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Abstract 

The Fuzzy Intrusion Recognition Engine (FIRE) is an 
anomaly-based intrusion detection system that uses fuzzy 
logic to assess whether malicious activity is taking place 
on a network. It uses simple data mining techniques to 
process the network input data and help expose metrics 
that are particularly significant to anomaly detection.  
These metrics are then evaluated as fuzzy sets.  FIRE 
uses a fuzzy analysis engine to evaluate the fuzzy inputs 
and trigger alert levels for the security administrator. 
This paper describes the components in the FIRE 
architecture and explains their roles.  Particular 
attention is given to explaining the benefits of data 
mining and how this can improve the meaningfulness of 
the fuzzy sets. Fuzzy rules are developed for some 
common intrusion detection scenarios.  The results of 
tests with actual network data and actual malicious 
attacks are described.  The FIRE IDS can detect a wide-
range of common attack types.  

 

1. Introduction 
The Distributed Denial of Service (DDoS) attacks 
against major Internet sites in February 2000 highlighted 
the urgent need for improving the security of networks 
and systems connected to the Internet.  In the aftermath 
of the DDoS attacks, security experts identified network 
intrusion detection as one of several technologies that 
can lead to improved network security [1].  While 
intrusion detection processes alone cannot prevent or 
defend against security attacks, they can serve as a 
valuable source of information for security 
administrators about the types of activity attackers may 
be using against them.    Network intrusion detection 
(NID) is the process of identifying network activity that 
can lead to the compromise of a security policy.  

Two primary forms of network intrusion detection 
systems (NIDS) exist:  misuse detection and anomaly 
detection.  Misuse detection relies on matching known 
patterns of hostile activity against databases of past 
attacks.  Although they can be quite effective at 
identifying known attacks and their variants, misuse 

detection systems are generally unable to identify new 
security attacks and also require ongoing threat database 
updates in order to remain effective.  Anomaly-based 
NID identifies malicious activity by applying statistical 
measures or artificial intelligence to compare current 
activity against historical knowledge of network 
utilization.  Common problems with anomaly-based 
systems are that they often require extensive training 
data for artificial learning algorithms, and that expert 
systems quickly become overwhelmed with the number 
of rules required to identify all potential network threats. 

The Fuzzy Intrusion Recognition Engine (FIRE) is an 
anomaly-based intrusion detection system  (IDS) that 
uses fuzzy systems to identify malicious network 
activity.   The system combines simple network traffic 
metrics with fuzzy rules to determine the likelihood of 
specific or general network attacks.  FIRE relies on fuzzy 
network traffic profiles as inputs to its rule sets.  
Although FIRE is not exclusively a network-based 
detection system, we will focus on network profiling for 
this paper.  The FIRE goals are: 

• To demonstrate how fuzzy systems can be used as 
an intrusion detection method. 

• To identify which data sources that are the best 
inputs to the fuzzy intrusion detection system. 

• To determine the best methods for representing 
network input data. 

• To show how the system can be scaled to distributed 
intrusion detection involving multiple hosts and/or 
networks. 

Additionally, the system has been designed with two 
additional goals:  to use readily available software and 
hardware as much as possible, and to be a tool accessible 
to the system/security administrator.  

2. System Architecture 
FIRE consists of the three types of components shown in 
Figure 1.  The network data collector (NDC) is a 
promiscuous network data sniffer and recorder.  It reads 
raw network packets off the wire and stores them on 



disk.  The next component, the network data processor 
(NDP), summarizes and tabulates the raw packet data in 
carefully selected categories.  In a sense, an NDP 
performs a kind of data mining on the collected packets. 
The NDP merges these summaries and tables with past 
data and stores them on disk.  Next, the NDP compares 
the current data with the historical mined data to create 
values that reflect how the new data differs from what 
was observed in the past.  These values are “fuzzified” to 
produce the fuzzy inputs needed by the Fuzzy Threat 
Analyzer (FTA).  The resulting fuzzy inputs from the 
NDPs are called “fuzzy alerts” because they represent an 
alert condition to a degree.   

