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Homework 1   AERE331   Spring 2020   Due 1/24(F)           SOLUTION 

Note: The solution to each part of a given problem (including all figures) must be placed directly beneath that part. If it is 

placed elsewhere it will be ignored. Unless stated otherwise, place all Matlab code in the Appendix. 

 

PROBLEM 1 (25pts) The mathematics in this course centers on two topics: (i) differential equations, and (ii) 

polynomials. The goal of this problem is to get you to understand their connection. Suppose that a function of time )(tx  is 

differentiable [i.e. )(/ txdtdx 


 exists], and that it has the initial condition 
0)0( xtx



  . The Laplace transform of )(tx  is 

defined as: )()())((
0

sXdtetxsx
t

ts




  


 , where  is   is allowed to be a complex number. 

 

(a)(5pts) Recall from integral calculus: integration by parts:   duvvudvu . Use this to show that, so long as 

0)(lim 



ts

t
etx , we have the following Laplace transform relation for )(tx :     

0

0

)()()( xsXsdtetxx
t

ts  








  

Solution: Let )(txu  and dtedv ts . Then tse
s

v 
1 and dttxdu )(



 . It follows that 

 
















 
0

0

000

)(
1

)(
1)(

)( dtetx
ss

x
dtetx

s
e

s

tx
dtetx tsts

t

tsts . Rearranging this gives:   
0)()( xsXsx  . 

 

(b)(5pts) Define )()( txtg 


  with initial condition 
00)0( xgg 
. Use (a) to show that

00

2 )()( xxssXsx   . 

Solution: From (a) we have 
0)()( gsGsg  , which is exactly: 

0)()( xxsx   . Substituting the result in (a) gives 

00

2

00 )(])([)( xxssXsxxssXsx   . 

 

(c)(5pts) From (a-b) it should be clear that the Laplace transform of )()( tx n includes the term )(sXsn plus other terms that 

include the initial conditions. To see how polynomials enter into the picture, consider the second order differential 

equation: )(10252 tfxxx    with initial conditions 
0x and 

0x . Take the Laplace transform of this equation, and solve it 

for the variable )(sX . Express )(sX as the sum of TWO parts: one that depends on ( )F s and one that depends on 
0 0( , )x x . 

Solution:  )(10)(25])([2])([)(10)(25)(2)( 000

2 sFsXxssXxxssXsfxLxLx   . Gathering terms 

gives: ])1(2[)()()252( 00

2 xxssFsXss  . Hence:    
252

)2(
)(

252

10
)(

2

00

2 















ss

xxs
sF

ss
sX

 . 

 

(d)(5pts) Your answer in (c) should involve the polynomial  252)( 2 


sssp . This is called the system characteristic 

polynomial. In fact, )(sp  should be present in the denominator of each of the terms.  Hence, when  is  is a root of 

)(sp , these terms ‘explode’. Use the Matlab command ‘roots’ to obtain the roots of )(sp . [Include your code HERE.] 

Solution: >> p=[1 2 25];   >> rp=roots(p)   rp =  -1.0000 +/- 4.8990i 

 

(e)(5pts) Part (d) involved a polynomial, but in an almost trivial way since it 

was a quadratic. Consider the polynomial Kssssp  252)( 23 . Write a 

Matlab code that will plot the roots (use * not lines!) of )(sp for K=0:0.1:100. 

Then use the data cursor to find the values of the purely imaginary roots when 

they hit the imaginary axis. Finally, substitute one of those purely imaginary 

values into )(sp , and solve it for the corresponding K value. 

Solution: [See code @ 1(e).]  

                       500)5(25)5(2)5()5( 23  KKiiiisp  

       Figure 1(e) Roots of )(sp  as a function of K. 
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PROBLEM 2 (25pts) The goal of this problem is to give you an appreciation for the  

value of using Laplace transforms to solve O.D.E.s. This will be couched in the context  

of the figure at right. A force input )(tu  is applied to a mass, m, causing its velocity 

(the output) to move with a velocity )(tv . The only retarding force is viscous friction, )()( tvbtfb  , between the mass and 

the surface. A force balance gives the O.D.E.: uvbvm  , with initial condition 
0v . 

 

(a)(5pts) Show that )(
11

)( sU
s

g

s

v
sV so


















 , where we have defined bm /


  and bgs /1


  

Solution: )()()1()()(])([][ 00 sUgvsVssUsbVvssVmuvbvm s  . The result follows. 

 

 

(b)(5pts) From (a), we see that )(sV  [hence )(tv ] is composed of two terms. Let 
1

)(1





s

v
sV o



 . Identify the appropriate 

entry in the Table of Laplace Transforms inside the front cover of the book. Then use it to show that /
01 )( tevtv  . 

Solution: Entry #7 is: tae
as




1 . Hence 



 /

11 )(
/11

)( t

o
oo evtv

s

v

s

v
sV 









 . 

