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Exam 1  Spring 2020 AERE 331 Take-Home Due  2/14(F)    SOLUTION 
[NOTE: All work, answers and plots must be placed directly beneath the given problem part to receive credit. Matlab code that supports the same 

should be placed in the Appendix. I will not go to the Appendix to search for answers and concepts used to obtain them.] 

 

PROBLEM 1(30pts) In the absence of feedback control, the velocity/thrust transfer function for a satellite in deep space 

is given by: ssGv 10/1)(  . 

 

(a)(5pts) Assuming the thruster can actually generate an impulse, f(t)=100δ(t), for this input, arrive at the expression for 

)(tv . 

Solution: ( ) 100F s  . And so: ( ) ( ) ( ) 10 /vV s G s F s s   .  Hence, )(110)( ttv  .  

 

 

(b)(5pts) Explain why, in reality, the craft cannot behave in the manner associated with your answer in (a) using the 

concept F=ma. 

Explanation: From (a): ( ) 101( ) ( ) 10 ( )v t t a t t   , which states that the acceleration at 0t  is infinite. 

[NOTE: Nonetheless, this can be a useful model, depending on the time scale and/or bandwidth of interest.]  

 

 

(c)(10pts) It should be clear that the satellite position/thrust transfer function is: 210/1)( ssGp  . Design a PD controller 

so that the unity feedback CL position system will have critical damping ( 1 ) and sec2 . To this end, use the 

method of equating coefficients associated with the CL characteristic polynomial. Do not use the root locus method. 

Solution: 
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5.0/1284   . Hence, 25.0)5.0(1.01.0)( 222  sssKsKssp PD
. 

Equating coefficients gives: 
PK  2.5 and

DK 10 . Hence: ( )cG s s 10 2.5 . 

 

 

(d)(10pts) Assume that the CL transfer function is 

5.21010

5.210
)(

2 




ss

s
sW . Were you to plot the step response, you 

would see that, not only is there unexpected overshoot, the 

settling time is longer than expected. Carry out an investigation 

to identify the sources of these unexpected behavior. Note that 

an investigation involves more than offering an opinion. It 

should, at the very least, involve overlaying step responses 

associated with variations of ( )W s . 

 

        Figure 2(d) CL unit step response(s). 

 

Investigation: [See code @ 1(e).] By removing the CL zero, the overlaid response for 
1 2

2.5
( )

10 10 2.5
W s

s s


 
(RED) no 

longer exhibits any overshoot. Hence, the CL zero is responsible for that unexpected overshoot. The notably longer 

response time still exists because of the repeated nature of the CL poles. To illustrate that this is the reason, we have 

overlaid a response for 
2

0.5
( )

0.5
W s

s



(BLACK). To quantify it, from the Laplace transform pair #15, we have: 

/( ) 1 (1 / ) tv t t e     , giving 4(4 ) 1 5 0.9084v e    . For a single pole we have 4(4 ) 1 0.9817v e    . Hence, 

(4 ) (4 )
0.08

(4 )

v v

v

 




  . In words, the 4 response level to a step will be 8% lower than one might expect. 

[NOTE: With the exception of removing the second pole to prove the claim, it is not valid to simply change controller gains in a manner that changes 

the value of the second time constant. The question is very specific: What is causing the settling time to be notably greater than 8-10 seconds. It is 

not: How might one generally change the poles to reduce it.] 
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PROBLEM 2(35pts) A transport aircraft at altitude of 10,000 ft and speed of 487 ft/s has the yaw rate/rudder position 

transfer function:  
07.013.278.121.2

24.030.043.173.0

)(

)(
)(

234

23








ssss

sss

s

sr
sG

r

p


. 

 

(a)(12pts) (i) Compute the plant poles to TWO decimal places. (ii) From these numbers, compute all of the plant time 

constants, as well as any damping ratios and damped natural frequencies (again, to TWO decimal places). (iii) Give the 

name of the lateral mode associated with each pole (or set of poles). 

