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Abstract. Current inductive machine learning algorithms typically use greedy search with limited looka-
head. This prevents them to detect significant conditional dependencies between the attributes that
describe training objects. Instead of myopic impurity functions and lookahead, we propose to use RELI-
EFF, an extension of RELIEF developed by Kira and Rendell [10], [11], for heuristic guidance of inductive
learning algorithms. We have reimplemented Assistant, a system for top down induction of decision trees,
using RELIEFF as an estimator of attributes at each selection step. The algorithm is tested on several
artificial and several real world problems and the results are compared with some other well known ma-
chine learning algorithms. Excellent results on artificial data sets and two real world problems show the
advantage of the presented approach to inductive learning.
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1. Introduction

Inductive learning algorithms typically use a
greedy search strategy to overcome the combina-
torial explosion during the search for good hy-
potheses.
the potential successors of the current state in
the search space has a major role in the greedy
search. Current inductive learning algorithms
use variants of impurity functions like informa-
tion gain, gain ratio[25], gini-index[1], distance
measure[16], jmeasure[30], and MDL[14]. How-
ever, all these measures assume that attributes
are conditionally independent given the class and
therefore in domains with strong conditional de-
pendencies between attributes the greedy search
has poor chances of revealing a good hypothesis.

Kira and Rendell [10], [11] developed an al-
gorithm called RELIEF, which seems to be very
powerful in estimating the quality of attributes.
For example, in the parity problems of various de-
grees with a significant number of irrelevant (ran-
dom) additional attributes RELIEF is able to cor-
rectly estimate the relevance of all attributes in
a time proportional to the number of attributes

The heuristic function that estimates

and the square of the number of training instances
(this can be further reduced by limiting the num-
ber of iterations in RELIEF). While the original
RELIEF can deal with discrete and continuous at-
tributes, it can not deal with incomplete data and
is limited to two-class problems only. We devel-
oped an extension of RELIEF called RELIEFF
that improves the original algorithm by estimat-
ing probabilities more reliably and extends it to
handle incomplete and multi-class data sets while
the complexity remains the same.

RELIEFF seems to be a promising heuristic
function that may overcome the myopia of current
inductive learning algorithms. Kira and Rendell
used RELIEF as a preprocessor to eliminate irrele-
vant attributes from data description before learn-
ing. RELIEFF is general, relatively efficient, and
reliable enough to guide the search in the learning
process. In this paper a reimplementation of As-
sistant learning algorithm for top down induction
of decision trees [4] is described, named Assistant-
R. Instead of information gain, Assistant-R uses
RELIEFF as a heuristic function for estimating
the attributes’ quality at each step during the tree
generation. Experiments on a series of artificial
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and real-world data sets are described and the re-

sults obtained using RELIEFF as a selection cri-

terion are compared to results of some other ap-

proaches. The following approaches are compared:

o the use of information gain as a selection crite-
rion;

e LFC[27], [28] that tries to overcome the myopia
of information gain with a limited lookahead;

e the naive Bayesian classifier, that assumes con-
ditional independence of attributes;

o the k-nearest neighbors algorithm.

The paper is organized as follows. In the next
section, the original RELIEF is briefly described
along with its interpretation and its extended ver-
sion RELIEFF. In Section 3, we present the reim-
plementation of Assistant called Assistant-R. In
Section 4.1 we briefly describe the other algo-
rithms used in our experiments. In Section 4.2
we describe the experimental methodology. Sec-
tion 5 describes experiments, and compare the re-
sults of the different algorithms. We show that
Assistant-R performs at least as well as Assistant-
I and sometimes much better. In conclusion, the
potential breakthroughs are discussed on the ba-
sis of the excellent results on artificial data sets.
Finally, integration of the compared algorithms is
proposed.

2. RELIEFF
2.1. RELIEF

The key idea of RELIEF is to estimate attributes
according to how well their values distinguish
among the instances that are near to each other.
For that purpose, given an instance, RELIEF

set all weights W[A] := 0.0;
fori:=1tondo
begin

randomly select an instance R;

1

2

3

4

9. find nearest hit H and nearest miss M,
6 for A := 1 to #all_attributes do

7 WIA] := W[A] - diff(A,R,H)/n
8 + diff(A,R,M)/n;
9

end;

Figure 1 The basic algorithm of RELIEF

searches for its two nearest neighbors: one from
the same class (called nearest hit) and the other
from a different class (called nearest miss). The
original algorithm of RELIEF [10], [11] randomly
selects n training instances, where n is the user-
defined parameter. The algorithm is given in Fig-
ure 1.

Function  diff(Attribute,Instancel,Instance?2)
calculates the difference between the values of At-
tribute for two instances. For discrete attributes
the difference is either 1 (the values are different)
or 0 (the values are equal), while for continuous
attributes the difference is the actual difference
normalized to the interval [0,1]. Normalization
with n guarantees all weights TW[A] to be in the
interval [—1,1], however, normalization with n
is an unnecessary step if W[A] is to be used for
relative comparison among attributes.

The weights are estimates of the quality
of attributes.  The rationale of the formula
for updating the weights is that a good at-
tribute should have the same value for instances
from the same class (subtracting the difference
dif f(A, R, H)) and should differentiate between
instances from different classes (adding the differ-
ence dif f(A, R, M)).

The function diff is used also for calculating
the distance between instances to find the near-
est neighbors. The total distance is simply the
sum of differences over all attributes. In fact orig-
inal RELIEF uses the squared difference, which
for discrete attributes is equivalent to diff. In all
our experiments, there was no significant differ-
ence between results using diff or squared differ-
ence. If N is the number of all training instances
then the complexity of the above algorithm is
O(n x N x #all_attributes).