 

 

(c)(5pts) Let 
s

u

s

g
sV s 0

2
1

)(






 where we have assumed the force input is a step )(1)( 0 tutu  with Laplace transform 

susU /)( 0 . Give the appropriate table entry # and expression. Then use it to show that )1()( /

02

t

s eugtv  . 

Solution: Entry #11 is: tae
ass

a 


1
)(

. Hence, )1()(
)/1(

)/1(

1
)( /

02
00

2









t

s
ss eugtv

ss

ug

s

u

s

g
sV 









 . 

 

Remark 2(c): The system step response includes two parameters. The parameter bgs /1


  is called the system static gain. 

It is the ratio of the steady state (i.e. ‘static’) output divided by the steady state (i.e. ‘static’) input. The parameter 

bm /


 is called the system time constant. The response will be within ~2% of the steady state response at time 4t  

(since 02.00183.04 e ). 

 

 

(d)(5pts) Since )()()( 21 sVsVsV  , from (b-c) we have )1()()()( /

0

/

021

 t

s

t eugevtvtvtv   . In words, )(tv is the 

superposition of the i.c. response and the force step response. In this part assume that 00 v . Then the steady state mass 

velocity will be 
0)(lim ugtvv s

t
ss 



. Suppose that the viscous damping coefficient is ]/[10 mphlbb f . Find the value of 

0u such that mphvss 50 . 

Solution:  
fsss lbbubuugmphv 500)10(50)(50/50 000  . 

 

 

(e)(5pts) Find the maximum value of the weight (in units of pounds) associated with the mass, m, such that 

mphtvvss 5.0|)(|   for all sec20t . [Hint: Recall that the units of b are mphlbf /  & those of  are sec.] 

Solution: 01.0
50

5.0)20(
)1()20(

0

/20/20

0

/20

0 


 

ug

vv
eeugeugvvv

s

ss
ssssss

 , so that  sec34.4)01.0ln(/20  .  

Since bm /


 , we have 
2/

6.29
5280

1sec3600sec
4.43/10sec34.4

sft

lb

ft

mile

hrmiles

hrlb
mphlbbm

ff

f 


  or 

#2

2
5.952/18.32

/
6.29  sft

sft

lb
mgw

f . 

 

][)( mphtv

)()( tvbtfb 

m
][)( flbtu
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PROBLEM 3 (25pts) This course is all about transfer functions. For a system defined by the O.D.E. 

xaxaxaxaybybybyb m

m

m

m

n

n

n

n 01

)1(

1

)(

01

)1(

1

)(  






 , the system transfer function is the ratio 

01

1

1

01

1

1

)(

)(

bsbsbsb

asasasa

sX

sY
n

n

n

n

m

m

m

m
















 . Notice that this is obtained by taking the Laplace transform of the O.D.E. under zero 

initial conditions, and solving for the ratio )(/)( sXsY . Let )()(/)( sGsXsY


 . Then for any specified input )(sX , the output 

is simply )()()( sXsGsY  . To arrive at )(ty  one can simply use a table of Laplace transform pairs. In this problem we will 

consider the transfer function:                           
254

10

)(

)(
)(

2 


sssF

sX
sG . (1) 

 

(a)(5pts) Suppose that the input to this system is chosen to be a unit impulse: )()( ttf  . It is then reasonable to refer to 

the resulting output )(ty  as the system impulse response. Show that for any arbitrary transfer function, )(sG , the impulse 

response is simply )(tg . [Hint: See the entry for an impulse in the Table of Laplace Transform pairs.] 

Solution: Since 1)()()(  sFttf  , then )()()()( sGsFsGsX  . Hence, )()( tgtx  . 

 

(b)(5pts) Identify the most appropriate entry in the table of Laplace transforms, and then use it to arrive at the impulse 

response associated with (1). [Hint: The system poles are a complex conjugate pair.] 

Solution: Write 252)( 2  sssp  as a completed square: 222 5826.4)2(2144)(  ssssp . We can then use entry #20 

to arrive at )(tg : )5826.4sin(18.2)(
5826.4)2(

5826.4

5826.4

10

254

10
)( 2

222
tetg

sss
sG t













 . 

 

 

 

(c)(5pts) Overlay a plot of your expression in (b) against a plot obtained 

using the Matlab commands ‘tf’ and ‘impulse’. Comment on how well 

they compare. 

Solution: [See code @ 3(c).] 

 

Comment: They are identical. 

 

 

 

 

 Figure 3(c) Matlab and theoretical impulse response. 

 

 

 

 

(d)(5pts) Use the Matlab command ‘step’ to obtain a plot of the system 

response to a unit step. Then, from this plot use the data cursor to estimate 

the system static gain, and compare it to what it should be. 

Solution: [See code @ 3(d).] 

 

The true static gain is 4.025/10)0( sG . This compares well to that 

given in the plot. 

 

 

 Figure 3(d) Unit step response. 
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(e)(5pts) Use your plot in 3(d) [or include a new one here] to 

estimate the system time constant and the damped natural 

frequency. Compare them to the values associated with your 

theoretical response in (b). 

