
Creating Metabolic and Regulatory Network Models using Fuzzy Cognitive 
Maps  

 
J.A. Dickerson and Z. Cox E. S. Wurtele A.W. Fulmer 
Electrical Engineering Dept., 
Iowa State University 
Ames, IA, USA 
julied@iastate.edu 

Botany Dept. 
Iowa State University 
Ames, IA, USA 
mash@iastate.edu 

Procter & Gamble Co. 
Corporate Research 
Cincinnati, OH, USA 
fulmer.aw@pg.com 

 
Abstract  

This paper describes a model of metabolic networks 
that uses fuzzy cognitive maps. Nodes of the map 
represent specific biochemicals such as proteins, 
RNA, and small molecules, or stimuli, such as light, 
heat, or nutrients. Edges of the map capture 
regulatory and metabolic relationships found in 
biological systems. These relationships are 
established by a domain expert, the biological 
literature, and extracted from RNA microarray data. 
This work is part of the development of a software 
tool, FCModeler, which models and visualizes 
metabolic networks. A model of  the metabolism of 
the plant hormone gibberellin in Arabidopsis is used 
to show the capabilities of the fuzzy model. 

1. Introduction 

Metabolic networks form the basis for the net 
accumulation of biomolecules in organisms. 
Regulatory networks modulate the action of 
metabolic networks, leading to physiological and 
morphological changes. A variety of data types will 
be integrated to learn about these pathways.  These 
include global profiling of protein levels, RNA levels 
(microarrays), metabolite levels, and metabolic flux 
measurements.  Such emerging technologies  are 
yielding vast amounts of data on gene expression. 
This points to the need to develop more 
methodologies to identify and analyze complex 
biological networks.   

 Several types of models have been proposed for 
representing gene regulatory networks, including 
Boolean networks [1, 2], linear weighting networks 
[3], differential equations [4], and Petri nets [5]. 
Circuit simulations and differential equations require 
detailed information that is not yet known about the 
regulatory mechanisms between genes. Boolean 
networks analyze binary state transition matrices to 
look for patterns in gene expression. Each part of the 
network is either on or off depending on whether a 
signal exceeds a pre-determined threshold. Linear 

weighting networks have the advantage of simplicity 
since they use simple weight matrices to additively 
combine the contributions of different regulatory 
elements. Petri nets can handle a wide variety of 
information, however their complexity does not scale 
up well to systems that have both continuous and 
discrete inputs [6, 7]. All of these models are based on 
gene expression level information. However, gene 
expression levels alone cannot give a complete picture 
of how the metabolism of living things works [8].  

Fuzzy cognitive maps (FCMs) have the potential to 
answer many of the concerns that arise from the 
existing models[9-11]. FCMs have been successfully 
applied to systems that have uncertain and incomplete 
models that cannot be expressed compactly or 
conveniently in equations. Examples include modeling 
human psychology [12] and on-line fault diagnosis at 
power plants [13]. These problems have several 
common features. The first is the lack of quantitative 
information on how different variables interact.   The 
second is that the direction of causality is at least partly 
known and can be articulated by a domain expert. The 
third is that they link concepts from different domains 
together using arrows of causality.  These features are 
shared by the problem of modeling metabolic 
networks. The FCModeler tool uses fuzzy methods for 
modeling networks and interprets the results using 
fuzzy cognitive maps. The FCModeler tool is intended 
to capture the intuitions of biologists, help test 
hypotheses, and provide a modeling framework for 
assessing the large amounts of data captured by RNA 
microarrays and other high-throughput experiments 
[14]. 