2.2.  Interpretation of RELIEF’s estimates

The following derivation shows that RELIEF’s es-
timates are strongly related to impurity functions.
It is obvious that RELIEF’s estimate W[A] of at-
tribute A is an approximation of the following dif-
ference of probabilities:

W[A] = P(different value of A|

nearest instance from different class)



— P(different value of A

nearest instance from same class)

(1)

If we eliminate from (1) the requirement that
the selected instance is the nearest, the formula
becomes:

W'[A] = P(different value of Aldifferent class)

— P(different value of A|same class) )
If we rewrite
P.4ya1 = P(equal value of A)
Psamec = P(same class)
Piameci|equar = P(same class|equal value of A)

we obtain using Bayes rule:

Psamecl|equa1Peqval

W'A] =

Psamecl

(1 - Psamecl|eqval)Peqval
1- Psamecl

For sampling with replacement in strict sense
the following equalities hold:

Psamecl = ZP(C 2
C

Pgamect|equal = E (Z]:(;/(V X ZP (CV) )

Using the above equalities we obtain:

P.gvar x Ginigain'(A)

W/[A] - Psamecl(l_Psamecl)
= const x ZP(V 2 x Ginigain'(A) (3)
v
where
oy, P(V)? 2
Ginigain'(A) = =53 C|\v
)= (e < )

1]

is highly correlated with the gini-index gain [1]
for classes C and values V of attribute A. The
difference is that instead of factor
P(V)?
>v P(V)?
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the gini-index gain uses

Pv)
s, P - V)

Equation (3) shows strong relation of RE-
LIEF’s weights with the gini-index gain. The
probability >, P(V)? that two instances have
the same value of attribute A in eq. (3) is a
kind of normalization factor for multi-valued at-
tributes. Impurity functions tend to overestimate
multi-valued attributes and various normalization
heuristics are needed to avoid this tendency (e.g.
gain ratio [25], distance measure [16], and bina-
rization of attributes [4]). Equation (3) shows that
RELIEF exhibits an implicit normalization effect.

Another deficiency of gini-index gain is that its
values tend to decrease with the increasing num-
ber of classes [14]. Denominator which is constant
factor in equation (3) for a given attribute again
serves as a kind of normalization and therefore
RELIEF’s estimates do not exhibit such strange
behavior as gini-index gain does.

The above derivation eliminated the “nearest
instance” condition from the probabilities. If we
put it back we can interpret RELIEF’s estimates
as the average over local estimates in smaller
parts of the instance space. This enables RE-
LIEF to take into account the context of other
attributes, i.e. the conditional dependencies be-
tween attributes given the class value which can
be detected in the context of locality. From the
global point of view, these dependencies are hid-
den due to the effect of averaging over all training
instances, and exactly this makes impurity func-
tions myopic. Impurity functions use correlation
between the attribute and the class disregarding
the context of other attributes. This is the same
as using the global point of view and disregarding
the local peculiarities.

The example data set given in Table 1 illus-
trates the difference between myopic estimation
functions and RELIEF. We have three attributes
and eight training instances. The class value is
determined with XOR function on attributes Al
and A2, while the third attribute A3 is randomly
generated. RELIEF (equation (1)) correctly es-
timates that attributes Al and A2 are the most
important while the contribution of attribute A3

is poor. On the other hand, W’[A] (equation (3)),



4 THE AUTHORS???

Table ! Example data set and the estimated quality of

attributes
function Al A2 A3 Class
1 0 1 1
1 0 0 1
0 1 0 1
0 1 1 1
0 0 0 0
0 0 0 0
1 1 1 0
1 1 0 0
RELIEF = W[A] (1) | 0.542 | 0.458 | -0.750
W’[A] (3) 0.000 | 0.000 0.063
Ginigain’ (4) 0.000 | 0.000 0.029
gini index gain [1] 0.000 | 0.000 | 0.033
information gain [9] 0.000 | 0.000 | 0.049
gain-ratio [25] 0.000 | 0.000 | 0.051
distance [16] 0.000 | 0.000 0.026

Ginigain’ (equation (4)), original gini-index gain
[1], information gain [9], gain ratio [25], and dis-
tance measure [16] estimate that the contribution
of A3 is the highest while attributes Al and A2
are estimated as completely irrelevant.

Hong [8] developed a procedure similar to RE-
LIEF for estimating the quality of attributes,
where he directly emphasizes the use of contextual
information. The difference to RELIEF is that
his approach uses only information from nearest
misses and ignores nearest hits. Besides, Hong
uses the normalization to penalize the contribu-
tion of nearest misses that are far away from a
given instance.

2.3. FEztensions of RELIEF

The original RELIEF can deal with discrete and
continuous attributes. However, it can not deal
with incomplete data and is limited to two-class
problems only. Equation (1) is of crucial impor-
tance for any extensions of RELIEF. It turned out
that the extensions of RELIEF are not straightfor-
ward unless we realized that RELIEF in fact ap-
proximates probabilities. The extensions should
be designed in such a way that those probabil-
ities are reliably approximated. We developed
an extension of RELIEF, called RELIEFF, that
improves the original algorithm by estimating
probabilities more reliably and extends it to deal
with incomplete and multi-class data sets. A brief

description of the extensions follows.

Reliable probability approxima-
tion: The parameter n in the algorithm RE-
LIEF, described in Section 2.1, represents the
number of instances for approximating probabil-
ities in eq. (1). The larger n implies more reli-
able approximation. The obvious choice, adopted
in RELIEFF for relatively small number of train-
ing instances (up to one thousand), is to run the
outer loop of RELIEF over all available training
instances.