 

 

Figure 1.  FIRE architecture.   A FIRE system 
includes one or more data collection units and 
network data processors, plus one or more Fuzzy 
Threat Analyzers. 

The Fuzzy Threat Analyzer combines the inputs from 
one or more FDPs to create composite inputs.  Individual 
NDPs can be given greater or less influence on the 
results by assigning them different weights.  For 
example, an NDC located on switched network that 
“sees” only a few hosts might be given a smaller 
weighting factor than an NDC on an unswitched network 
that sees traffic to a greater number of hosts and, hence, 
has a better overall picture of the network.  A rule can 
incorporate one or more fuzzy inputs.  Depending on the 
fuzzy alerts they use, the fuzzy rule designer can make 
the types of intrusions they can detect either very general 
or very specific.  Finally, the output from the fuzzy 
system executed by the FTA leads to fuzzy alerts that are 
sent to the security administrator for response. 

The first step in any intrusion detection methodology is 
to identify the data feeds, or sources, of information for 
the IDS.   In general, network data must be gathered 
directly from the wire.  The network data collector 

simply grabs all packets that cross the wire and stores 
them to disk.  No processing, filtering, or reducing of the 
data is performed by the NDC.  After a short time 
interval, the NDC transfers the data gathered to the NDP 
for processing and then starts the next collection interval.  
To help avoid packet loss in the data collection system, it 
is important that the tasks performed by the NDC be very 
limited.  The length of the data collection interval is 
chosen very carefully as a tradeoff between the need to 
have timely response to intrusion events and to ensure 
that the NDP has sufficient time to process the raw data 
before collecting the new data.  A typical data collection 
interval in FIRE lasts approximately 15 minutes. 

The network data processor reads the raw network data 
from the NDC and sorts packets by protocol into bins for 
TCP, UDP, and ICMP data.  We will only elaborate on 
the data mining process for TCP here. 

3.  Implementation 

3.1  TCP Data Mining 
Data mining is the process of looking for features and 
relationships in data.  The FIRE system applies simple 
data mining techniques to TCP packet data to extract 
metrics that are not obvious in the raw data. The metrics 
are chosen carefully to help reveal anomalies in the 
network traffic.  These metrics also form the basis for the 
fuzzy inputs. The data mining process is essential to 
creating meaningful fuzzy inputs in the detection system. 
To gain a better understanding of the reasons for the data 
mining, we will examine how the TCP metrics are 
extracted.  

We begin by extracting the following fields from each 
TCP header: 

1. Source IP address (src) 

2. Destination IP address (dest) 

3. Source port number (sport) 

4. Destination port number (dport) 

5. TCP control bits (tcpflag   e.g. SYN, ACK, Push, 
FIN, Reset)  

6. Packet data length (len) 

7. The date and time the packet was sent 

We then apply a simple data mining technique to create 
an aggregate key composed of the IP source, IP 
destination, and destination port fields.  This new field is 
called the sdp. Essentially, the sdp represents the 
existence of a TCP service channel (whether successful 
or not) between two IP end points.  This aggregate field 
proves to be the most important data extracted from the 
TCP data.  In the next data-mining phase, the Network 
Data Processor tabulates the number of packets seen for 



each sdp in the collection interval.  The NDP also 
maintains a master list of unique sdp’s that it has seen 
over a pre-defined retention interval.  This retention 
interval is usually on the order of a week or a month.  
Each time recently collected data is processed, data older 
than the retention interval is discarded.  This allows the 
data to adjust to changes in traffic over time, while 
retaining some degree of history for statistical 
comparisons.   

Not all sdp’s are stored.  Outgoing connections to web 
servers outside the local network domain are ignored, 
simply because the quantity would be overwhelming.  
Additionally, only sdp’s with that have a destination 
service matching commonly used well-known TCP ports 
are recorded.  Well-known ports are port numbers 
registered with the Internet Address Naming Authority 
(IANA).  Table 1 lists the well-known TCP ports 
recorded by FIRE.  The security administrator can 
modify this list as needed. 

