
Fuzzy Network Profiling for Intrusion Detection

John E. Dickerson (jedicker@iastate.edu) and Julie A. Dickerson (julied@iastate.edu)

Electrical and Computer Engineering Department

Iowa State University

Ames, Iowa, 50011

Abstract

The Fuzzy Intrusion Recognition Engine (FIRE) is an
anomaly-based intrusion detection system that uses fuzzy
logic to assess whether malicious activity is taking place
on a network. It uses simple data mining techniques to
process the network input data and help expose metrics
that are particularly significant to anomaly detection.
These metrics are then evaluated as fuzzy sets. FIRE
uses a fuzzy analysis engine to evaluate the fuzzy inputs
and trigger alert levels for the security administrator.
This paper describes the components in the FIRE
architecture and explains their roles. Particular
attention is given to explaining the benefits of data
mining and how this can improve the meaningfulness of
the fuzzy sets. Fuzzy rules are developed for some
common intrusion detection scenarios. The results of
tests with actual network data and actual malicious
attacks are described. The FIRE IDS can detect a wide-
range of common attack types.

1. Introduction
The Distributed Denial of Service (DDoS) attacks
against major Internet sites in February 2000 highlighted
the urgent need for improving the security of networks
and systems connected to the Internet. In the aftermath
of the DDoS attacks, security experts identified network
intrusion detection as one of several technologies that
can lead to improved network security [1]. While
intrusion detection processes alone cannot prevent or
defend against security attacks, they can serve as a
valuable source of information for security
administrators about the types of activity attackers may
be using against them. Network intrusion detection
(NID) is the process of identifying network activity that
can lead to the compromise of a security policy.

Two primary forms of network intrusion detection
systems (NIDS) exist: misuse detection and anomaly
detection. Misuse detection relies on matching known
patterns of hostile activity against databases of past
attacks. Although they can be quite effective at
identifying known attacks and their variants, misuse

detection systems are generally unable to identify new
security attacks and also require ongoing threat database
updates in order to remain effective. Anomaly-based
NID identifies malicious activity by applying statistical
measures or artificial intelligence to compare current
activity against historical knowledge of network
utilization. Common problems with anomaly-based
systems are that they often require extensive training
data for artificial learning algorithms, and that expert
systems quickly become overwhelmed with the number
of rules required to identify all potential network threats.

The Fuzzy Intrusion Recognition Engine (FIRE) is an
anomaly-based intrusion detection system (IDS) that
uses fuzzy systems to identify malicious network
activity. The system combines simple network traffic
metrics with fuzzy rules to determine the likelihood of
specific or general network attacks. FIRE relies on fuzzy
network traffic profiles as inputs to its rule sets.
Although FIRE is not exclusively a network-based
detection system, we will focus on network profiling for
this paper. The FIRE goals are:

• To demonstrate how fuzzy systems can be used as
an intrusion detection method.

• To identify which data sources that are the best
inputs to the fuzzy intrusion detection system.

• To determine the best methods for representing
network input data.

• To show how the system can be scaled to distributed
intrusion detection involving multiple hosts and/or
networks.

Additionally, the system has been designed with two
additional goals: to use readily available software and
hardware as much as possible, and to be a tool accessible
to the system/security administrator.

2. System Architecture
FIRE consists of the three types of components shown in
Figure 1. The network data collector (NDC) is a
promiscuous network data sniffer and recorder. It reads
raw network packets off the wire and stores them on

disk. The next component, the network data processor
(NDP), summarizes and tabulates the raw packet data in
carefully selected categories. In a sense, an NDP
performs a kind of data mining on the collected packets.
The NDP merges these summaries and tables with past
data and stores them on disk. Next, the NDP compares
the current data with the historical mined data to create
values that reflect how the new data differs from what
was observed in the past. These values are “fuzzified” to
produce the fuzzy inputs needed by the Fuzzy Threat
Analyzer (FTA). The resulting fuzzy inputs from the
NDPs are called “fuzzy alerts” because they represent an
alert condition to a degree.

Figure 1. FIRE architecture. A FIRE system
includes one or more data collection units and
network data processors, plus one or more Fuzzy
Threat Analyzers.