The selection of the nearest neighbors is of cru-
cial importance in RELIEF. The purpose is to
find the nearest neighbors with respect to impor-
tant attributes. Redundant and noisy attributes
may strongly affect the selection of the nearest
neighbors and therefore the estimation of proba-
bilities with noisy data becomes unreliable. To in-
crease the reliability of the probability approxima-
tion RELIEFF searches for k nearest hits/misses
instead of only one near hit/miss and averages
the contribution of all k& nearest hits/misses. It
was shown that this extension significantly im-
proves the reliability of estimates of attributes’
qualities[13]. To overcome the problem of param-
eter tuning, in all our experiments k was set to 10
which, empirically, gives satisfactory results. In
some problems significantly better results can be
obtained with tuning (as is typical for the major-
ity of machine learning algorithms).

Incomplete data: To enable RELIEF
to deal with incomplete data sets, the function
diff(Attribute,Instancel, Instance2) in RELIEFF
is extended to missing values of attributes by cal-
culating the probability that two given instances
have different values for the given attribute:

o if one instance (e.g. I1) has unknown value:

diff(A,11,12) = 1 — P(value(A, I2)|class(I1))

e if both instances have unknown value:

dif f(A,I1,12) =
#values(A)

1=

|4

(P(V|elass(11)) x P(V|class(12)))

The conditional probabilities are approximated
with relative frequencies from the training set.
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Figure 2 The correlation of the RELIEFF’s
estimates with the intended quality of attributes
on data sets with conditionally independent and
strongly dependent attributes.

This approach assumes that conditional prob-
abilities of attribute-values given the class are
applicable without the context of any other at-
tribute. This may in some cases be too naive,
however including the context of other atributes
is far too inefficient.

Multi-class problems: Kira and Rendell
[10], [11] claim that RELIEF can be used to es-
timate the attributes’ qualities in data sets with
more than two classes by splitting the problem
into a series of 2-class problems. This solution
seems unsatisfactory (in Section 4.1 we discuss the
performance of this approach and compare it with
the extension described below). To use it in prac-
tice, RELIEF should be able to deal with multi-
class problems without any prior changes in the
knowledge representation that could affect the fi-
nal outcomes.

Instead of finding one near miss M from a dif-
ferent class, RELIEFF searches for k& near misses
M;(C),i = 1..k for each different class C' and aver-
ages their contribution for updating the estimate
W[A]. The average is weighted with the prior
probability of each class:

k .

(R) i=

+
class

c#
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nxk

The idea is that the algorithm should estimate the
ability of attributes to separate each pair of classes
regardless of which two classes are closest to each
other. The normalization if prior probabilities of
classes is necessary as k near misses from each dif-
ferent class would tend to exaggerate the influence
of classes with small number of cases.

Note that the time complexity of RELIEFF is
O(N? x #tattributes), where N is the number of
training instances.

2.4. RELIEFF’s estimates and attribute’s qual-
ity

To estimate the contribution of parameter k& (#
nearest hits/misses) on RELIEFF’s estimates of
attribute’s quality Kononenko [13] compared the
intended information gain of attributes with the
estimates, generated by RELIEFF, by calculating
the standard linear correlation coefficient. The
correlation coefficient can show how is the in-
tended quality and the estimated quality of at-
tributes related.

A typical graph for data sets with condition-
ally independent attributes and with strongly de-
pendent attributes (parity problems of various de-
grees) is shown in Figure 2. For conditionally
independent attributes, the quality of the esti-
mate monotonically increases with the number of
nearest neighbors. For conditionaly dependent at-
tributes, the quality increases up to a maximum
but later decreases as the number of nearest neigh-
bors exceeds the number of instances that belong
to the same peak in the distribution space for a
given class.

Note that, if attributes were evaluated with
the myopic impurity functions, like the gini-index
and the information gain, the quality of the es-
timates would be high for conditionally indepen-
dent attributes and poor for strongly dependent
attributes. This corresponds to the estimates
by RELIEFF with very large number of nearest
hits/misses.

To test the effect of the normalization factor in
eq. (3) we run RELIEFF also on one well known

medical data set, “primary tumor”, described in
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Section 5.3. The major difference between the es-
timates by impurity functions and the estimates
by RELIEFF in the “primary tumor” problem is
in the estimates of two most significant attributes.
Information gain and gini-index overestimate one
attribute with 3 values (by the opinion of physi-
cians specialists). RELIEFF and normalized ver-
sions of impurity functions correctly estimate this
attribute as less important.

3. Assistant-R

Assistant-R is a reimplementation of the Assistant
learning system for top down induction of decision
trees[4]. The basic algorithm goes back to CLS
(Concept Learning System) developed by Hunt et
al. [9] and reimplemented by several authors (see
[25] for an overview). In the following we describe
the main features of Assistant.

Binarization of attributes: The algo-
rithm generates binary decision trees. At each
decision step the binarized version of each at-
tribute is selected that maximizes the information
gain of the attribute. For continuous attributes a
decision point is selected that maximizes the at-
tribute’s information gain. For discrete attributes
a heuristic greedy algorithm is used to find the
locally best split of attribute’s values into two
subsets. The purpose of the binarization is to
reduce the replication problem and to strengthen
the statistical support for generated rules.

Decision tree pruning: Prepruning and
postpruning techniques are used for pruning off
unreliable parts of decision trees. For preprun-
ing, three user-defined thresholds are provided:
minimal number of training instances, minimal
attributes information gain and maximal proba-
bility of majority class in the current node. For
postpruning, the method developed by Niblett
and Bratko [22] is used that uses Laplace’s law
of succession for estimating the expected classi-
fication error of the current node commited by
pruning/not pruning its subtree.

Incomplete data handling: During
learning, training instances with a missing value
of the selected attribute are weighted with proba-

bilities of each attribute’s value conditioned with
a class label. During classification, instances with
missing values are weighted with unconditional
probabilities of attribute’s values.

Naive Bayesian classifier: For each in-
ternal node in a decision tree eventually a third
successor appears labeled with attribute’s values
for which no training instances are available. For
such “null leaves”, the naive Bayesian formula is
used to calculate the probability distribution in
the leaf by using only attributes that appear in
the path from the root to the leaf:

P(C|A)

P(C|Aroor--Ateas) = P(O) ]| POy (5)

A

Note that this calculation is done off-line, i.e.
during the learning phase. For classification, the
“null” leaves are already labeled with the calcu-
lated class probability distribution and are used
for classification in the same manner as ordinary
leaves.

