A Very Brief Introduction to PVS

Tamarah Arons
tamarah@wisdom.weizmann.ac.il

May 29, 2002

The Pvs system is an extensive, well-documented, deductive verification system. It is
impossible to summarize all its features in a short document. The purpose of this document
is to briefly introduce the user to the Pvs system and some of the more frequently used
commands. The full Pvs documentation is available at ~verify/PVS2-4.1/Doc/ .

In Section 1 we give an overview of the sequent calculus which forms the theoretical basis
for the Pvs proof system. In Section 2 we define some basic concepts in the PVS system,
in Section 3 overview the specification language, and in Section 4 explain how to run Pvs.
Section 5 details some useful prover features. Appendices A and B summarize the most
frequently used system and prover commands, respectively.

1 The Logic of PVS

In this section we examine the theoretical basis underlying the Pvs logic.

The pvSs prover maintains a proof tree, and it is the goal of the user to construct a proof
tree which is complete, in the sense that all the leaves are recognized as true. Each node of
the proof tree is a proof goal, from which its offspring nodes follow by a proof step.

Each proof goal is a sequent consisting of a sequence of antecedent formulas, and a se-
quence of consequent formulas. Together, the antecedents and the consequents are called the
sequent formulas.

We will let I and A represent (finite) sequences of formulas, and p ¢, p; and ¢;, represent
individual formulas.

Sequents are represented in the form pi,ps,...,p. F ¢1,42, ..., ¢n, where the formulas
preceding the turnstile are the antecedents, and the formulas after the turnstile are the
consequents. The intuitive interpretation of a sequent is that

Viree: (pr ApaA...Apy) = (1 V@aV...Vagn)

where free denotes the free (unbound) variables.

The system uses backwards reasoning. That is, each proof step results in sequent(s) that
are at least as strong as the previous one. The root of the tree is the sequent - ¢, where ¢
is the theorem to be proved.

1.1 Axioms

Three axioms are used to recognize leaf sequents as true'. They are:

Al: T'ip F A/p
A2: T AT
A3: I''F F A

That is, A1 asserts that a sequent is true if any antecedent is the same as any consequent.
(Clearly, it is always the case that ' Ap — AV p). Axiom A2 states that a sequent is true if
any of its consequents are true and axiom A3 that a sequent is true if any of its antecedents
are false.

1.2 Proof Rules

In this section we present some of the proof rules used to add subtrees to the proof tree.

1.2.1 Propositional Rules

We consider rules for the basic operators of conjunction, disjunction and negation, noting
that implications can be converted to these operators.

We first present four non-expanding propositional rules. These are rules in which a single
sequent is derived from a parent?.

'-A,pVvy IpAnghE A
I'EApq Ip,gk A
I,-pEA A, -p
'=Ap 'pEA

The first two rules allow consequent disjuncts and antecedent conjuncts to be flattened, so
that two formulas are obtained from one.

The second two rules allow negated antecedent or consequent formulas to become non-
negated consequent or antecedent formulas, respectively.

We next present two expanding propositional rules®. These rules derive a subtree of two
sequents.

IpVagk A A pAg
pEA TgFA '-A,p T'FAq

That is, the first rule states that in order to prove that I' A (p V ¢) — A it is sufficient to
prove both that I' Ap — A and that ' A ¢ — A.

!The application of these three axioms corresponds roughly to the PVS assert command.
2The non-expanding propositional rules correspond to the PvS flatten command.
3The expanding propositional rules correspond to the split command.

1.2.2 Quantifier Rules

The notation p{z « t} represents the result of substituting the term ¢ for all free occurrences
of x in p.

The following two rules represent the process of skolemization*. They require that ¢ be
a new constant that does not occur in the sequent.

I3z :p)FA I'EA, (Vo :p)
Up{x —t} A I'EA p{e —t}

The next two rules represent the effect of instantiation®.(There is no requirement that ¢
be a new constant.)