The Fuzzy Threat Analyzer combines the inputs from
one or more FDPs to create composite inputs. Individual
NDPs can be given greater or less influence on the
results by assigning them different weights. For
example, an NDC located on switched network that
“sees” only a few hosts might be given a smaller
weighting factor than an NDC on an unswitched network
that sees traffic to a greater number of hosts and, hence,
has a better overall picture of the network. A rule can
incorporate one or more fuzzy inputs. Depending on the
fuzzy alerts they use, the fuzzy rule designer can make
the types of intrusions they can detect either very general
or very specific. Finally, the output from the fuzzy
system executed by the FTA leads to fuzzy alerts that are
sent to the security administrator for response.

The first step in any intrusion detection methodology is
to identify the data feeds, or sources, of information for
the IDS. In general, network data must be gathered
directly from the wire. The network data collector

simply grabs all packets that cross the wire and stores
them to disk. No processing, filtering, or reducing of the
data is performed by the NDC. After a short time
interval, the NDC transfers the data gathered to the NDP
for processing and then starts the next collection interval.
To help avoid packet loss in the data collection system, it
is important that the tasks performed by the NDC be very
limited. The length of the data collection interval is
chosen very carefully as a tradeoff between the need to
have timely response to intrusion events and to ensure
that the NDP has sufficient time to process the raw data
before collecting the new data. A typical data collection
interval in FIRE lasts approximately 15 minutes.

The network data processor reads the raw network data
from the NDC and sorts packets by protocol into bins for
TCP, UDP, and ICMP data. We will only elaborate on
the data mining process for TCP here.

3. Implementation

3.1 TCP Data Mining
Data mining is the process of looking for features and
relationships in data. The FIRE system applies simple
data mining techniques to TCP packet data to extract
metrics that are not obvious in the raw data. The metrics
are chosen carefully to help reveal anomalies in the
network traffic. These metrics also form the basis for the
fuzzy inputs. The data mining process is essential to
creating meaningful fuzzy inputs in the detection system.
To gain a better understanding of the reasons for the data
mining, we will examine how the TCP metrics are
extracted.

We begin by extracting the following fields from each
TCP header:

1. Source IP address (src)

2. Destination IP address (dest)

3. Source port number (sport)

4. Destination port number (dport)

5. TCP control bits (tcpflag e.g. SYN, ACK, Push,
FIN, Reset)

6. Packet data length (len)

7. The date and time the packet was sent

We then apply a simple data mining technique to create
an aggregate key composed of the IP source, IP
destination, and destination port fields. This new field is
called the sdp. Essentially, the sdp represents the
existence of a TCP service channel (whether successful
or not) between two IP end points. This aggregate field
proves to be the most important data extracted from the
TCP data. In the next data-mining phase, the Network
Data Processor tabulates the number of packets seen for

each sdp in the collection interval. The NDP also
maintains a master list of unique sdp’s that it has seen
over a pre-defined retention interval. This retention
interval is usually on the order of a week or a month.
Each time recently collected data is processed, data older
than the retention interval is discarded. This allows the
data to adjust to changes in traffic over time, while
retaining some degree of history for statistical
comparisons.

Not all sdp’s are stored. Outgoing connections to web
servers outside the local network domain are ignored,
simply because the quantity would be overwhelming.
Additionally, only sdp’s with that have a destination
service matching commonly used well-known TCP ports
are recorded. Well-known ports are port numbers
registered with the Internet Address Naming Authority
(IANA). Table 1 lists the well-known TCP ports
recorded by FIRE. The security administrator can
modify this list as needed.

Table 1. Well-known TCP ports monitored by FIRE

Port Number Service

21 FTP

22 SSH

23 Telnet

25 SMTP (e-mail)

53 Domain Name Service

80 HTTP

110 POP3

111 Sun RPC

113 Auth

137 NetBIOS – name service

138 NetBIOS – datagram

139 NetBIOS – session

143 IMAP

161 SNMP

177 XDMCP

194 IRC

389 LDAP

443 HTTPS

513 login

1512 WINS

The data mining process effectively reduces the size of
the data that needs to be retained for future comparisons.
The NDP prepares counts and other statistical measures
from the mined data and stores them to disk. Since FIRE
is an anomaly detection system, the measures are chosen
such that anomalies in network data can be ascertained
easily. Typical summaries include:

1. The number of total packets observed in the
data collection interval.

2. The number of unique sdp’s observed in the
interval.

3. The number of sdp’s that are new in this data
collection interval.

4. The number of sdp’s that are new in the longer-
term data retention interval (i.e. have never been
seen before).

5. The number of well-known ports used in an
interval.

6. The variance of the count of packets seen
against the sdp’s.

7. The number of sdp’s that include foreign hosts
(hosts outside the local network domain).

8. The number of successfully established TCP
connections in a time interval.

The statistical variance represented by item 6 is an
indicator of the distribution of hosts contacted in a time
interval. Normally, one would expect to see fairly
regular connections between hosts such as between a file
server and its clients. Since a malicious port scan usually
sends a relatively small number of packets to a large
number of hosts on a network, a high variance in the
packet counts across all sdp’s should reveal an unusual
spread in the number of machines contacted in an
interval.

Figure 2 shows dramatically how applying data mining
techniques to the network data helps extract features that
would be difficult to discern otherwise. The figure
shows a 3-D plot of packet counts for each observed sdp
during 15 minute intervals over a 3-week period from a
local area network at Iowa State University. The tall,
worm-like structures indicate regularly occurring service
connections between two hosts on the network. The flat,
horizontal structures indicate actual intruder port scans
performed during this period.

The data-mining process tends to reduce the amount of
data that must be retained for historical comparisons of
network activity, while creating data that is more
meaningful to anomaly detection than the raw input data.

3.2 Fuzzy Input Value Generation
Once the NDP completes the data mining phase, it
produces fuzzy sets based on past input data. FIRE uses
the historical data for each data element being monitored
to calculate ranges over the input space. All of the
individual data feeds are evaluated in terms of three
fuzzy characteristics: COUNT, UNIQUENESS, and
VARIANCE. We produce fuzzy set distributions for
each of these quantities using historical data. As the data
changes over time, we expect to see the input ranges of
the fuzzy sets adapt accordingly.

In order to be consistent among all NDPs, it is easier if
the input space for each data element can be defined with
the same number of fuzzy sets. We have arbitrarily
chosen five fuzzy sets for each data element: LOW,
MEDIUM-LOW, MEDIUM, MEDIUM-HIGH, and
HIGH. By standardizing the number of sets, we can
apply the same fuzzy rules against the data from each
NDP, regardless of the differences in the local input
domain.

Figure 3 shows the fuzzy input sets for three types of
input domains: COUNT, UNIQUENESS, and
VARIANCE.

With network data, it is frequently the case that a
particular data element may remain zero for a long
period of time. For instance, a host on a switched

network may observe no Telnet traffic for months at a
time. In order to accommodate these situations, the
fuzzy input sets are initially established with the LOW
set covering zero in the input domain, with all other sets
overlapping where the input is greater than one. This
causes the MEDIUM-LOW to HIGH inputs to fire
whenever any non-zero observations are made in the
input data.

Figure 2. A three week summary of network data. The tall, worm-like structures indicate regular network
connections. The flat horizontal structures indicate intruder ports scans.

Figure 3. A typical fuzzy input set. All input
domains are normalized to the same input range.

3.3 Fuzzy Rules
With the fuzzy input sets defined, the security
administrator can then construct the rules of the fuzzy
system. Fuzzy rules are written using common sense
experiences by the security administrator. The rules
designer seeks to define rules that cover as much of the
input space as possible Using tools such as the Matlab
Fuzzy Toolbox, the designer can check the input rule
space to ensure that the fuzzy rules cover the input space
and that all output responses are defined.

3.4 FIRE Scenarios
We can best understand how the fuzzy rules are used by
looking at some standard attack scenarios and developing
some candidate rule sets for each scenario.