The main difference between Assistant and
its reimplementation Assistant-R is that RELI-
EFF is used for attribute selection. In addi-
tion, wherever appropriate, instead of the rela-
tive frequency, Assistant-R uses the m-estimate
of probabilities, which was shown to often sig-
nificantly increase the performance of machine
learning algorithms[2], [3]. For prior probabilities
Laplace’s law of succession is used:

Pu(X) = N(X)+1
“ " N + #_of _possible_outcomes

(6)

where N is the number of all trials and N(X) the
number of trials with the outcome X. These prior
probabilities are then used in the m-estimate of
conditional probabilities:

N(X&Y)+m x Py(X)
NY)+m (7)

P(X|Y) =

The parameter m trades off between the contribu-
tions of the relative frequency and the prior prob-
ability.

In our experiments, the parameter m was set to
2 (this setting is usually used as default and, em-
pirically, gives satisfactory results [2], [3] although



with tuning in some problem domains better re-
sults may be expected). The m-estimate is used
in the naive Bayesian formula (5), for postpruning
instead of Laplace’s law of succession as proposed
by Cestnik and Bratko[3], and for RELIEFF’s es-
timates of probabilities. In eq. (1) we can use
probabilities from the root of the tree as an es-
timate of prior probabilities for a lower internal
node t with n(t) corresponding training instances:

WIA] = (8)

2
_n) x P(diff. val. of A|nearest miss, t)+
n(t)+m

m

—— P(diff. val. of A|nearest miss, root) |—
n(t) +m

2
<A x P(diff. val. of A|nearest hit, t) +
n(t)+m

m

——— x P(diff. val. of A|nearest hit, root))
n(t)+m

4. Experimental environment
4.1.  Algorithms for comparison

We performed a series of experiments with
Assistant-R and compared its performance to the
following algorithms:

Assistant-I: A variant of Assistant-R that in-
stead of RELIEFF uses information gain for
the selection criterion, as does Assistant. How-
ever, the other differences to Assistant remain
(m-estimate of probabilities). This algorithm
enables us to evaluate the contribution of RE-
LIEFF. The parameters for Assistant-I and
Assistant-R were fixed throughout the exper-
iments (no prepruning, postpruning with m =
2).

LFC: Ragavan et al. [27], [28] use limited looka-
head in their LFC (Lookahead Feature Con-
struction) algorithm for top down induction of
decision trees to detect significant conditional
dependencies between attributes for construc-
tive induction. They show interesting results
on some data sets. We reimplemented their al-
gorithm [29] and tested its performance. Our
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results, presented in this paper, show some
drawbacks of the experimental comparison de-
scribed by Ragavan and Rendell and confirm
the advantage of the limited lookahead for con-
structive induction.

LFC generates binary decision trees. At each
node, the algorithm constructs new binary at-
tributes from the original attributes, using log-
ical operators (conjunction, disjunction, and
negation). From the constructed binary at-
tributes, the best attribute is selected and the
process is recursively repeated on two sub-
sets of training instances, corresponding to the
two values of the selected attribute. For con-
structive induction a limited lookahead is used.
The space of possible useful constructs is re-
stricted, due to the geometrical representation
of the conditional entropy which is the estima-
tor of the attributes’ quality. To further reduce
the search space, the algorithm also limits the
breadth and the depth of search.

AS LFC uses lookahead it is less myopic than
the greedy algorithm of Assistant. The com-
parison of results may show the performance of
the greedy search in combination with RELI-
EFF versus the lookahead strategy. To make
results comparable to Assistant-R we equipped
LFC with pruning and probability estimation
facilities as described in Section 3. All tests
were performed with a default set of parame-
ters (depth of the lookahead 3, beam size 20),
although in some domains better results may
be obtained by parameter tuning. However,
higher values of the parameters may combina-
torially increase the search space of LFC, which
makes the algorithm impractical.

Naive Bayesian Classifier: A classifier that
uses the naive Bayesian formula (5) to calculate
the probability of each class given the values of
all attributes and assuming the conditional in-
dependence of the attributes. A new instance
is classified into the class with maximal calcu-
lated probability. The m-estimate of probabil-
ities was used and the parameter m was set
to 2 in all experiments. The performance of
the naive Bayesian classifier can serve as an es-
timate of the conditional independence of at-
tributes.
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k-NN: The k-nearest neighbor algorithm. For a

given new instance the algorithm searches for
k nearest training instances and classifies the
instance into the most frequent class of these
k instances. For the k-NN algorithm the same
distance measure was used as for RELIEFT (see
Section 2.1).
The presented results were obtained with
Manhattan-distance. The results using Euclid-
ian distance are practically the same. The best
results with respect to parameter k are pre-
sented, although for fair comparison such pa-
rameter tuning should be allowed only on the
training and not the testing sets.

We selected the naive Bayesian classifier and
the k-NN algorithm for comparison because they
are both well known, simple, and they both per-
form well in many real-world problems. The per-
formance of these two algorithms may show the
nature of the classification problems.

4.2.  Ezperimental methodology

Each experiment on each data set was performed
30 times by randomly selecting 70% of instances
for learning and 30% for testing and the results
were averaged. Each system used the same subsets
of instances for learning and for testing in order to
provide the same experimental conditions. To ver-
ify the significance of differences we used the one-
tailed t-test with o = 0.0005 (99.95% confidence
level) and the null hypothesis stating that the dif-
ference is zero[5]. All the differences in results
having the value of statistic ¢ above the threshold
(t > 3.66) are considered significant.