(Ve :p) A F'FA (3z:p)
[, (Vz :p),p{x — t} F A C'EA,(Jz:p),ple —t}

1.2.3 Strengthening Rules

The above rules neither strengthened or weakened the sequent. We present, two rules which
allow a stronger sequent to be derived from a weaker one by removing formulas®.

CpE A '=Ap
'FA 'FA

2 The Pvs Verification System : Basic Definitions

Specification files are ordinary text files, written in the PVS specification language, generally
prepared using the PVs emacs editor interface. They have a .pvs extension. All such files
must have the structure

theory-name: THEORY
BEGIN

END theory-name

Where theory-name is the name of the theory, and should preferably match the file name.
The body of the theory is placed between the begin and end statements.

Proof files (.prf extension) save proofs that have been composed. They are also text
files, but it is not advisable to try to edit them in any way.

A contert is a set of specification and proof files found in one directory. The binary
.pvscontext file saves the state of the verification from one verification attempt to another.
For this reason, all files relating to one proof should be in one directory. Files relating to
unrelated proofs are best kept in a separate directory with a separate context.

The pvs interface is through an emacs editor. In different buffers in the editor one can
write specifications and run proofs. PVS commands are entered in the emacs mini-buffer
window and are preceded by M-z (alt-x or esc-x).

4Skolemization is effected in PVS by skolem! and related commands.

5The form of instantiation presented here is equivalent to the inst-cp command.

6The PvS delete and hide commands explicitly delete and hide formulas, respectively. Other commands,
such as inst, may also hide formulas.

3 The Specification Language

The Pvs specification is built on higher order logic.

Variables and constants have types — some types are inbuilt, and the user can build their
own (including arrays, records, etc). Pvs also allows the user to use uninterpreted types.

Frequently used inbuilt types include nat , int , real , bool .

Constants are declared as being elements of a type e.g.

Z : nat
declares constant z of type natural.

To declare a variable one must simply precede the type with the vaArR keyword e.g.

x : VAR nat

There are many different possibilities in declaring types. One of the most basic, and most
useful, are tuples e.g.

T1 : TYPE = [nat, nat]

Records are tuples with labeled fields e.g.

T2 : TYPE = [# first, second : nat #]
Both T1 and T2 contain two natural numbers. In the first case the fields are unlabeled, in
the second they are labeled.

Another useful type is a function type. This is a mapping from a domain to a range. e.g.

A1 : TYPE = [upto[10] -> T1]
is an array A1[0..10] of elements of type [nat, nat].

The basic logical constructs are 0r (also written \/), anD (also &, /\), noT (~), =, \=
(disequality), IMPLIES (=>) and IFF (<=>). The universal and existential quantifiers are
FORALL and EXISTS , respectively.

3.1 Example - Hotel Reservations

As a very simple example we consider a hotel reservation system. For every room, for every
date, the name of the person reserving the room is stored in the register. If a room is free,

then it is recorded simply that it is registered to the constant name free .
We define this as

reservation: THEORY
BEGIN

room: TYPE
date: TYPE
name: TYPE
free: name
reservations: TYPE = [room, date — name]

END reservation

The room, date and name types are all uninterpreted. The reservations type is a mapping

from room and date to name. free is a constant of type name.
It is also useful to declare interpreted functions. For example, we can define a function
which given a register, adds a booking and returns the updated register:

reserve(r: room, d: date, n: name, register: reservations): reservations =
register WITH [(r, d) := n]

This demonstrates the use of the very important WITH expression. WITH is an override
expression used to modify the contents of a function, tuple, or record. register WITH [(r, d)
:= n] is the same as register except that the argument at value (r, d) is replaced with n.

Instead of declaring the types when using variables (e.g. r, n, d above) we can define
them as global variables once, and then use them without stating the types every time. Thus,
we define the function cancel which cancels the reservation for a room, and the predicate
reserved which returns the true if a room is reserved.

r: VAR room
d: VAR date
n: VAR name
register: VAR reservations

cancel(r, d, register): reservations = register WITH [(r, d) := free]

reserved(r, d, register): bool = register(r, d) # free

4 Running PVS

To run pPvs make and enter the directory you plan to work from. You can then open
PVs by calling the executables at ~verify/PVS2-4.1/pvs for sun machines, or ~verify /PVS2-
4.1/pvs_linux for linux machines.