Scenario 1: An Attacker Performing A Stealthy
Network Scan
In a common intrusion scenario, an attacker conducts a
stealthy port scan of a network, sending packets to
several well-known ports (ftp, telnet, http, etc.) looking
for systems that might be running those services. The
presence of those services on a system gives a hint as to
what vulnerabilities the attacker might try to exploit to
penetrate the system. Additionally, the attacker may use
scanners that can accurately identify the operating
system on the target machine by examining the response
of the TCP stack to carefully crafted TCP control
messages. Knowledge of the services running and the
host operating system is extremely valuable to the
attacker because it helps to narrow the types of
vulnerabilities the attacker can exploit on the systems.
Port and operating system detection scanning may be a
strong indicator that a more serious attack may be
occurring in the future. Below are some fuzzy rules we
might construct for detecting a port scan:

Fuzzy Rules for Detecting a Port Scan

Rule 1

��� �����	�
�� �
��� ��� �������
� ������������
��
�
������������������
�����

	������
���� !"#�����
���$����

Rule 2�

��������	�
���
��������
��������
�������������

���
��������������������

	������
���� !"#�������

Rule 3�

��� �����	�
���
��������
�������
�������������

���
�����������������%��

	������
���� !"#������
���$����

Rule 4�

��� �����	�
���
��������
�������
�������������

���
�����������������%��

	������
���� !"#������%��

Rule 5�

��� �����	�
�� �
��������%�����
� ������������
��
�
�����������������
����

	������
���� !"#������
���$��%��

�

We can also develop rules for very specific intrusion
scenarios, provided we have fine enough detail in the
elements we are gathering. The following rule might be
included in a rule set for detecting suspicious
connections to a DNS server:

��� �����	�
�� �
��&'"�
���� ��� ��%��� ��
�
������������
��
����
�����������������%��

	�����
���� !"#������%��

4 Results
Initial FIRE tests were performed on production local
area networks in the College of Engineering at Iowa
State University. NDCs were installed on both switched
and unswitched network segments. Because computers
on which to deploy the NDCs and NDPs were scarce, an
NDC ran on the same computer as an NDP. The FIRE
systems were connected to networks that were not
protected from traffic outside the local network domain
by using a firewall or other perimeter defense system.
The initial test phase collected data for three weeks. It
was not necessary to simulate intruder attacks on the
network since actual intrusion attempts occurred almost
daily.

Using the fuzzy rules defined in Section 3.3, FIRE was
able to detect nine distinct TCP port scans and four
separate ICMP (ping) scans of hosts on the network by
potentially malicious attackers from outside the local
network domain. Additionally, it was able to detect non-
malicious port scans launched against the system from
the local domain. The system also triggered HIGH alerts
when seldom seen types of network traffic were
observed, in agreement with the Fuzzy Rules used.

4.1 Future Work
We plan to refine our methods for generating the input
ranges of the fuzzy input sets. We believe that it will be
possible to detect a greater diversity of intrusions if we
can derive fuzzy rules using other input domains besides
network data.

We also plan to expand the scope of data feeds to add
host-based anomaly detection. In particular, we plan to

provide analysis of login information, e-mail, and web
server activity. The data-mining techniques developed
for network data should extend easily to host-based log
files.

5 Conclusions
By carefully selecting specific features in the raw input
data, we can create fuzzy input parameters that provide
strong indications of anomalous activity on a network.
Additionally, we have shown that it is possible to
perform data mining in close temporal proximity to the
data collection activity, without incurring a
computational burden on the fuzzy input set generation
process.

Fuzzy rules allow us to easily construct if-then rules that
reflect common ways of describing security attacks. The
types of attacks that can be described may be of a general
nature or very specific, depending on the granularity of
the data feeds used in the rules.

When combined with data mining of input data to reduce
the size of the input data sets and to select features that
highlight anomalies, fuzzy logic can be an effective
means of defining network attacks.

References
1. Consensus Roadmap for Defeating Distributed

Denial of Service Attacks, Global Incident Analysis
Center – Special Notice. 1999-2000 SANS Institute,
http://www.sans.org/ddos_roadmap.htm

2. Leo Wenke, Salvatore J. Stolfo. Data mining
framework for building intrusion detection models.
Proceeding of the IEEE Computer Society
Symposium on Research in Security and Privacy,
May 9-May 12 1999. IEEE Computer Society, p
120-132, 1999

3. Kwok-Yan Lam, Lucas Hui. Data reduction method
for intrusion detection. Journal of Systems and
Software, p 101-108, Apr 1996.

M. Esmali, R. Safavi-Naini, J. Pieprzyk. Computer
intrusion detection and incomplete information. Journal
of Science and Technology, p 49-55. Spring-Summer
1996.