2. Structure of Concepts and Links 

The nodes in the FCM represent specific biochemicals 
such as proteins, RNA, and small molecules, or stimuli, 
such as light, heat, or nutrients.  There are three basic 
types of links specified.  In a conversion link (black 
arrow, shown as a dotted line), a node (typically a 
chemical(s)) is converted into another node, and used 
up in the process.  In a regulatory link (green and red 



 
Figure 1. This is a map of a networking model of
gibberellin (active form is GA4). The sequence is
started by translationof 3_beta_hydroxylase_RNA
into the 3_beta_hydroxylase protein. Dashed lines
are conversion links, bold lines are catalytic links,
and solid lines are regulatory links. 

arrows, shown as solid arrows with a plus or minus 
sign), the node activates or deactivates another node, 
and is not used up in the process.  A catalytic link 
(blue arrows, shown as a thick line) represents an 
enzyme that enables a chemical conversion and does 
not get used up in the process.  Figure 1 shows a 
small part of a graph for the Arabadopsis metabolic 
and regulatory network.  

In the metabolic network database, the type of link is 
further delineated by the link mechanism and the 
certainty. Some of the current mechanisms are: 
direct, indirect, and ligand. Direct links assume a 
direct physical interaction. Indirect links assume that 
the upstream node activates the downstream node 
indirectly and allows for the existence of intermediate 
nodes in such a path. The ligand link is a “second 
messenger” mechanism in which a node produces or 
helps produce a ligand (or small molecule that binds) 

and either “activates” or “inhibits” a target node. Often 
the nature of the link is unknown and it cannot be 
modeled in the current framework. The link certainty 
expresses a degree of confidence about the link. This 
will be used for hypothesis testing. 

3. Visualizing Metabolic Networks 

The known and unknown biological information in the 
metabolic network is visualized using a graph 
visualization tool. The graph layout program is dot 
which is part of the Graphviz program developed at 
AT&T research labs (see http://www.research.att.com 
sw/tools/graphviz/. Diva, a software infrastructure for 
visualizing and interacting with dynamic information 
spaces (http://www.gigascale.org/diva/), is used for 
displaying the graphs. This allows for a greater variety 
of visualization objects on the display. The front end of 
the FCModeler tool is a Java TM interface that reads and 
displays data from a database of links and nodes.  

4. Fuzzy Cognitive Map Modeling for Metabolic 
and Regulatory Networks 

Fuzzy cognitive maps are fuzzy digraphs that model 
causal flow between concepts or, in this case, genes, 
proteins, and transcription factors [10, 11]. The 
concepts are linked by edges that show the degree to 
which the concepts depend on each other. FCMs can be 
binary state systems called simple FCMs with causality 
directions that are +1, a positive causal connection, -1, 
a negative connection, or zero, no causal connection. 
The fuzzy structure allows the gene or protein levels to 
be expressed in the continuous range [0, 1]. The input 
is the sum of the product of the fuzzy edge values.  The 
system nonlinearly transforms the weighted input to 
each node using a threshold function or other nonlinear 
activation. FCMs are signed digraphs with feedback.  
Nodes stand for causal fuzzy sets where events occur to 
some degree.  Edges stand for causal flow.  The sign of 
an edge (+ or -) shows causal increase or decrease 
between nodes.  

Each causal node Ci(t) is a nonlinear function that 
maps the output activation into a fuzzy membership 
degree in [0,1].  Simple or trivalent FCMs have causal 
edge weights in the set {-1,0,1} and concept values in 
{0,1} or {-1,1}.  Simple FCMs give a quick 
approximation to an expert’s causal knowledge. More 
detailed graphs can replace this link with a time-
dependent and/or nonlinear function. 

FCMs recall as the FCM dynamical system 
equilibrates.  Simple FCM inference is matrix-vector 
multiplication followed by thresholding.  State vectors 
Cn cycle through the FCM edge matrix E, that defines 
the edges eki where k is the upstream node and i is the 



downstream node. The system nonlinearly transforms 
the weighted input to each node Ci:   
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S(y) is a monotonic signal function bounded function 
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In this case c=1000 and Tj= 0.5 for all nodes. This is 
equivalent to a step function with a threshold at 0.5. 
The edges between nodes can also be time dependent 
functions that create a complex dynamical system. 