This should open up an emacs window. You will be asked whether to create a new
context - answer yes.

We will continue with the reservation example. The .pvs file can be copied from
“verify /Course02a/, or you can type it in.

Open the desired file (emacs command c-x, C-f).

It is important to typecheck the file. Typechecking parses the file, and checks for semantic
errors (e.g. undeclared names). We typecheck the file by typing M-x tc . PVS reports that
one type correctness condition, TCC, was generated, and that it is unproved. To view the
TCCs type M-x show-tccs . In this case the typecheck is trivial, and PVS can discharge it if
you ask it to prove the typechecks — M-x tcp . When PVS cannot discharge the typecheck
automatically, it must be done manually. This can be done by placing the cursor on the
TCC definition in the buffer generated by M-x show-tccs , and proving it as you would any

other formula.
We prove a simple lemma : if a reservation for a room is canceled then the room is not
reserved:

canceled not_reserved: LEMMA
V r, d, register: - reserved(r, d, cancel(r, d, register))

To prove this lemma put the cursor on the definition of the lemma and type M-x pr.
You will get a new buffer, labeled *pvs*, containing the sequent:

canceled_not_reserved :

{1} FORALL r, d, register: NOT reserved(r, d, cancel(r, d, register))

PVS presents sequents as a list of negatively numbered antecedents above above a turnstile
symbol [------- , and a list of positively numbered consequent formulas below it.

The Rule? prompt indicates that PVS is waiting for a new command to be entered.
Prover commands use lisp-like syntax, and are always enclosed in round brackets.

We can skolemize and simplify by typing (skosimpx) . This removes quantified variables
and replaces them by skolem constants. Skolem constants have “!1” added to the variable
name.

We can now expand out the definitions of reserved and cancel by entering (expand
"reserved") and then (expand "cancel") . The proof is complete.

In fact, the (grind) command can complete this proof in one step. (grind) expands out
expressions, skolemizes, instantiates and simplifies. It is often useful in very small proofs,
or towards the ends of large proofs. However, when it does not complete a proof, it can be
counterproductive, generating many similar subgoals.

We consider a second lemma,

is_reserved: LEMMA
V r, d, n, register: reserved(r, d, reserve(r, d, n, register))

The lemma is intended to show that after reserving, a room is reserved. The reader is
invited to try to prove it. It will soon be apparent that this cannot be done — in fact the
premise is false. The reader is encouraged to try to understand why this is the case and how
it could be rectified.

4.1 Example : Queues

As a second example, we consider a simple queue structure modeled as an array[nat] of
entries. The queue has a head pointer, pointing to its oldest element. It also has a size field,
indicating how many entries are currently occupied. The occupied entries are stored in an
array entries, from positions head to head + size - 1, inclusive.

That is, consider a queue with 2 entries, A and B, and its head at position 4. entryl[4]
= A and entry[5] = B. The queue size is 2. The contents of entry[z] is irrelevant for any
x #4,5.

This theory, presented in Fig. 1, can also be downloaded from ~verify /Course02a/

A few notes on the data structures :

e QUEUEENTRY is an uninterpreted type. We know nothing about it.

e QUEUE_TYPE is a record with three fields, head , size and entry .

4

There are two means of accessing record fields — using a ‘, and using brackets. So,
queue‘size and size(queue) both return the size field of record queue.

® push(Qentry, empty , popQentry , occupied and inQ are all functions.
Functions cannot modify their arguments.

Procedures are functions that return a boolean value.

We examine how the lemmas can be proved.

We start with empty no_occupied . This lemma states that a queue is empty if and only if
none of its buffers are occupied.

