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Exam 2 AERE331 Spring 2020 Take-Home Exam 2 Due 3/27(F)   SOLUTION 

PROBLEM 1(20pts) This problem addresses the recovery of a model transfer function from an experimentally obtained 

Bode plot. 

(a)(15pts) Use straight-line approximations to recover a model transfer function from the Bode plot at right. Use both 

magnitude and phase straight-line approximations. {Note; Use a ruler to draw lines, and estimate slopes.] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                               Figure 1(a) Experimentally obtained Bode plot. 

Solution: 

(i): Clearly, there is a second order underdamped component with 20n   [ 90o   ]and 

15/2015 10 1/ 2 0.09Q dB       . Hence: 1 1
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(ii): There is a second first order term [ 60 / ]dB dec  with 
1 1000  [ 225o   ].  Hence: 2
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(b)(5pts) Give a Bode plot of your model. Then comment. 

Solution: [See code @ 1(b).] 

 

Visually, it appears to be quite similar to Figure 1(a). 

  

 

 

 

 

 

 

 

 Figure 1(b) Model Bode plot 
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PROBLEM 2(45pts) Consider the feedback system at right that is used 

to control the angular position of a robotic manipulator arm.  

 

 

 

(a)(10pt) Use a Bode plot to design a controller ( )a

cG K to satisfy the 

single specification (S1) 70oPM  . Verify your design using the 

command: [GM PM wpc wgc]=margin(Ga). 

Solution: [See code @ 2(a).] 

 
23.2/2023.2 10 0.0692dBK K      . So: ( ) 0.0692a

cG  . 

 

[GM PM wpc wgc]=margin(Ga) 

GM = 2.0552  PM = 69.9440  wpc = 2.5820  wgc =  0.9354 

 

 

          Figure 2(a) Bode plot. 

 

 

(b)(10pts) For the additional specification (S2) 3 /gc r s   design a 

non-unity double-lead compensator. Verify your design using the 

margin command.  

 Solution: [See code @ 2(b).] 

We need to add 96o at 
max 1 2 3 /r s   . This will require a 

double-lead compensator with each component giving 48o. 

2

1

1 sin(48 )
6.7825 ( 16.633 )

1 sin(48 )

o

o
dB







   


. Hence, 

1 max / 1.1516     and 
2 1 7.8153   . The double-lead 

compensator will add 16.663dB to the already 14.3dB giving 

30.963dB. Hence, we need 30.963/2010 0.0283K   .  

The compensator is then:  
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.                                                Figure2(b) Bode plot. 

 

[GM PM wpc wgc]=margin(Gb)    GM =2.9525   PM = 68.5527  wpc = 5.1422  wgc =3.0223 

 

ref 2

20

2 8s s 
( )cG s 

armmotor
controller

50

( 10)s s 



3 

 

(c)(10pts) (i) Overlay the CL Bode plots and use the data cursor to obtain the -3dB BW for each system. (ii) Overlay the 

OL Bode plots and use the data cursor to identify all gain crossover frequencies. (iii) Explain why, in view of (ii), you 

think that even though the design in (b) specified a value for 
gc that was three times that in (a), the CL BW for (b) is 

significantly less than that for (a). 

Solution: [See code @ 2(c).] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 Figure 3(c1) CL Bode plots with data cursor information. 

 

(i): The -3dB BW of Wa is 2.8 rad/s and for Wb it is 0.28 rad/sec. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3(c2) OL Bode plots and data cursor information. 

 

(ii) Ga has one crossover frequency at 0.938 rad/sec and Gb has one at 0.402 rad/sec and a second at 3.02 rad/sec. 

 

(iii) The reason is that Gb has two crossover frequencies, including a very low one . 
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(d)(5pts) (i) Overlay the CL step responses. (ii) Explain 

how and why the settling times differ in view of (c).  

Solution: [See code @ 2(d).] 

 

(ii): The settling time for Wb is almost double that of 

Wa. The reason that Wa has a much higher BW than 

Wb. 

 

 

 

 

 

 

 

 Figure 3(d) CL step responses. 

 

(e)(10pts) Obtain a Nichols plot of ( ) ( ) ( )p m armG s G s G s . Then use the data cursor to identify (i) the CL system phase 

margin, and (ii) the value of ( )a

cG K needed for a PM=70o. (iii) Overlay a plot of  ( )pKG s , and from it, use the data 

cursor to approximate the maximum level (in dB) of the CL ( )M  . (iv) Comment on how this controller compares to 

your controller in (a). 

Solution: [See code @ 2(e).] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

   Figure 2(e) Zoomed overlaid Nichols plots for ( )pG s  and ( )pKG s , along with required data cursor information. 

 

(i): For ( )pG s  the 180 264 84o o oPM      

(ii) For OL ( 0.923) 110o      the corresponding ( 0.923) 23.3M dB   . Hence, 23.3/2010 0.0684K   . 

(iii) The ( )pKG s  plot is tangent to the ~1dB line of constant CL magnitude. 

(iv) It is exactly my controller in (a). 
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PROBLEM 3(35pts) The plant TF for attitude is [see Nelson p.295]: 
2

20( 10) ( )
( )

0.65 2.15 ( )
p

e

s s
G s

s s s






 

 

.  

(a)(10pts) (i) Develop the controller canonical state space representation for ( )pG s . (ii) Verify your answer by using the 

ss2tf command. 

Solution: [Give your code/results HERE.] 

(i): 2 ( ) 0.65 ( ) 2.15 ( ) ( )es V s sV s V s s    gives 0.65 2.15 ev v v     . Let 
1 2;x v x v  .  