The exception from the above methodology
were the experiments in the finite element mesh
design problem, where the experimental method-
ology was dictated by previous published results,
as described in Section 5.4.

Besides the classification accuracy, we mea-
sured also the average information score[15]. This
measure eliminates the influence of prior proba-
bilities and appropriately treats probabilistic an-
swers of the classifier. The average information
score is defined as:

Inf _ Zz#:tfsnng instances Infz

Ftesting instances

9)

where the information score of the classification of
t-th testing instance is defined by:

I?’LfZ = — 10g2 P(Cll) + 10g2 P/(CZZ)
if P/(Cl;) > P(Cl;), and
Inf; = —(—logy(1 — P(Cl;)) + log,(1 — P'(Cl;)))

if P/(Cl;) < P(Cl).

Cl; is the class of the i-th testing instance,
P(Cl) is the prior probability of class C! and
P'(C1) the probability returned by a classifier.
If the returned probability of the correct class is
greater than the prior probability the information
score is positive, as the obtained information is
correct. It can be interpreted as the prior informa-
tion necessary for correct classification minus the
posterior information necessary for correct classi-
fication. If the returned probability of the cor-
rect class is lower than the prior probability the
information score is negative, as the obtained in-
formation is wrong. It can be interpreted as the
prior information necessary for incorrect classifi-
cation minus the posterior information necessary
for incorrect classification.

The main difference between the classification
accuracy and the information score can be il-
lustrated with the following example. Let the
prior distribution of classes be P(C7) = 0.2 and
P(C2) = 0.8 and let the posterior distribution
returned by the classifier be P(C7) = 0.4 and
P(C3) = 0.6. If the correct class is C then the
information score is positive while the classifica-
tion accuracy treats the given posterior distribu-
tion as wrong answer. If the correct class is Csq
then the information score is negative while the
classification accuracy treats the given posterior
distribution as correct answer.

Classification accuracy may in some special
cases exhibit high variance while information score
is much more stable. In a very special case
where we have a data set with irrelevant attributes
and exactly 50% of instances from one class and
50% of instances from the other class, the leave-
one-out testing for a probabilistic classifier would
give the approximate accuracy of 50%, while for
the“default” classifier, that classifies every in-
stance into the majority class, the accuracy would
be 0%. A slight modification of the distribution
of training instances would drastically change the



latter accuracy to approximately 50%. A more
drastic modification of the distribution, say 80%
of cases for one class and 20% for the other, would
increase the accuracy of the “default” classifier to
80%, while the accuracy of the probabilistic classi-
fier would be approximately 0.8 x 0.840.2x 0.2 =
68%. However, for both classifiers the information
score would in all scenarios remain approximately
0 bits which would indicate, that both classifiers
are unable to extract any useful information from
attributes.

5. Experimental results

In this section we give results on several artifi-
cial and real-world data sets. The presentation
of the experiments is divided into four parts ac-
cording to four groups of data sets: artificial data
sets with the controlled conditional dependency
between attributes, some other benchmark artifi-
cial data sets, medical data sets, and other real-
world data sets. For each group we give a brief
description of data sets followed by the results.
The results in tables include averages over several
runs and standard errors.

5.1.  Artificial data sets

We generated several data sets in order to com-

pare the performance of various algorithms:

INF1: Domain with three conditionally indepen-
dent informative binary attributes for each of
the three classes and with three random binary
attributes. The learner should detect which
three attributes are informative which is a rel-
atively easy task. All five algorithms should be
able to solve this problem.

INF2: Domain obtained from INF1 by replacing
each informative attribute with two attributes
whose values define the value of the original
attribute with XOR relation. For this prob-
lem, the learner should detect six important
attributes and the fact that attributes are pair-
wise strongly conditionally dependent. This
is a fairly complex problem and cannot be
solved with the myopic heuristics. This data
set should show the advantage of LFC and
Assistant-R.
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TREE: Domain whose instances were generated
from a decision tree with 6 internal nodes, each
containing a different binary attribute. 5 ran-
dom binary attributes were added to the de-
scription of instances. This problem should
be easy for greedy decision tree learning algo-
rithms while other approaches may have diffi-
culties due to an inappropriate knowledge rep-
resentation of the target concept.

PAR2: Parity problem with two significant bi-
nary attributes and 10 random binary at-
tributes. 5% of randomly selected instances
were labeled with wrong class. This problem
is hard as there is a lot of attributes with equal
score when evaluated with a myopic evaluation
function, such as information gain.

PAR3: Same as PAR2 except that there were
three significant attributes for the parity rela-
tion which makes the problem harder.

PAR4: Same as PAR2 except that there were
four significant attributes for the parity relation
which makes the problem the hardest among
the parity problems used in our experiments.
The basic characteristics of the artificial data

sets are listed in Table 2. Characteristics include
the percentage of the majority class (which can
be interpreted as “default accuracy”) and the class
entropy which gives an impression of the complex-
ity of the classification problem.

The results of the learning algorithms LFC,
Assistant-1 and Assistant-R, as well as the naive
Bayesian classifier and the k-NN algorithm, are
given in Table 3 (classification accuracy) and Ta-
ble 4 (information score). The results are as ex-
pected and show that:

o All classifiers perform well in a (relatively sim-
ple) domain with conditionally independent at-
tributes (INF1).

e Both versions of Assistant perform well in the
problem of the reconstruction of a decision tree
(TREE), while the other classifiers are signifi-
cantly worse.

o Only Assistant-R and LFC are able to success-
fully solve the problems with strong conditional
dependencies between attributes (INF2, PAR2-
4). However, of these two, Assistant-R per-
forms better, especially in the case of the hard-
est problem (PAR4). Note that LFC can solve
PARA4 if the depth of the lookahead is increased,
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Table 2 Basic description of artificial data sets

domain | #class | #atts. | #val/att. | # instances | maj.class (%) | entropy(bit)
INF1 3 12 2.0 200 36 1.58
INF2 3 21 2.0 200 36 1.58
TREE 2 11 2.0 200 57 0.99
PAR2 2 12 2.0 200 54 0.99
PAR3 2 13 2.0 200 54 0.99
PAR4 2 14 2.0 400 50 1.00

