
- o PVS
 - Enter pvs pvs filename.pvs
 Exit pvs c-x c-c
 - . Abort command c-g
- o Context
 - . change context m-x cc
 - . save context m-x sc

 - . context path $\,$ m-x cp $\,$. list pvs files m-x If
- o Window
 - . split horizontal c-x 2
 - . split vertical c-x 3
 - . switch C-X O
 - . delete windows c-x 1
- o Buffers (temp work) list buffers c-x c-b
 - . select a buffer c-x b . kill buffer c-x k
- o File handling
 - . create new m-x new-pvs-file
 - . save C-X C-S
 - . open c-x c-f
- o Specification
 - . parse
 - m-x parse m-x typecheck m-x prove typecheck
 - . prove
- o prover
 - . exit (exit)
 - . continue : continue n
 - try prop strategy (prop)try bddsimp strategy (bddsimp)

 - . flatten (flatten fnum) . split (split fnum)
 - go to next subgoal
 - (postpone)
 - (lemma "lemma-name") . add premise
 - . check status of proofs m-x status-pvs-file
 - . dump prfs and pvs file m-x dump-pvs-file
- . undump m-x undump-pvs-file

example1_pvs.txt

```
EXAMPLE 1:
 myTheory: THEORY % name of theory is myTHEORY
 BÉGI N
                     % declaring boolean variables p, q, and r
   p, q, r: bool
   axiom_1: AXIOM p IMPLIES q
   axiom_2: AXIOM q IMPLIES r
   th_1:
           THEOREM p IMPLIES r
 END myTheory
EXAMPLE 2:
 addsum: THEORY
 BEGIN
   n: var nat
   sum (n): RECURSIVE nat =
     (if n = 0 THEN 0 ELSE n + sum(n - 1) ENDIF)
MEASURE n
   lem1: LEMMA sum(n) = n*(n+1)/2
 END mySTACK
______
```

TUE 01/25/05

1. MISC PVS site?	2. WHAT IS PVS? How will one use PVS? (say in your own words)	3. SPECIFICATION LANGUAGE Difference with programming language? Know syntax for declaring vars and formulas. Difference between AXIOMS and THEOREMS?
		SPECIFY: Given: p->q, q->p To prove: (p OR q) -> (p AND q)
4. PROVER	5. DEMO	
What is sequent form?	You need to know how to: CREATE a pvs specs file	
how to move a formula from theory to antecedant? what commands to use to prove?	 Use the prover to PROVE a formula given some previously proved formulas or axioms. 	

Exercise1: THEORY

BEGIN

a, b, c, n, t, h, s, p, q: bool

lem0: LEMMA ($a \land (a \Rightarrow b)$) $\Rightarrow b$

lem1: LEMMA ($c \land n$) $\Rightarrow t$

lem2: Lemma $h \land \neg s$

lem3: LEMMA ($h \land \neg (s \lor c)$) $\Rightarrow p$

lem4: LEMMA ($n \land \neg t$) $\Rightarrow p$

lem5: Lemma ¬ ($p \lor q$) \equiv (¬ $p \land ¬ q$)

END Exercise1

Verbose proof for lem0.

lem0:

$$\{1\} \quad (a \land (a \Rightarrow b)) \Rightarrow b$$

lem0:

Applying disjunctive simplification to flatten sequent,

lem0:

Splitting conjunctions,

we get 2 subgoals:

lem0.1:

which is trivially true.

This completes the proof of lem0.1.

lem0.2:

which is trivially true.

This completes the proof of lem0.2.

Q.E.D.

Verbose proof for lem4.

lem4:

lem4:

Applying lem1

lem4:

Applying lem2

lem4:

Applying lem3

lem4:

$$\begin{cases}
-1\} & (h \land \neg (s \lor c)) \Rightarrow p \\
\{-2\} & h \land \neg s \\
\{-3\} & (c \land n) \Rightarrow t \\
\end{cases}$$

$$\begin{cases}
1\} & (n \land \neg t) \Rightarrow p
\end{cases}$$

Applying disjunctive simplification to flatten sequent,

lem4:

$$\begin{cases}
-1 \\ (h \land \neg (s \lor c)) \Rightarrow p \\
\{-2 \\ h \land \neg s \\
\{-3 \\ (c \land n) \Rightarrow t \\
\{-4 \\ n \\
\end{cases}$$

$$\begin{cases}
1 \\ t \\
\{2 \\ p
\end{cases}$$

Applying disjunctive simplification to flatten sequent,

lem4:

 $\{1\}$ s

 $\{2\}$ t

 $\{3\}$ p

Splitting conjunctions,

we get 4 subgoals:

lem4.1:

which is trivially true.

This completes the proof of lem4.1.

lem4.2:

which is trivially true.

p

This completes the proof of lem4.2.

lem4.3:

{4}

which is trivially true.

This completes the proof of lem4.3.

lem4.4:

{1}

{2} t{3} p

Splitting conjunctions,

we get 3 subgoals:

lem4.4.1:

{-1}	t
{-2}	c
	_

 $\{-3\}$ h

{-4} n

{1} s

{2} t{3} p

which is trivially true.

This completes the proof of lem4.4.1.

lem4.4.2:

 $\{-1\}$ c {-2} h

{-3} n

{1} c{2} s

{3} t

{4} p

which is trivially true.

This completes the proof of lem4.4.2.

lem4.4.3:

 $\{-1\}$ c

{-2} h{-3} n

{1} n

{2} s

{3} t

 $\{4\}$ p

which is trivially true.

This completes the proof of lem4.4.3.

Q.E.D.

Verbose proof for lem5.

lem5:

lem5:

Splitting conjunctions,

we get 2 subgoals:

lem5.1:

Applying disjunctive simplification to flatten sequent,

lem5.1:

$$\begin{array}{c|cccc}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

Splitting conjunctions,

we get 2 subgoals:

lem5.1.1:

which is trivially true.

This completes the proof of lem5.1.1.

lem5.1.2:

which is trivially true.

This completes the proof of lem5.1.2.

lem5.2:

Applying disjunctive simplification to flatten sequent,

lem5.2:

$$\begin{array}{c|c} \{-1\} & (p \lor q) \\ \hline \{1\} & p \\ \{2\} & q \end{array}$$

Splitting conjunctions,

we get 2 subgoals:

lem5.2.1:

which is trivially true.

This completes the proof of lem5.2.1.

lem5.2.2:

$$\begin{array}{c|c} \{-1\} & q \\ \hline \{1\} & p \\ \{2\} & q \end{array}$$

which is trivially true.

This completes the proof of lem5.2.2. Q.E.D.