      Then 
1 2( ) (20 200) ( ) 20 200 20 200s s V s v v x x        . Hence, we arrive at: 

                              
0.65 2.15 1

1 0 0
e

    
    
   

x x   and      20 200 0 e  x . 

 

(ii): A=[-0.65 -2.15 ; 1 0];   B=[1;0];    C=[20 200];    D=0;    

      [np,dp]=ss2tf(A,B,C,D)   np =[ 0    20   200 ]   dp = [1.00    0.65    2.15 ]. Verified. 

 

(b)(10pts) (i) Obtain the state controller that will achieve closed loop poles having 0.25   and 0.9  . (ii) Use the CL 

A-matrix to verify your design. Show ALL work. 

Solution: [Give code/results HERE.] 

 (i): 0.25 4 4.4444 4.4444 1 .81 1.9373n n d            . Hence, 
1,2 4 1.9373s i   . 

      s1=-4+1i*1.9373; s2=conj(s1);   K=place(A,B,[s1 s2])  = [ 7.3500   17.6031 ] 

 

(ii): ACL=A-B*K;   eigs(ACL)  =    -4.0000 +/- 1.9373i  

 

(c)(10pts) To arrive at a CL transfer function having unity static 

gain: (i)Use the ss2tf command to obtain the regulator TF. Then 

(ii) scale it to have unity static gain. Give the CL tF and plot the 

unit step response. 

Solution: [Give code/results HERE.] 

[n0 d0]=ss2tf(ACL,B,C,D)   n0 =[0 20 200] ; d0 = [1 8 19.7531]   

sf=d0(3)/n0(3); W=tf(sf*n0,d0) 

 

W = (1.975 s + 19.75)/(s^2 + 8 s + 19.75) 

 Figure 3(c) CL command system step response. 

 

(d)(5pts) (i) Develop a PD controller in the usual (not state space) manner. (ii) Obtain the CL TF. (iii) overlay the step 

response on the plot in (c). (iv) The initial behavior in your plot should be strangese the initial value theorem to explain 

why. 

Solution: 21 2
1 22

(20 200)( )
( ) ( ) ( 0.65 2.15) (20 200)( )

0.65 2.15

s K s K
G s p s s s s K s K

s s

 
       

 
 

2

1 1 2 2( ) (1 20 ) (0.65 200 20 ) (2.15 200 )p s K s K K s K        

2 21 2 2

1 1

0.65 200 20 2.15 200
( ) 8 19.75

1 20 1 20

K K K
p s s s s s

K K

     
        

    

. This gives    1 2 .0703 .2269K K  (using a matrix eqn.) 

 

(ii): The CL TF is:   Wd = (1.406 s^2 + 18.6 s + 45.38)/(2.406 s^2 + 19.25 s + 47.53) 

 

(iii) For a unit step input, the initial value theorem gives: 

0
lim ( ) lim ( ) lim ( )(1/ ) lim ( ) 1.406 / 2.406 0.5844
t s s s

t s s sW s s W s
   

      . This is shown in the figure. Even though W(s) is a 

proper TF, it is not strictly proper. What we see here is that the initial angular velocity is infinite.   
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Appendix   Matlab Code 
%PROGRAM NAME: exam2.m   (3/13/20) 

%PROBLEM 1 

%TRUE TF: 

s=tf('s'); 

G=10000/((s^2+4*s+400)*(s+1000)); 

title('Experimentally Obtained Bode Plot') 

grid 

%(b): 

s=tf('s'); 

Ghat=5440/((s^2+3.6*s+400)*(s+1000)); 

figure(10) 

bode(Ghat) 

grid 

%========================================= 

%PROBLEM 2 

%(a): 

Garm=20/(s^2+2*s+8); Gm=50/(s*(s+10)); 

Gp=Gm*Garm; 

figure(20) 

bode(Gp) 

grid 

K=0.0692; 

Ga=K*Gp; 

[GM PM wpc wgc]=margin(Ga) 

%------------ 

%(b): 

figure(21) 

bode(Gp) 

grid 

Gcb=1.3034*(s+1.1516)^2/(s+7.8153)^2; 

Gb=Gcb*Gp; 

[GM PM wpc wgc]=margin(Gb) 

%------------ 

%(c): 

Wa=feedback(Ga,1); 

Wb=feedback(Gb,1); 

figure(22) 

bode(Wa,Wb) 

title('Wa(s) and Wb(s)Bode Plots') 

grid 

legend('Wa','Wb') 

figure(23) 

bode(Ga,Gb) 

title('Ga(s) and Gb(s)Bode Plots') 

grid 

legend('Ga','Gb') 

%(d): 

figure(23) 

step(Wa,Wb) 

title('Wa(s) and Wb(s) Step Responses') 

grid 

legend('Wa','Wb') 

%(e): 

figure(24) 

nichols(Gp) 

grid 

KdB=-23.3; K=10^(KdB/20) 

hold on 

nichols(K*Gp) 

%=================================================== 

%PROBLEM 3 

%(a): 

A=[-0.65 -2.15 ; 1 0]; 

B=[1;0]; C=[20 200]; D=0; 

[np,dp]=ss2tf(A,B,C,D) 

%(b): 

s1=-4+1i*1.9373; s2=conj(s1);  

K=place(A,B,[s1 s2]) 

ACL=A-B*K; 

eigs(ACL); 

%(c): 

[n0 d0]=ss2tf(ACL,B,C,D) 
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sf=d0(3)/n0(3); 

W=tf(sf*n0,d0) 

figure(30) 

step(W) 

grid 

%(d): 

Gp=(20*s+200)/(s^2+.65*s+2.15); 

Gcd=.0703*s+.2269; 

Wd=feedback(Gcd*Gp,1) 

hold on 

step(Wd) 

legend('W','Wd') 

 