Table 3 Classification accuracy of the learning systems on artificial data sets

domain LFC Assistant-1 | Assistant-R | naive Bayes k-NN

INF1 86.0+5.1 90.1+3.5 88.81+3.8 91.6+3.1 89.0+3.6
INF2 67.1+6.3 55.449.8 68.7+7.8 32.1+4.5 56.8+6.3
TREE 75.8+5.4 79.245.7 78.846.2 69.01+5.9 68.2+5.3
PAR2 93.6+3.3 74.947.9 95.7+2.8 56.7+5.7 79.44+4.3
PAR3 84.1+10.1 65.61+11. 95.7+2.1 55.545.2 60.4+6.7
PAR4 69.4+13.8 59.3+6.3 94.8+1.6 55.1+3.4 61.94+3.8

however, the time complexity of the lookahead
increases exponentially with its depth. On the
other hand, Assistant-R solves all parity prob-
lems equally quickly.

e The information score of the naive Bayesian
classifier in the problems with strong condi-
tional dependencies between attributes is poor
which indicates that this classifier failed to find
any regularity in these data sets.

5.2.  Benchmark artificial data sets

Besides the artificial data sets from the previous
subsection, we used also the following benchmark
artificial data sets used by other authors (note
that results of other authors can not be directly
compared to our results as experimental condi-
tions (training/testing splits) were not the same):
BOOL: Boolean function defined on 6 attributes
with 10% of class noise (optimal recognition
rate is 90%). The target function is:

Y =(X1®X2)V(XsAXy) V(X5 AXg)

This data set was used by Smyth et al. [31]and
they report 67.241.7% of the classification ac-
curacy for naive Bayes, 82.54£1.1% for back-
propagation, and 85.940.9% for their rule-
based classifier.

LED: LED-digits problem with 10% of noise in
attribute values. The optimal recognition rate
is estimated to be 74%. Smyth et al. [31]
report 68.1+1.7% of the classification accu-

racy for naive Bayes, 64.64+3.5 for backpropa-
gation, and 72.741.3 for their rule-based classi-
fier. This data set can be obtained from Irvine
database[21].

KRK1: The problem of legality of King-Rook-
King chess endgame positions. The attributes
describe the relevant relations between pieces,
such as “same_rank” and “adjacent_file”. Orig-
inally the data included five sets of 1000 exam-
ples (1000 for learning and 4000 for testing) and
was used to test Inductive Logic Programming
algorithms[7]. The reported classification ac-
curacy is 99.740.1 %. We used only one set of
1000 examples (i.e. 700 instances for training).

KRK2: Same as KRK1 except that the only
available attributes are the coordinates of
pieces.  The same data set was used by
Mladeni¢[19]. The reported results are about
69% accuracy for her ATRIS system and 64%
for Assistant.

The basic description of data sets is provided

in Table 5 and results are given in Tables 6 and 7.
It is interesting that in the LED domain, the

naive Bayesian classifier and the k-NN algorithm

reach the estimated upper bound of the clas-
sification accuracy. This suggests that all at-
tributes should be considered for optimal classi-
fication in this domain. In this problem the at-
tributes are conditionally independent given the
class, therefore the good performance of the naive

Bayesian classifier is not surprising. However, in

the other three domains the performance of the

naive Bayesian classifier is poor, due to the strong
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Table 4 Average information score of the learning systems on artificial data sets

domain LFC Assistant-1 | Assistant-R | naive Bayes k-NN

INF1 1.2440.10 1.2440.06 1.2240.07 1.354+0.06 0.9440.04
INF2 0.861+0.14 0.504+0.18 0.761+0.13 0.074+0.03 0.331+0.06
TREE 0.4740.11 0.4740.08 0.474+0.09 0.214+0.04 0.174+0.04
PAR2 0.8440.06 0.361+0.12 0.831+0.03 0.084+0.04 0.284+0.03
PAR3 0.671+0.19 0.2240.17 0.80+0.03 0.054+0.03 0.10+0.03
PAR4 0.384+0.27 0.134+0.09 0.7940.03 0.054+0.02 0.10+0.03

Table 5 Basic description of some benchmark artificial data sets

domain | #class | #atts. | #val/att. | # instances | maj.class (%) | entropy(bit)
BOOL 2 6 2.0 640 67 0.91
LED 10 7 2.0 1000 11 3.33
KRK1 2 18 2.0 1000 67 0.92
KRK2 2 6 8.0 1000 67 0.92

Table 6 Classification accuracy of the learning systems on artificial data sets

domain LFC Assistant-1 | Assistant-R | naive Bayes k-NN

BOOL 89.8+1.6 89.8+1.6 89.8+1.6 66.61+2.5 89.8+1.6
LED 70.84+2.3 71.1+2.4 71.74+2.2 73.942.1 73.9+2.1
KRK1 98.7+1.2 98.6+1.2 98.61+1.2 91.6+1.4 92.24+1.9
KRK2 86.0+2.1 66.61+3.1 70.1£3.3 64.8+2.1 70.7+1.7

Table 7 Average information score of

the learning systems on artificial data sets

11

domain LFC Assistant-1 | Assistant-R | naive Bayes k-NN
BOOL 0.574+0.03 0.514+0.03 0.531+0.03 0.074+0.02 0.504+0.03
LED 2.1340.07 2.1140.06 2.1240.07 2.3340.05 2.2240.05
KRK1 0.874+0.04 0.8440.03 0.8440.03 0.60+0.02 0.3240.01
KRK2 0.5940.05 0.1240.05 0.1940.04 -0.03+0.02 0.124+0.02
conditional dependencies between attributes. The 5.3, Medical data sets

information score (see Table 7) shows that the
naive Bayesian classifier provides (on the average)
no information in the BOOL and KRK2 domains.