 

Solution:  [Show ALL work/code HERE.]   Rp=roots([1 2.21 1.78 2.13 .07]) =   -1.86   ;     -0.16 +/- 1.04i   ;     -0.03  

 

1.86 1/1.86r rp      0.54 s  roll mode          ;          0.03 1/ 0.03sp spp      33.33 s  spiral mode  

 

0.16 1.04 1/ 0.16 ; /dr dr dp i r s       6.25 s 1.04 . th=atan(1.04/.16);  ζ=cos(th) =0.15.  Dutch roll mode 

 

 

 

 

(b)(10pts) The block diagram for control of these dynamics is 

shown below. (i) For KsGc )( , (i) use ‘rlocus’ and the data cursor 

to find the K-value for maximum damping and give its value. (ii) 

For that value, use the data cursor to identify all of the CL poles. 

(iii) Identify which modes these poles correspond to. 

 

 

 

 

Solution: [See code @ 2(b).] 2.2K  gives 9.0max   

 

1.96rp    roll;    0.6 0.3drp i    Dutch roll ;  0.66spp   spiral. Figure 3(b) Root locus & data cursor information. 

 

 

 

(c)(7pts) Compute the percent reduction in the time constant for each mode, and the percent increase in the damping ratio 

associated with the underdamped mode. [Show computations HERE.] 

Solution:   

  1.9CL CL

r rp     0.518 s . Roll τ: -4.1%.        0.66CL CL

sp spp     1.51 s . Spiral τ: -95%. 

          

0.61 0.16 ; 0.30 ;dr dr dp i         1.64 0.9 . Hence,   DR τ: -74%   &  + 500%. 

)(sGc

)(sr)(src


)(sGp
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(d)(6pts) The step responses of the plant (scaled to have unity static gain), and the 

closed loop system are shown at right. Clearly, there is an improvement. However, 

the very early portion of the CL response still has a notable oscillation in it. 

Assume that the CL transfer function is: 

                    
3 2

4 3 2

( ) 1.61 3.16 0.66 0.53
( )

( ) 3.82 4.94 2.79 0.60c

r s s s s
W s

r s s s s s

   
 

   
.   (1) 

To determine the cause of the oscillation, the ‘residue’ command was used in the 

Appendix to arrive at the following partial fraction expansion: 

 

2

0.248 7.112 5.764 8.477
( ) ( ) ( ) ( )

1.93 1.237 0.474 0.656
r dr sp

s
W s W s W s W s

s s s s


     

   
. (2) 

 

Use (2) to determine which interacting modes are causing the oscillation. [Hint: Overlay various step responses associated 

with (2) up to 6 sec.] 

Solution: [See code @ 2(d).] 

 

From the right plot it is clear that the roll 

response is not involved, except to shift 

the response ( ) ( )dr spy t y t  that has 

essentially the same shape as ( )y t . The 

left plot shows that ( )dry t  and ( )spy t are 

very large, but have opposite signs. In 

words, the yaw associated with the 

Dutch roll and spiral modes are 

‘fighting’ each other.  

                                                                             Figure 2(d) Component responses (LEFT). Your others (RIGHT). 

 

A closer look at the figure at right shows that after about 2 seconds the roll response becomes constant. After that point 

the ( ) ( )dr spy t y t response is simply a shifted version of the total response. ( )y t . It is interesting that the Dutch roll is 

second order with 1.64 & 12.92sg    , while the spiral response is first order with 1.5 & 12.16sg   . The similarities 

between these parameters is quite interesting. 
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PROBLEM 3(35pts) A motor to be used for a solar array angular positioning has 10
( )

( 0.5)
pG s

s s



. In this problem you 

will design a unity feedback command control system having a pole at 
0 2 2s i   . 