We first skolemize (skosimp*) to remove the quantification. We then expand out the
terms : (expand "empty") , (expand "occupied") , arriving at the sequent

{1} size(queue!l) = 0 IFF
(FORALL gPoint:
NOT (qPoint >= queue!l‘head AND
qPoint < queue!l‘head + queue!l‘size))

We use the (split) command to split the IFF statement into its two directions, generating
two subgoals, one for the “if”, and one for the “only if”.

You can view the second subgoal by typing (postpone), or Tab Shift-p.
The first subgoal,

{1} size(queue!l) = 0 IMPLIES
(FORALL gPoint:
NOT (gPoint >= queue!l‘head AND
gPoint < queue!l‘head + queue!l‘size))

can be flattened (flatten) , into a sequent where size(queue!1) = 0 is assumed:

{1} FORALL gPoint:
NOT (qPoint >= queue!l‘head AND
qPoint < queue!l‘head + queue!l‘size)

After skolemizing (skosimp*) , an (assert) completes the proof.
PVS now returns to the second goal. We again flatten it, generating the sequent

{-1} FORALL gPoint:
NOT (qPoint >= queue!l‘head AND
qPoint < queue!l‘head + queue!l‘size)

{1} size(queue!l) =0

The universal quantifier must be instantiated, and we ask PVS to do so by typing (inst?) .
Unfortunately, PVS guesses the instantiation incorrectly, so we must instantiate manually.

We undo the instantiation by typing (undo) or Tab u. The correct instantiation is
queue!l‘head. (The antecedent -1 asserts that it is NOT the case that qPoint >= queue!l‘head
and qPoint < queue!l‘head + queue!l‘size. In other words, qPoint < queue!l‘head or qPoint
>= queue!l‘head + queue!l‘size. Setting qPoint = queue!l‘head therefore implies that
queue!l‘size = 0.)

We instantiate with the command (inst - "queue!1‘head") . The first parameter to the
inst command is the sequent number, the second the value to be instantiated. We could
have used “-1”7 as the sequent number. By typing “-” we tell PVS to substitute into the
first matching antecedent. In general, this is more robust than specifying exact line numbers
(should the specification or proof later be changed, the line numbers may change and the
proof might no longer work if sequent numbers are fully specified.)

The proof is now completed with (assert) .

We consider the second lemma, pushed entry_in queue . We first try to complete it using
grind . Unfortunately, this does not work — grind instantiates the existential quantifier
incorrectly.

We try grind without instantiation by typing (grind :if-match nil) . The parameter
:if-match determines under which conditions grind will do instantiations. By setting it to

nil, we prevent grind from instantiating.
The resulting formula has all the expressions expanded. (The same effect could have
been obtained using the expand command).

{1} EXISTS (index: nat):
(index >= queue!l‘head AND index < 1 + queue!l‘head + queue!l‘size)
AND
entry(queue!1l) WITH [(head(queue!l) + size(queue!l)) := gEntry!1]
(index)
= gqEntry!1l

The correct instantiation is (inst + "queue!l‘head + queue'l‘size") . The assert command
will now complete the proof.
The third lemma is left as an exercise.

queue: THEORY
BEGIN

QUEUE_ENTRY: TYPE
QUEUE_TYPE: TYPE = [# head: nat, size: nat, entry: [nat — QUEUE_ENTRY] #]

queue: VAR QUEUE_TYPE
gEntry: VAR QUEUE_ENTRY
gPoint: VAR nat

% Returns true if a queue is empty
empty (queue) : bool = size(queue) = 0

% Pushes an entry onto a queue and returns the updated queue
pushQentry(queue, gEntry): QUEUE_TYPE =
queue WITH [size := queue‘size+ 1,
entry := entry(queue) WITH [(head(queue)+ size(queue)) := qEntryl]

% Pops an entry from a queue. It returns the new queue.
popQentry(queue) : QUEUE_TYPE =
IF = empty(queue)
THEN queue WITH [head := head(queue) + 1, size := size(queue) — 1]
ELSE queue
ENDIF