The performance of the different variants of As-
sistant is almost the same, except for the KRK2
domain, where the performance of Assistant-I is
poor (note that the default accuracy in KRK2
is 67%). The performance of Assistant-R and
the k-NN algorithm is significantly better (99.95%
confidence level). However, the information score
shows that both, Assistant-R and k-NN, are not
very successful in this problem. As expected,
without constructive induction it is not possible to
reveal regularities in the chess positions described
only with the coordinates of pieces. LFC is able
to construct important attributes in this domain,
which enables it to achieve significantly better re-

sults than the other algorithms.

We compared the performance of the algorithms

on several medical data sets:

e Data sets obtained from University Medical
Center in Ljubljana, Slovenia: the problem of
locating of primary tumour in patients with
metastases (PRIM), the problem of predicting
the recurrence of breast cancer five years af-
ter the removal of the tumour (BREA), the
problem of determining the type of the can-
cer in lymphography (LYMP), and diagnosis in
rheumatology (RHEU).

o HEPA: prognostics of survival for patients suf-
fering from hepatitis. The data was provided
by Gail Gong from Carnegie-Mellon University.

e Data sets obtained from the StatLog
database[18]: diagnosis of diabetes (DIAB) and
diagnosis of heart diseases (HEART). For the
DIAB data set, Ragavan & Rendell [27]report
78.8% classification accuracy with their LFC al-
gorithm. They also report poor performance of
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Table 8 Basic description of the medical data sets

domain #class | #atts. | #val/att. | # instances | maj.class (%) | entropy(bit)
PRIM 22 17 2.2 339 25 3.89
BREA 2 10 2.7 288 80 0.73
LYMP 4 18 3.3 148 55 1.28
RHEU 6 32 9.1 355 66 1.73
HEPA 2 19 3.8 155 79 0.74
DIAB 2 8 8.8 768 65 0.93
HEART 2 13 5.0 270 56 0.99

Table 9 Classification accuracy of the learning systems on medical data sets

domain LEC Assistant-I | Assistant-R | naive Bayes k-NN

PRIM 37.1+4.9 40.8+5.1 38.94+4.7 48.6+4.1 42.14+5.0
BREA 76.1+4.3 76.8+4.6 78.54+3.9 78.7+4.5 79.542.7
LYMP 82.44+5.2 77.0+5.5 77.0£5.9 84.71+4.2 82.61+5.7
RHEU 60.61+4.7 64.8+4.0 63.8+4.9 66.5+4.0 66.01+3.6
HEPA 79.0+5.3 77.245.3 82.3+5.4 86.1+3.9 82.61+4.9
DIAB 69.24+3.0 71.1+2.8 71.5+2.6 76.3+2.4 73.942.5
HEART 77.3+5.2 75.4+4.0 77.6+4.5 84.5+3.0 82.943.7

Table 10 Average information score of the learning systems on medical data sets

domain LFC Assistant-I | Assistant-R | naive Bayes k-NN

PRIM 1.0240.14 1.1940.11 1.074+0.11 1.6040.14 1.154+0.11
BREA 0.01+0.09 0.024+0.08 0.05+0.06 0.08+0.07 0.0240.02
LYMP 0.7940.10 0.62+0.09 0.61+0.09 0.794+0.09 0.534+0.08
RHEU 0.414+0.10 0.43+0.08 0.414+0.08 0.524+0.07 0.434+0.05
HEPA 0.194+0.14 0.13+0.09 0.2240.11 0.37+0.11 0.2140.05
DIAB 0.261+0.06 0.26+0.04 0.274+0.04 0.37+0.04 0.2440.02
HEART 0.524+0.10 0.454+0.07 0.46+0.07 0.641+0.06 0.461+0.04

several other algorithms without constructive
induction (up to 58%). However, our results
(see below) and results of the StatLog project
[18] show that the poor results of the other al-
gorithms in this domain are not due to the lack
of constructive induction. In our experiments,
on DIAB dataset, all classifiers perform equally
well, with the exception of the naive Bayesian
classifier which is significantly better.

The basic characteristics of the above medical
data sets are given in Table 8. The results of ex-
periments on these data sets are provided in Ta-
bles 9 and 10.

In medical data sets, attributes are typically
conditionally independent given the class . There-
fore, it is not surprising that the naive Bayesian
classifier shows clear advantage on these data
sets[12]. Tt is interesting that the performance of
the k-NN algorithm is good in these domains, al-
though worse than the performance of the naive
Bayesian classifier.

The information score (Table 10) for BREA
data set indicates that no learning algorithm was

able to solve this problem. This suggests that the
attributes are not relevant.

Both versions of Assistant have similar per-
formance, except in the HEPA domain where,
Assistant-R has significantly better performance
(99.95% confidence level). A detailed analysis
showed that in this problem RELIEFF discov-
ered a significant conditional interdependency be-
tween two attributes given the class. These two
attributes score poorly when considered indepen-
dently. That is why Assistant-I was not able to
discover this regularity in data.

On the other hand, other (redundant) at-
tributes are available that contain similar informa-
tion as these two attributes together. This is the
reason why the naive Bayesian classifier performs
better. We tried to provide the naive Bayesian
classifier with an additional attribute by joining
the two conditionally dependent attributes. How-
ever, the performance remained the same.

LFC achieved significantly better results than
the other two inductive algorithms in the LYMP
domain, where constructive induction seems to



be useful. However, LFC performed significantly
worse in the RHEU domain while in the other
domains the three inductive algorithms perform
equally well.