(a)(10pts) Compute HERE the ‘defect angle’ of this pole, per the root locus angle criterion. Then use it to design a PD 

controller that will achieve this pole placement via the root locus angle and magnitude criteria. 

Solution: [See code @ 3(a).] 

 

 0 [135 (180 tan (2 /1.5)]

262 180

z p

o o o

o o

a d

 

   

    

 

o82

. 

 

2 2 / tand(82 ) 2.28o     

From the root locus we have 

( ) 0.35( 2.28)cG s s   

 

 Figure 3(a) Supporting plots: root locus (LEFT); angle criterion (RIGHT). 

 

 

(b)(10pts) Now, instead of a PD controller, consider a lead 

compensator ( 2)
( )c

K s
G s

s 





. Find the values of K and  that 

will achieve this pole placement. Also, find the third CL pole. 

Solution: [See code @ 3(b).] Since we need 82o and the zero 

adds o90 , the pole angle must be 8o . 2 2 / tand(8 )o   16 . 

The resulting compensator is: 5( 2)
( )

16
c

s
G s

s





. 

 

 From the data cursor: K  5 . The 3rd pole is at -12.5. 

 

        Figure 3(b) Root locus plot. 

(c)(7pts) Regardless of your answer in (a-b), here assume that ( ) ( ) 0.35( 2.28)a

cG s s  and ( ) 5( 2)
( )

16

b

c

s
G s

s





. The CL step 

responses and impulse responses are shown below. 

 

 

 

 

 

 

 

 

 

                                   Figure 3(c) CL step responses (LEFT) and impulse responses (RIGHT). † 

 

Suppose that the command input corresponds to movement of a joystick. Explain in what types of situations the lead 

compensator might be less/more preferable to the PD controller. Use numerical information from both plots in justifying 

your explanation. 

Explanation: 

[The term ‘types of situations’ is in relation to the satellite/panel array positioning system. I should have been clearer.] 

The lead controller has twice the overshoot and twice the settling time than the PD in response to a step. Hence, for a 

command step input to position the array the lead controller would be less desirable. I can think of no reason to 

intentionally give the array an impulse. However, if the joystick is inadvertently jerked, the initial response of the PD 

2

2i

1

2z

0.5
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controller is almost 5 times greater than that of the lead. Furthermore, it is discontinuous.  Even so, its decay time is half 

that of the lead controller. 

 

 

(d)(4pts) The Bode plots for the two controllers are shown at right.  

The magnitude in dB is 
10( ) 20log ( )dBM M  . The power is given 

by the square of the magnitude, and in dB is defined as 

10( ) 10log ( )dBP P  . Hence, the vertical axis in the figure can be 

viewed as magnitude or power: 2

10 1010log ( ) 20log ( )M M  . 

 

The required controller power is related to the area beneath the 

magnitude curves. Clearly, the PD controller requires much more 

power than the lead controller. Use the ‘integral’ command to 

quantify the ratio of the controller powers over the interval 
1 3[10 ,10 ]  rad/sec. 

Solution: [Give your code HERE.]  Figure 3(d) Bode plots for each controller. 

 
fa= @(w) abs(0.35*(1i*w+2.28)).^2; 

PWRa=integral(fa,10^-1,10^3); 

fb= @(w) abs(5*(1i*w+2)./(1i*w+16)).^2;    The PD-to-lead power ratio is Rab =1674.4 
PWRb=integral(fb,10^-1,10^3); 

Rab=PWRa/PWRb 

 

 

(e)(4pts) Suppose that the electrical circuit that feeds 

the error signal into the controller includes electrical 

noise of the form ( ) sin( )nn t t  at frequency 

2 (60) 377rad / secn   (i.e. there is a ground loop 

problem). Use data cursor information from a second 

plot of Figure 3(d) to estimate the ratio of the 

controller output amplitudes. 

Solution: [See code @ 3(e).] 