% Returns true if entry qPoint of the queue is occupied,
% i.e. lies between head and head + size
occupied(queue, qPoint): bool =

qPoint > queue‘head A gPoint < queue‘head + queue‘size

% Checks whether there is an occupied entry in the queue with value
inQ(queue, gEntry): bool =
3 (index: nat): occupied(queue, index) A queue‘entry(index) = qEntry

% If a queue is empty, no entries are occupied
empty no_occupied: LEMMA
V queue: empty(queue) IFF (V qPoint: — occupied(queue, gPoint))

% After pushing an entry onto a queue, the entry is in the queue
pushed_entry_in_queue: LEMMA
V queue, gEntry: inQ(pushQentry(queue, qEntry), qEntry)

% If one pushes an entry onto an empty queue, and then pops one off,
% the queue is again empty.
empty_push_pop_empty: LEMMA
V queue, gEntry: empty(queue) D empty(popQentry(pushQentry(queue, qEntry)))

END queue

Figure 1: Theory queue.pvs

5 Some Prover Features

In this Section we will discuss some useful features of the Pvs environment.

5.1 Stepping Through a Proof

pPvs allows you to walk through, or step through, a proof, viewing the effects of each com-
mand. The step through command M-x step-proof initiates a proof from the beginning, and
also opens a Proof buffer in which the last saved proof is displayed.

The first command in the buffer is highlighted. Typing Tab 1 will cause it to be executed.
Typing Tab n, for number n, will cause the next n commands to be implemented. If you put
the cursor in the Proof buffer, Tab 1 will execute the next command after the cursor, and
not the highlighted command.

To break a continuous execution generated by Tab n, type C-g. This will complete the
currently executed command and highlight the next one.

At any point, you can enter commands at the Rule? prompt rather than from the proof
buffer.

5.2 X-Displaying a Proof

One can generate an X-display of a proof. This is a window graphically showing the current
proof as a tree. Every sequent in the proof is represented by a F symbol. The root, at the
top, is the initial sequent. The proof commands used to create the proof are shown between
the = symbols. To see the full text of a sequent click on the - symbol.

Status information about the proof is indicated by colors: blue indicates a completed
branch, brown the current branch, purple the current sequent, and black any incomplete
branch which is not the current branch.

The proof tree is automatically updated as the proof is run.

To initiate a proof with its X-display enter M-x xpr when the cursor is on the formula.
Similarly, step through a proof with its X-display using M-x x-step-proof .

To open an X-display for a proof already in progress one must use the main PVS menu.
From the PvS menu go to display-commands then show-current-proof.

Warning: The X-display slows the proof down significantly. Furthermore, trying to
access the display (either to start it, or to view sequents etc) while PVS is running (i.e.
(ILISP : run) displayed on the *pvs* buffer label line, rather than (ILISP : ready)) can cause
PVS to be interrupted. The result of this is that PvS must be reset, and the proof restarted!

5.3 Hiding and Revealing Formulas

When a formula is instantiated, its uninstantiated copy is “hidden” by pvs. Hidden formulas
can be viewed by typing M-x show-hidden-formulas .

The formula can then be revealed by typing (reveal fnum) where fnum is the sequent
number of the desired formula.

Formulas which are not needed can be hidden by typing (hide fnum) .

(Both the hide and reveal commands can take lists of formulas).

10

5.4 Strategies

The PVS user can construct strategies which combine proof rules together into more powerful
proof rules. Strategies are written in a lisp based language, and can include recursion,
branching and backtracking. (C.f. Chapter 5 of PVS Prover Guide).

At this point we will discuss only two basic, and useful, constructs: then and repeat .

The then keyword is used in the format (then stepl, rest-steps). Stepl is applied to the
current goal and then rest-steps to each of the sequents generated. For example, (then (split
-1) (assert)) will split formula -1 and then apply assert to each of the sequents generated.

[teration can be effected by using (repeat* step). Rule step is replied iteratively along
all subgoals until its application has no effect e.g. (repeat* split) would repeatedly split
until there is nothing more to split.