Solution:  

srtetg d

t /5826.4&sec2/1)5826.4sin(18.2)( 2     

From the information in the plot we have: 

 

sec2/1sec24   , which is exactly what we should get. 

 

srTTT dddd /72.4/2sec33.1685.035.12/   . 

This is slightly higher than the true value 4.5826 r/s. 
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PROBLEM 4 (25pts) Consider the feedback control system at right. 

 

(a)(5pts) The beauty of transfer functions is that in the Laplace domain 

You simply multiply blocks. For example, the input to the controller block 

is the error )()()()( sYsGsYsE sr 


. When this input is run through the controller and the plant blocks, the output is simply 

 )()()()( sEsGsGsY cp . Use these relations to show that the closed loop transfer function is 
)()()(1

)()(

)(

)(
)(

sGsGsG

sGsG

sY

sY
sW

scp

cp

r 



. 

Solution: )()()()()]()()(1[)]()()()[()()( sYsGsGsYsGsGsGsYsGsYsGsGsY rcpscpsrcp  . The result follows immediately. 

 

(b)(5pts) The closed loop system poles are the values of s that make )(sW , while the closed loop zeros are the values 

of s that make 0)( sW . It should be clear that the poles must satisfy 0)()()(1  sGsGsG scp
. Suppose that we have the 

following specific transfer functions: 
)252(

1
)(

2 


sss
sGp

, )5()(  sKsGc
, and 1)( sGs

. Find the expression for the 

polynomial whose roots are the closed loop poles. 

Solution: 0)5()252(
)252(

)5(
10)()()(1 2

2





 sKsss

sss

sK
sGsGsG scp

.  

Hence:      KsKsssKssssp 5)25(2)5()252()( 332  . 

 

(c)(5pts) The closed loop system will be stable if all the poles are in the 

proper Left Half Plane (LHP). Your polynomial in (b) should be a cubic 

polynomial, and should include the controller gain parameter K. You had 

a similar situation in PROBLEM 1(e), and so you could modify that code 

to find the range of K values such that the system will be stable. Instead 

of using such a code, use the Matlab command ‘rlocus’ to obtain a plot 

of the closed loop poles as a function of K. Then use the data cursor to 

identify the largest value of K such that the system will be stable. [Note: 

The rlocus argument is the open loop transfer function )()()( sGsGsG scp
with 

K set to 1.0. With this argument, the ‘rlocus’ code computes the s-values 

that satisfy 0)()()(1  sGsGsKG scp
for a range of K-values [i.e. it does 

exactly what your code in 1(e) did].  

Solution: [See code @ 4(c).] The maximum K is 16.6.                                            Figure 4(c) Closed loop root locus. 

 

(d)(5pts) I used the data cursor to find the gain K (=5.31) that would 

result in complex-conjugate closed loop poles having a damping ratio 

1.0 . The data cursor data also gives the corresponding pole 

values 39.5547.02,1 is  . I then used the cursor to find the value of the 

third real pole 907.03 s  for this value of K. The conjugate poles have a 

time constant, 
2,1s

 , and the real pole has a time constant, 
3s . Arrive at the 

values for these two time constants. 

 

Solution: The time constant associated with a pole is equal to the 

negative of the inverse of the real part of the pole.  

Hence: sec83.1547.0/1
2,1

s        and       sec10.1907.0/1
3

s           Figure 4(d) Closed loop root locus with pole information. 

 

(e)(5pts) In relation to the real pole, the data cursor information in Figure 4(d) states that 1 . Explain why this is, at the 

very least, misleading. [Hint: Think of the meaning of the terms underdamped, critically damped and overdamped.] 

 

Explanation: As  increases, a 2nd order system becomes critically damped when 1 . Beyond that point it has two real 

roots. Hence, a damping ratio is no longer well-defined. 
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Appendix     Matlab Code 
 

%PROGRAM NAME: hw1.m 

%PROBLEM 1(e): 

K=0:.1:100; 

n=length(K); 

rp = zeros(n,3); 

for k=1:n 

    rp(k,:)=roots([1 2 25 K(k)]); 

end 

RE=real(rp); 

IM=imag(rp); 

figure(1) 

plot(RE,IM,'*') 

grid 

%====================================== 

%PROBLEM 3 

%(c): 

G=tf(10,[1 4 25]); 

[gM,t]=impulse(G); 

g=2.18*exp(-2*t).*sin(4.5826*t); 

figure(30) 

plot(t,gM,'LineWidth',2) 

hold on 

plot(t,g,'*-.r','LineWidth',1) 

grid 

xlabel('Time (sec)') 

title('Impulse Response') 

legend('Matlab g(t)','Theory g(t)','Location','SouthEast') 

%(d-e): 

figure(31) 

step(G) 

grid 

  

%====================================== 

%PROBLEM 4(c): 

s=tf('s'); 

Gp=1/(s*(s^2+2*s+25)); 

Gc=s+5; 

Gs=1; 

G=Gc*Gp*Gs; 

figure(40) 

rlocus(G) 

grid 

 