Regulatory Links: The regulatory edges are modeled 
using a simple FCM model that assumes binary 
connecting edges: }1,1{−=kie for the single edge 
case. When there are multiple excitatory or inhibitory 
connections, the weights are divided by the number 
of input connections in the absence of other 
information. As more information becomes known 
about details of the regulation, for example how an 
RNA level affects the translation of the 
corresponding protein, the function of the link 
models will be updated. The regulatory nodes will 
also have self-feedback since the nodes stay on until 
they have been inhibited. 

Conversion Links: Conversion relationships are 
modeled in different ways depending on the goal of 
the simulation study. The first case corresponds to 
investigating causal relationships between nodes. The 
node is modeled in the same manner as a regulatory 
link in which the presence of one node causes 
presence at the next node. When information about 
the rate of change in a reaction is available, a simple 
difference equation can model the gradually rising 
and falling levels of the nodes. The step size depends 
on the reaction rate and the stoichiometric 
relationship between the nodes. 

Catalyzed Links: Catalyzed reactions add a dummy 
node that acts upon a conversion link. This allows one 
link to modify another link. In this paper, the catalyzed 
link is simulated by weighting the inputs into the 
dummy node in such a way that both inputs much be 
present for the node to be active. Another method of 
modeling catalyzed links is an augmented matrix that 
operates on the edges between the nodes. Figure 2 
gives an example of a catalyzing node model.  The blue 
circle is a dummy node so the catalyst, 3 
beta_hydroxylase can modify the reaction between 
GA4 and GA9. 

Forcing functions:  In biological systems such as cells, 
many of the metabolic network elements are always 
present. This is modeled as: 
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The effect of this equation is that if the node is not 
inhibited, it is active. 

5. Results 

The metabolism and signal transduction of the plant 
hormone gibberellin in Arabidopsis [15,16] was used 
to test this modeling scheme. Figure 1 shows a 
potential network configuration. The link types and 
causality directions were created by an expert 
researcher in the field. The key element in this graph is 
the block labeled GA4. This compound regulates many 
other regulatory mechanisms in plants.  IPP, GAI, 
GRS, SPY, GA_MYB, FACTORX, LEC, and 
Meristem Carpal Margin had forcing functions applied 
to them. The results can be visualized using a time plot 
that shows which node was active and to what degree 
as shown in Figure 3. 

Figures 4 through 7 show visualized networks at 
different time steps to analyze the interactions in the 
network. Figures 4-6 show the operation of the 
catalyzing node. Figure 7 shows how GA4 can regulate 
its own production and how it can control the activity 
of other biomolecules.  Thus results a homeostatic 
control of GA4 levels. The oscillation of the GA levels 
directs the generation of biomolecules that, in the 
absence of other constraining factors, are implicated in 
the formation of new cellular proliferation centers, 
referred to as meristems.   Many key features of this 
model, including timing,  can be tested experimentally 
and relatively rapidly by  globally monitoring temporal 
profiles of mRNA, protein and metabolite. 

GA4

GA9

3_beta_hydroxylase

 
Figure 2. Catalyzing link. In this case,
3_beta_hydroxylase is the catalyst for a
reaction between GA9 and GA4. 



6. Conclusions 

Metabolic and regulatory networks can be modeled 
using fuzzy cognitive maps. Future plans include: 
Simulating intervention in the network (e.g. what 
happens when a node is shut off), searching for 
critical paths and control points in the network, and 
capturing information about how edges between 
graph nodes change when different regulatory factors 
are present. 
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Figure 4: Output of the network at the third time 
step. Note how GA_MYB is inhibited by other 
nodes and that the bold catalytic link is activated 
but does not cause GA4 to be produced. 

 
Figure 5: Output of the network at the fourth time 
step. Note how the catalytic link is activated and 
GA9 is present so that GA4 can be produced. 



 

 
Figure 6: Output of the network at the sixth time 
step. Note how the GA4 node is now active. 

 
Figure 7: Output of the network at the ninth time 
step. GA4 is negatively regulating the small 
molecules that inhibit GA_MYB. 

 


