Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Sections 4.1 & 4.2

Section 4.1 - Mathematical Induction
and
Section 4.2 - Strong Induction and Well-Ordering

A very special rule of inference!

Definition: A set Siswell ordered if every subset has a
least element.

Note: [0, 1] isnot well ordered since (0,1] does not have a
|east element.

Examples:
* N iswell ordered (under the £ relation)
« Any coutably infinite set can be well ordered

The least element in a subset is determined by a bijection
(list) which exists from N to the countably infinite set.

 Z can be well ordered but it is not well ordered
under the £ relation (Z has no smallest element).

» The set of finite strings over an alphabet using
lexicographic ordering is well ordered.

Let P(x) be apredicate over awell ordered set S.
The problem isto prove

" XP(X).
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The rule of inference called

The (first) principle of Mathematical Induction

can sometimes be used to establish the universally
guantified assertion.

In the casethat S= N, the natural numbers, the principle
has the following form.

P(0)
P(n)® P(n+1)
\ " XP(X)
The hypotheses are
H1: P(0)
and

H2: P(nN)® P(n+1) for n arbitrary.

* Hl iscalled The Basis Step.
* H2 is called The Induction (Inductive) Step

» We first prove that the predicate is true for the
smallest element of theset S(0if S=N).

* We then show if itistruefor an element x (nif S=
N) impliesitistruefor the “next” element in the set (n +
1if S=N).
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Then

« knowing it istrue for the first element meansit
must be true for the element following the first or the
second element

» knowing it istrue for the second element impliesit
istrue for the third

and so forth.

Therefore, induction is equivalent to modus ponens
applied an countable number of times!!

It islike arow of dominos;

If the nth domino falls over the (n+1)st must fall over
so pushing the first one down means all must fall down.

» To prove H2 we normally use a Direct Proof.

» Assuming P(n) to be true for arbitrary nis called the
Induction (Inductive) Hypothesis.

Example: (aclassic)
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Prove:
. h(n+1
ai= ( )

i=0 2

In logical notation we wish to show

" n[éoi - n(n2+ 1)]

Hence, the predicate P(n) is

n. n(n+l1)
| = .
ieo 2
Note: |dentifying P(x) is often the hardest part!
+
« Wefirst prove H1: P(0): 0= _éii = 0(0+1)

i=0 2
* Now establish H2 using a direct proof:

» State the Induction Hypotheses :

o Assume P(n) istruefor n arbitrary

(thislooks as if you are assuming the truth of what isto be
proved and hence we have a circular argument. Thisis not
the case.)

* Now use this and anything else you know to
establish that P(n+ 1) must be true.
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P(n+ 1) isthe assertion
L_(n+)((n+1)+1)
al= >
i=0

(Note: Write down the assertion P(n+1)! Don't make it
hard for yourself because you don't know what it isyou are
to prove.)

But,

n+1
ai —a|+(n+1)
i=0 i=1

using the property of summations.

Now apply the induction hypothesis.

Note: you must manipulate the assertion P(n+1) so that
you can apply the induction hypothesis P(n). If you do not
apply the induction hypothesis somewhere, itisnot a
valid induction proof.

Use the assumption P(n) to substitute

n(n+1) for a |
i=0

to get
o n(n+1)

+(n+1)

and we manipulate the right side to get
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¥ - 0O+

which is exactly P(n+1).

Hence, we have established H2.

We now say by the Principle of Mathematical Induction it
followsthat P(n) istruefor all n or

. n[i‘ii _ n(n2+1)]

Q.E.D.

We can use the Principle to prove more general assertions
because N iswell ordered.

Suppose we wish to prove for some specific integer k
"x[n3 k® P(x)]

Now we merely change the basis step to P(k) and
continue.

Example:
Show

3n+5is0(n2).
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Proof:
We must find C and k such that

3n+5£Cn2
whenever n3 k (or n > k-1).
If wetry C =1, then the assertion is not true until k = 5.
Hence we prove by induction that 3n+ 5 £ n2for all n3 5.
The assertion becomes

"nn35® 3n+5£n7]

and the predicate P(n) is 3n+5£ n’

» Basisstep: P(5): 3x5+5=20 £ (5)2which
establishes the basis step.

» The induction hypothesis: assume P(n): 3n+5£ n’
istrue for n arbitrary.

» Use this and any other clever things you know to
show P(n+1).

Write down the assertion P(n+1)!

P(n+1): 3(n+1)+5£ (n+1)°

Now put it in aform which will allow you to apply the
induction hypothesis.
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We rewrite the left side as (3n+5) + 3 and apply the
induction hypothesis to (3n+5) which we assume s less
than n2.
Now we must show that
N2+3£(n+1)2=n2+2n+1
which istrue iff
3£2n+1
which istrue iff
n3 1
But we have already restricted n® 5son 2 1 must hold.

Hence we have established the induction step and the
assertion must be true for all n:

"nn35® 3n+5£n7]
Q.E.D.

Note: in doubly quantified assertions of the form
" m' n[P(m,n)]

we often assume m (or n) is arbitrary to eliminate a
quantifier and prove the remaining result using induction.
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Another Example:
All horses are the same color.

Proof: We do induction on the size of sets of horses of the
same color.

» Basis step: The assertion is obviously true for all
setsof O horses (and all setswith 1 horse).

* Induction step: The induction hypothesis becomes
'Assume the assertion is true for all setswith n horses.'

Now show it must be true for all sets of n+1 horses.

But every set of n+1 horses has an overlap of horses
which are the same color.

n+ 1 horses
» >
X X X X X X X... X X
.| »
n horses
< -

n horses

Hence the set of n+1 horses must have the same
color.

Therefore, all horses have the same color.

What's wrong?
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The Second Principle of Mathematical Induction

The rule of inference becomes:

H1: P(0)
H2: P(0) UP(D)U...UP(n)® P(n+1)
\ " xXP(x)

The two rules are equivalent but sometimes the second is
easier to apply. See your text for the classic examples.
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