At 377rad / secn  the PD controller output is 

42.4 14 28.4dB   higher that the lead controller 

output. Hence, the magnitude ratio is 
28.4/2010 M 26.3 . 

 Figure 3(e) Bode plots for each controller with data cursor information. 

 

 

† The figures are incorrect. I forgot to change them for the new controller I used this semester. The figures should be as shown below. In any case, 

since the figure was given, the information should be gleaned from it, not the one at right.  
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Appendix   Matlab Code  
[NOTE: This code should support the answers/ plots given beneath a given problem part. I will not search through this code to find answers.] 
%PROGRAM NAME: exam1.m   2/3/20 

%PROBLEM 1 

%(d): 

W=tf([10 2.5],[10 10 2.5]); 

figure(10) 

step(W) 

grid 

W1=tf(2.5,[10 10 2.5]); %Remove zero 

hold on 

step(W1,'r') 

%(e): 

W2=tf(.5,[1 .5]); %Remove repeated pole 

step(W2,'k') 

legend('W','W1','W2','Location','SouthEast') 

%=============================================== 

%PROBLEM 2 

Np=[0.73 1.43 0.30 0.24]; 

Dp=[1 2.21 1.78 2.13 0.07]; 

Gp=tf(Np,Dp); 

%(a): 

Rp=roots(Dp) 

%(b): 

figure(20) 

rlocus(Gp) 

grid 

%(d): 

Gc=2.21; 

G=Gc*Gp; 

W=feedback(G,1); 

gs=0.24/0.07; 

[num,den]=tfdata(W,'v'); 

[r,p,k]=residue(num,den) 

s=tf('s'); 

Wr=r(1)/(s-p(1)); 

W21=r(2)/(s-p(2)); 

W22=conj(W21); 

Wdr=W21+W22; 

Wsp=r(4)/(s-p(4)); 

t=0:.001:6; t=t'; %Time window for the investigation 

yr=step(Wr,t); 

ydr=step(Wdr,t); 

ysp=step(Wsp,t); 

figure(21) 

plot(t,[yr,ydr,ysp]) 

title('Mode Step Responses') 

xlabel('Time (sec)') 

legend('yr','ydr','ysp') 

grid 

figure(22) 

y=step(W,t); 

plot(t,[yr,ydr+ysp,y]) 

title('Mode Step Responses') 

xlabel('Time (sec)') 

legend('yr','ydr + ysp','y') 

grid 

Wzdr=tf(-5.764,[1 1.237 0.474]); %no zero 

yzdr=step(Wzdr,t); %DR w/o the zero 

figure(23) 

plot(t,[yr+yzdr+ysp,y]) 

title('Response w/o DR zero & y(t)') 

legend('yr+yzdr+ysp','y') 

grid 

%===================================== 

%PROBLEM 3 

%(a): 

Gp=tf(10,[1 .5 0]); 

Gca=tf([1 2.28],1); 

figure(30) 

rlocus(Gca*Gp) 

grid 

Gca=0.35*Gca; 

%(b): 

Gcb=tf([1 2],[1 16]); 

figure(31) 

rlocus(Gcb*Gp) 
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grid 

Gcb=5*Gcb; 

%(c): 

Wa=feedback(Gca*Gp,1); 

Wb=feedback(Gcb*Gp,1); 

figure(32) 

step(Wa,Wb) 

grid 

legend('W(a)','W(b)','Location','SouthEast') 

figure(33) 

impulse(Wa,Wb) 

grid 

legend('W(a)','W(b)','Location','SouthEast') 

%(d): 

figure(34) 

bode(Gca,Gcb) 

grid 

%------------------------------ 

fa= @(w) abs(0.35*(1i*w+2.28)).^2; 

PWRa=integral(fa,10^-1,10^3); 

fb= @(w) abs(5*(1i*w+2)./(1i*w+16)).^2; 

PWRb=integral(fb,10^-1,10^3); 

Rab=PWRa/PWRb 

 