Table 1.  Well-known TCP ports monitored by FIRE 

Port Number Service 

21 FTP 

22 SSH 

23 Telnet 

25 SMTP (e-mail) 

53 Domain Name Service 

80 HTTP 

110 POP3 

111 Sun RPC 

113 Auth 

137 NetBIOS – name service 

138 NetBIOS – datagram 

139 NetBIOS – session 

143 IMAP 

161 SNMP 

177 XDMCP 

194 IRC 

389 LDAP 

443 HTTPS 

513 login 

1512 WINS 

 

The data mining process effectively reduces the size of 
the data that needs to be retained for future comparisons.  
The NDP prepares counts and other statistical measures 
from the mined data and stores them to disk.  Since FIRE 
is an anomaly detection system, the measures are chosen 
such that anomalies in network data can be ascertained 
easily.  Typical summaries include: 

1. The number of total packets observed in the 
data collection interval. 

2. The number of unique sdp’s observed in the 
interval. 

3. The number of sdp’s that are new in this data 
collection interval.  

4. The number of sdp’s that are new in the longer-
term data retention interval (i.e. have never been 
seen before). 

5. The number of well-known ports used in an 
interval. 

6. The variance of the count of packets seen 
against the sdp’s. 

7. The number of sdp’s that include foreign hosts 
(hosts outside the local network domain). 

8. The number of successfully established TCP 
connections in a time interval. 

 

The statistical variance represented by item 6 is an 
indicator of the distribution of hosts contacted in a time 
interval.  Normally, one would expect to see fairly 
regular connections between hosts such as between a file 
server and its clients. Since a malicious port scan usually 
sends a relatively small number of packets to a large 
number of hosts on a network, a high variance in the 
packet counts across all sdp’s should reveal an unusual 
spread in the number of machines contacted in an 
interval. 

Figure 2 shows dramatically how applying data mining 
techniques to the network data helps extract features that 
would be difficult to discern otherwise.  The figure 
shows a 3-D plot of packet counts for each observed sdp 
during 15 minute intervals over a 3-week period from a 
local area network at Iowa State University.  The tall, 
worm-like structures indicate regularly occurring service 
connections between two hosts on the network.  The flat, 
horizontal structures indicate actual intruder port scans 
performed during this period.   

The data-mining process tends to reduce the amount of 
data that must be retained for historical comparisons of 
network activity, while creating data that is more 
meaningful to anomaly detection than the raw input data. 



3.2  Fuzzy Input Value Generation 
Once the NDP completes the data mining phase, it 
produces fuzzy sets based on past input data.  FIRE uses 
the historical data for each data element being monitored 
to calculate ranges over the input space. All of the 
individual data feeds are evaluated in terms of three 
fuzzy characteristics:  COUNT, UNIQUENESS, and 
VARIANCE.  We produce fuzzy set distributions for 
each of these quantities using historical data.  As the data 
changes over time, we expect to see the input ranges of 
the fuzzy sets adapt accordingly.   

In order to be consistent among all NDPs, it is easier if 
the input space for each data element can be defined with 
the same number of fuzzy sets.  We have arbitrarily 
chosen five fuzzy sets for each data element: LOW, 
MEDIUM-LOW, MEDIUM, MEDIUM-HIGH, and 
HIGH.  By standardizing the number of sets, we can 
apply the same fuzzy rules against the data from each 
NDP, regardless of the differences in the local input 
domain.   

Figure 3 shows the fuzzy input sets for three types of 
input domains:  COUNT, UNIQUENESS, and 
VARIANCE. 

With network data, it is frequently the case that a 
particular data element may remain zero for a long 
period of time.  For instance, a host on a switched 

network may observe no Telnet traffic for months at a 
time.  In order to accommodate these situations, the 
fuzzy input sets are initially established with the LOW 
set covering zero in the input domain, with all other sets 
overlapping where the input is greater than one.  This 
causes the MEDIUM-LOW to HIGH inputs to fire 
whenever any non-zero observations are made in the 
input data.  

 

 

Figure 2.  A three week summary of network data.  The tall, worm-like structures indicate regular network
connections.  The flat horizontal structures indicate intruder ports scans. 

