
   Section 9.2
Graph Terminology and
Special Types of Graphs

Undirected Graphs

Definition: Two vertices u, v in V  are adjacent or
neighbors if there is an edge e between u and v.

The edge e  connects u and v.

The vertices u and v are endpoints of e.

____________________

Definition: The degree of a vertex v, denoted deg(v),  is
the number of edges for which it is an endpoint.

A loop contributes twice in an undirected graph.

_____________________

Example:

2 2

13

• If deg(v) = 0, v is called isolated.
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• If deg(v) = 1, v is called pendant.
________________

The Handshaking Theorem:

Let G = (V, E). Then

 2|E|= deg(v)
v∈V
∑

Proof:

Each edge represents contributes twice to the degree count
of all vertices.

Q. E. D.

__________________

Example:

If a graph has 5 vertices, can each vertex have degree 3?
4?

• The sum is 3•5 = 15 which is an odd number. Not
possible.

• The sum is 20 = 2 | E | and 20/2 = 10. May be
possible.

___________________
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Theorem: A graph has an even number of vertices of odd
degree.

Proof:

Let V1 = vertices of odd degree

V2= vertices of even degree

The sum must be even. But

• odd times odd = odd

• odd times even = even

• even times even = even

• even plus odd = odd

It    doesn't matter    whether V2 has odd or even cardinality.

V1 cannot have odd cardinality.

Q. E. D.

___________________

Example:

It is not possible to have a graph with 3 vertices each of
which has degree 1.
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Directed Graphs

Definition: Let <u, v> be an edge in G. Then u is an
initial vertex and is adjacent to  v and v is a terminal
vertex and is adjacent from u.

__________________

Definition: The in degree of a vertex v, denoted deg-(v)
is the number of edges which terminate at v.

Similarly, the out degree of v, denoted deg+(v), is the
number of edges which initiate at v.

_____________________

Theorem: | E|= deg−(v)
v∈V
∑ = deg+(v)

v∈V
∑

____________________

Special Simple Graphs

• Complete graphs - Kn: the simple graph with

- n vertices

- exactly one edge between every pair of distinct 
vertices.

Maximum redundancy in local area networks and
processor connection in parallel machines.
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_____________________

Examples:

K

K

K

1

2

3

4K

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 9.2

Prepared by: David F. McAllister TP 5 ©1999, 2007 McGraw-Hill



K
5

Note: K5 is important because it is the simplest nonplanar
graph: It cannot be drawn in a plane with nonintersecting
edges.

________________

• Cycles:

Cn is an n vertex graph which is a cycle. Local area
networks are sometimes configured this way called Ring
networks.
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__________________

• Wheels:

Add one additional vertex to the cycle Cn and add an edge
from each vertex to the new vertex to produce Wn.

Provides redundancy in local area networks.

3

4W

W

_________________
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• n-Cubes:

Qn is the graph with 2n vertices representing bit strings of
length n.

An edge exists between two vertices that differ by one bit
position.

A common way to connect processors in parallel
machines.

Intel Hypercube.
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________________________

Bipartite Graphs

Definition: A simple graph G is bipartite if V  can be
partitioned into two disjoint subsets V 1 and V 2 such that
every edge connects a vertex in V 1 and a vertex in V 2.

Note: There are no edges which connect vertices in V 1 or
in V 2.

A bipartite graph is complete if there is an edge from every
vertex in V 1 to every vertex in V 2, denoted Km,n where m =
| V 1 | and n = | V 2 |.   

__________________

Examples:

•  Suppose bigamy is permitted but not same sex
marriages and males are in V1 and females in V2 and an
edge represents a marriage. If every male is married to
every female then the graph is complete.

• Supplier, warehouse transportation models are
bipartite and an edge indicates that a given supplier sends
inventory to a given warehouse.

•  A Star network is a K1,n bipartite graph.
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K
1,8

• Ck for k even is a bipartite graph: even numbered
vertices in V1, odd numbered in V2.

1 2

34

1 2

3 4
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• Is the following graph bipartite?

a

b c

d

e

If a is in V1 then e, c and b must be in V1 (why?).

Then c is in V1 and there is no inconsistency.

We rearrange the graph as follows:

a

bc

d

e

New Graphs from Old

Definition: (W, F) is a subgraph of G = (V, E) if

W ⊆V  and F⊆E.
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Definition: If  G1 and G2 are simple then

G1 ∪G2 = (V1 ∪  V2, E1 ∪  E2)

and the graph is simple.

________________

Examples:

• Find the subgraphs of Q1:

0

0

0

1

1

1

• Count the number of subgraphs of a given graph.

• Find the union of the two graphs G1 and G2:
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a b

c d

e

a b

c d

e

f

g

a b

c d

e

f

g

G

G

G      G

1

2

1 2
∪

__________________________

Note: The important properties of a graph do not depend
on how we draw it. We want to be able to identify two
graphs that are the same (up to labeling of the vertices).

________________

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 9.2

Prepared by: David F. McAllister TP 14 ©1999, 2007 McGraw-Hill


