equal to the 6 5 4 32 g M g 2
- . Real Axis (seconds™)
negative of the inverse of the real part of the pole.
Hence: 7, =1/0.547 =1.83sec and 7, =1/0.907=1.10sec Figure 4(d) Closed loop root locus with pole information.

(e)(5pts) In relation to the real pole, the data cursor information in Figure 4(d) states that ¢ =1. Explain why this is, at the
very least, misleading. [Hint: Think of the meaning of the terms underdamped, critically damped and overdamped.]

Explanation: As ¢ increases, a 2" order system becomes critically damped when ¢ =1. Beyond that point it has two real
roots. Hence, a damping ratio is no longer well-defined.



Appendix Matlab Code

%$PROGRAM NAME: hwl.m
$PROBLEM 1 (e) :
K=0:.1:100;
n=length (K) ;
rp = zeros(n,3);
for k=1:n
rp(k, :)=roots ([l 2 25 K(k)1);
end
RE=real (rp) ;
IM=imag (rp) ;
figure (1)
plot (RE, IM, '*'")
grid
%$PROBLEM 3
% (c):
G=tf (10, [1 4 25]);
[gM, t]=impulse (G) ;
g=2.18%exp (-2*t) .*sin (4.5826*t) ;

figure (30)

plot(t,gM, 'LineWidth', 2)

hold on

plot(t,g,'*-.r', 'LineWwidth', 1)
grid

xlabel ('Time (sec) ')

title('Impulse Response')

legend('Matlab g(t)', 'Theory g(t)', 'Location', 'SouthEast"')
% (d-e) :

figure (31)

step (G)

grid

o

%$PROBLEM 4 (c) :
s=tf('s");

Gp=1/ (s* (s"2+2*s+25)) ;
Gc=s+5;

Gs=1;

G=Gc*Gp*Gs;

figure (40)

rlocus (G)

grid