 

Figure 3.  A typical fuzzy input set.  All input
domains are normalized to the same input range. 



3.3  Fuzzy Rules 
With the fuzzy input sets defined, the security 
administrator can then construct the rules of the fuzzy 
system.  Fuzzy rules are written using common sense 
experiences by the security administrator.  The rules 
designer seeks to define rules that cover as much of the 
input space as possible  Using tools such as the Matlab 
Fuzzy Toolbox, the designer can check the input rule 
space to ensure that the fuzzy rules cover the input space 
and that all output responses are defined. 

3.4  FIRE Scenarios 
We can best understand how the fuzzy rules are used by 
looking at some standard attack scenarios and developing 
some candidate rule sets for each scenario. 

Scenario 1:  An Attacker Performing A Stealthy 
Network Scan 
In a common intrusion scenario, an attacker conducts a 
stealthy port scan of a network, sending packets to 
several well-known ports (ftp, telnet, http, etc.) looking 
for systems that might be running those services.  The 
presence of those services on a system gives a hint as to 
what vulnerabilities the attacker might try to exploit to 
penetrate the system.  Additionally, the attacker may use 
scanners that can accurately identify the operating 
system on the target machine by examining the response 
of the TCP stack to carefully crafted TCP control 
messages. Knowledge of the services running and the 
host operating system is extremely valuable to the 
attacker because it helps to narrow the types of 
vulnerabilities the attacker can exploit on the systems.  
Port and operating system detection scanning may be a 
strong indicator that a more serious attack may be 
occurring in the future.  Below are some fuzzy rules we 
might construct for detecting a port scan: 

Fuzzy Rules for Detecting a Port Scan 

Rule 1 
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We can also develop rules for very specific intrusion 
scenarios, provided we have fine enough detail in the 
elements we are gathering.   The following rule might be 
included in a rule set for detecting suspicious 
connections to a DNS server: 
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4  Results 
Initial FIRE tests were performed on production local 
area networks in the College of Engineering at Iowa 
State University.  NDCs were installed on both switched 
and unswitched network segments.   Because computers 
on which to deploy the NDCs and NDPs were scarce, an 
NDC ran on the same computer as an NDP.    The FIRE 
systems were connected to networks that were not 
protected from traffic outside the local network domain 
by using a firewall or other perimeter defense system. 
The initial test phase collected data for three weeks.  It 
was not necessary to simulate intruder attacks on the 
network since actual intrusion attempts occurred almost 
daily. 

Using the fuzzy rules defined in Section 3.3, FIRE was 
able to detect nine distinct TCP port scans and four 
separate ICMP (ping) scans of hosts on the network by 
potentially malicious attackers from outside the local 
network domain.  Additionally, it was able to detect non-
malicious port scans launched against the system from 
the local domain.  The system also triggered HIGH alerts 
when seldom seen  types of network traffic were 
observed, in agreement with the Fuzzy Rules used. 

4.1 Future Work 
We plan to refine our methods for generating the input 
ranges of the fuzzy input sets.  We believe that it will be 
possible to detect a greater diversity of intrusions if we 
can derive fuzzy rules using other input domains besides 
network data.  

We also plan to expand the scope of data feeds to add 
host-based anomaly detection.  In particular, we plan to 



provide analysis of login information, e-mail, and web 
server activity.  The data-mining techniques developed 
for network data should extend easily to host-based log 
files.  

5  Conclusions 
By carefully selecting specific features in the raw input 
data, we can create fuzzy input parameters that provide 
strong indications of anomalous activity on a network.  
Additionally, we have shown that it is possible to 
perform data mining in close temporal proximity to the 
data collection activity, without incurring a 
computational burden on the fuzzy input set generation 
process. 

Fuzzy rules allow us to easily construct if-then rules that 
reflect common ways of describing security attacks.  The 
types of attacks that can be described may be of a general 
nature or very specific, depending on the granularity of 
the data feeds used in the rules. 

When combined with data mining of input data to reduce 
the size of the input data sets and to select features that 
highlight anomalies, fuzzy logic can be an effective 
means of defining network attacks. 
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