A Summary of Some Often-Used System Commands
We first list some PVS system commands. These commands are generally entered while the

.pvs specification is the current buffer. Command relating to a single formula require that
the cursor be on the formula. More information can be found in the PVS System Guide.

11

Command ‘ Alias ‘ Comments

Exiting and Interrupting pPvs

M-x exit-pvs C-x C-c | Exit PVs

C-c C-c | Interrupt PVS process

(useful if Pvs is taking unreasonably long).

Entering (restore) allows you to resume the proof.
M-x reset-pvs C-z C-g | Abort PvS and resynchronize.

You will have to restart the proof from the beginning

Initiating and Stepping Through Proofs

M-x prove, M-x pr C-cp Prove formula pointed to by cursor

M-x step-proof C-c C-p | Step through an existing poof. (C.f. Section 5.1)

M-x x-prove M-x xpr | Prove with X-display. (C.f. Section 5.2)

M-x x-step-proof Step through with X-Display

M-x prove-theory M-x prt | Reruns all proofs in the theory (non-interactively).
Typechecking

M-x typecheck M-x tc Typecheck theories in current buffer

M-x typecheck-prove M-x tcp | Typecheck theories and try to prove TCCs

M-x show-tccs M-x tces | Show the TCCs of the current theories.

TCCs can be proved from the new buffer created

Editing and Viewing Proofs

M-x edit-proof Edit / view the proof of the formula

M-x install-proof C-c¢ C-i | Installs a proof on a formula

The format must be like that obtained when editing
proofs, not the format in the .prf file.

You can highlight a proof buffer of one formula

and install it on a second

Proof Status

M-x status-proof M-x sp Status of formula at cursor.

proved — complete = fully proved,

proved — incomplete = formula is proved but
depends on some unproved formula

unchecked = changes since the proof succeeded
may invalidate it.
You should rerun the proof (M-x pr).

untried = proof never attempted

unfinished = proof attempted, but never completed.

M-x status-proof-theory M-x spt | Status of all formulas in theory
M-x status-proof-importchain | M-x spi | Status of formulas on importchain
M-x status-proofchain M-x spc | Displays proofchain of formula at cursor

i.e. lists the formulas on which it is dependent

Context and Prelude Commands

M-x change context M-x cc Switch to a new context (new directory)
M-x load-prelude-library Allows the current context to use all theories
in the loaded context (directory).

12

B Summary of Some Often-Used Prover Commands

This appendix lists a selection of the more frequently used prover commands. More infor-
mation can be obtained from the PVS Prover Guide.

Note that PVS is case insensitive regarding prover commands i.e. you may type the
command using any combination of upper and lower case letters.

B.1 Parameters

Proof commands take a list of zero or more required and optional parameters. Each op-
tional parameter has an associated default value. In this appendix optional parameters are
bracketed with their default values. Required parameters are not bracketed.

We have not listed here all parameters to the commands, but only those that are fre-
quently used. When we have omitted some intermediate parameters, this is node by “...” in
the parameter listing.

When invoking a proof command actuals are associated with formal parameters according
to the order in which they are given. If there are fewer actuals than formals, then those
parameters for which no actual was provided are bound with their default values. To give
parameter values out of order, or without specifying a previous parameter in the list, one
must name the formal when giving the actual.

For example, consider the proof command
replace Parameters : fnum, (fnums *), (dir LR), (hide? nil)

This command takes the formula at line fnum (it must be an equality) and replaces it
in formulas fnums. The replacement is in direction LR (left to right), and the formula is
hidden if hide? is set to t.

Consider, for example, a sequent with an antecedent
[-3] i1 = j!1

Command (replace -3) will replace i!l with j!1 in all sequents.

Command (replace -3 (2, 3) :hide? t) will replace i!l with j!1 only in sequents 2
and 3, and then hide -3.

Command (replace -3 :dir rl :fnums +) will replace j!1 with i!l in all consequents
(reversing the direction of replacement).

B.2 Formula and Truth Value Selection

Many commands have arguments taking the number(s) of the sequent formulas where the
rule is to be applied. By convention, a single formula is called “fnum” (for “sequent formula
number”), a list is “fnums”.

The list of antecedent sequent formulas can be indicated by “-”, the list of consequent
sequent formulas by “+”, and the list of all sequent formulas by “*”.

Where truth values are requested, “t” stands for true, “nil” for false.

13

Command ‘ Parameters ‘

Comments

Control Rules

quit Terminates the proof attempt
postpone Go to next remaining goal. Alias: Tab shift-p
undo (to 1) Undoes commands.
If “t0” is a number, n, the last n commands are undone
If “to” is a proof rule, undoes the proof to the last
occurrence of this proof rule
(undo undo) Undoes the undo, if it was the last command executed.
Alias : Tab u
Propositional Rules
case exprs Introduces case split.
On one branch exprs is assumed to be true, on another false.
exprs must be in double-quotes e.g. (case “i!l = j!1”)
split (fnum *) Conjunctive splitting.
Splits one formula to generate 2 subgoals :
Antecedent AV B into antecedent A and antecedent B.
Antecedent A implies B into antecedent B and consequent A
Consequent A A B into consequent A and consequent B
Antecedent IF(A, B,C) into antecedents A A B and -B A C
Consequent IF (A, B,C) into consequents A implies B and —A implies C
flatten (fnums *) Disjunctive Simplifications. Generates 1 subgoal converting :
Antecedent formula —A4 into consequent A
Antecedent formula A A B into 2 antecedent formulas, A and B.
Consequent formula —A into antecedent A
Consequent formula A V B into two consequent formulas, A and B.
iff (fnums *) Converts boolean equality (=) into equivalence (iff)
lift-if (fnums *) Lifts the left-most if or cases statement to the topmost level
Quantifier Rules
skosimp* Repeatedly skolemizes then flattens
inst fnum, terms | Instantiates formula fnum with terms in terms
inst-cp fnum, terms | Instantiates, retaining a copy of the uninstantiated formula
inst? (fnums *),..., | PVS chooses the terms to instantiate into formula fnums.
(copy? nil) | Retains a copy of uninstantiated formula if copy? is t.
Equality Rules
replace fnum, Rewriting using equalities
(fnums *), Formula fnum must be of form [= r.
(dir LR), All occurrences of [in formulas fnums are replaced with 7.
(hide? nil), | Instead, replace r with [if dir RL specified.
Formula fnum is hidden if hide? is t.
replace™® fnums Replace formulas in fnums into all formulas.

14

Using Definitions and Lemmas

expand name, (fnum *) | Expands the definition of name in formulas fnum
e.g. (expand "empty” 1 -3) expands empty in formulas 1 and -3
expand* names Expands all occurrences of all expressions listed in names
lemma name Introduces an instance of lemma name.
e.g. (lemma ”empty_no_occupied”) introduces forall queue: ...
Simplification with Decision Procedures
simplify Simplifies using decision procedures
assert More aggressive simplification. (Calls simplify.)
grind . (if-match t) | Expands all definitions, replaces, simplifies, skolemizes, splits etc.
Can be used to automatically complete a proof.
Performs instantiation unless if-match is set to nil.
ground Invokes propositional simplification, splits and asserts.
Making Type Constraints Explicit
typepred exprs If exprs is of type p, antecedent p(exprs) is introduced.
E.g. (typepred "head(queue!l)”) introduces head(queue!l) >= 0
Structural Rules — Hiding and Revealing Formulas
hide fnums Moves formulas fnums to the Hidden buffer (C.f. Section 5.3)
hide-all-but | keep-fnums, Hides all the formulas in fnums except those in keep-fnums
(fnums *)
reveal fnums Copies formulas fnums from Hidden buffer to sequent.
Annotation Rules — Labeling
label string, fnums, Attaches the label string to formulas fnums
(push? nil) If push? is t, then any previous label is retained.
Else, the label replaces previous labels
unlabel (fnums *) Removes all labels from formulas fnums

15