5.4. Non-medical real-world data sets

We compared the performance of the algorithms

also on the following non-medical real world data

sets (SOYB, IRIS, and VOTE are obtained from

the Irvine database[21], SAT is obtained from the

StatLog database [18]):

SOYB: The famous soybean data set used by
Michalski & Chilausky [17].

IRIS: The well known Fisher’s problem of deter-
mining the type of iris flower.

MESH3,MESH15: The problem of determining
the number of elements for each of the edges
of an object in the finite element mesh design
problem[6]. There are five objects for which
experts have constructed appropriate meshes.
In each of five experiments one object is used
for testing and the other four for learning and
the results are averaged. The results reported
by Dzeroski [7] for various ILP systems are
12% classification accuracy for FOIL, 22% for
mFOIL and 29% for GOLEM and the result re-
ported by Pompe et al. [23] is 28% for SFOIL.
The description of the MESH problem is appro-
priate for ILP systems. For attribute learners
only relations with arity 1 (i.e. attributes) can
be used to describe the problem. Note that in
this domain the training/testing splits are the
same for all algorithms. The testing methodol-
ogy 1s a special case of leave-one-out, therefore,
the results in the tables for this problem have
no standard deviations.
Quinlan [26] reports results of some ILP sys-
tems that achieved over 90% in that domain
testing on positive and negative instances.
However, those results are misleading. Each
positive instance has ten negative instances in
average. Therefore we have 11 copies of the
same instance and any classification of this in-
stance is correct at least for 9 out of 11 copies
which gives 82% classification accuracy for a
classifier that always classifies into wrong class.
MESH3 contains the three basic attributes
from the original database and ignores the rela-
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tional description of objects. Therefore, in the

MESH3 domain attribute learners are given less

information than ILP learners.

MESH15 contains, besides the 3 original at-

tributes, 12 attributes derived from the rela-

tional background knowledge. In this prob-
lem, attribute learners have advantage as they
are already provided with additional attributes.

The provided description of objects for ILP

learners is actually more informative. In princi-

ple, the same attributes and a number of addi-
tional attributes could be derived by (extremely
cleaver) ILP learners from the relational de-
scription of the background knowledge. How-
ever, this is a fairly complex task. Therefore
attribute learners with MESH15 data set have

better chances than ILP learners to reveal a

good hypothesis.

SAT: The database consists of multi-class spec-
tral values of pixels in 3 x 3 neighborhoods in
a satellite image, and the classification of the
central pixel in each neighborhood. The results
of the StatLog project[18] are 90.6% classifica-
tion accuracy for the k-NN algorithm, 86.1%
for backpropagation, 85.0% for C4.5, 84.8% for
CN2 and 69.3% for the naive Bayesian classi-
fier (using relative frequencies and not the m-
estimate of probabilities).

VOTE: The voting records are from a session
of the 1984 United States Congress. Smyth
et al. [31] report 88.9% of classification accu-
racy for the naive Bayesian classifier, 93.0% for
backpropagation and 94.9% for their rule-based
classifier.

The basic characteristics of non-medical real
world data sets are presented in Table 11. Ta-
bles 12 and 13 give the results. On SOYB and
IRIS data sets, all classifiers perform equally well.
The results of the naive Bayesian classifier indicate
that the attributes are conditionally relatively in-
dependent in these data sets, which is in agree-
ment with previously published results.

On the SAT data set, k-NN significantly out-
performs other algorithms which is in agreement
with the results of the StatLog project [18]. How-
ever, the naive Bayesian classifier with the m-
estimate of probabilities reaches the classification
accuracy of inductive learning algorithms. The
results of the naive Bayesian classifier used in the
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Table 11 Basic description of the non-medical real-world data sets

domain #class | #atts. | #val/att. | # instances | maj.class (%) | entropy(bit)
SOYB 15 35 2.9 630 15 3.62
IRIS 3 4 6.0 150 33 1.59
MESH3 13 3 7.0 278 26 3.02
MESH15 13 15 7.1 278 26 3.02
SAT 6 36 10.0 6435 24 1.96
VOTE 2 16 2.0 435 61 0.96

Table 12 Classification accuracy of the learning systems on non-medical real-world data sets

domain LFC Assistant-1 | Assistant-R | naive Bayes k-NN
SOYB 83.61+4.8 91.94+2.5 89.6+2.7 89.44+1.6 84.0+1.9
IRIS 95.0+3.8 95.7+3.7 95.24+2.6 96.6+2.6 97.0+2.1
MESH3 27.4% 32.7% 32.0% 33.5% 33.8%
MESH15 39.2% 41.0% 42.4% 34.5% 35.3%
SAT 81.940.9 77.840.7 81.5+0.9 80.1+0.6 90.51+0.6
VOTE 93.24+2.6 95.9+1.5 95.5+1.5 90.1+1.8 92.5+2.0

Table 18 Average information score of the learning systems on non-medical

real-world data sets

domain LFC Assistant-1 | Assistant-R | naive Bayes k-NN
SOYB 3.01+0.13 3.10+0.10 3.01+0.10 3.274+0.08 2.6840.08
IRIS 1.4640.08 1.4140.06 1.4340.06 1.4940.05 1.3240.04
MESH3 0.51 bit 0.57 bit 0.56 bit 0.65 bit 0.39 bit
MESH15 0.67 bit 0.74 bit 0.70 bit 0.56 bit 0.54 bit
SAT 1.9240.02 1.684+0.02 1.8440.02 1.934+0.08 1.8640.01
VOTE 0.814+0.05 0.8440.03 0.83+0.03 0.75+0.04 0.67+0.03

StatLog project are much worse. Cestnik [2] has
shown that the m-estimate significantly increases
the performance of the naive Bayesian classifier
which is also confirmed with our experiments.

Both versions of Assistant perform the same
on all data sets except on the SAT data set where
Assistant-R and LFC achieve significantly better
result (99.95% confidence level). This result con-
firms that RELIEFF estimates the quality of at-
tributes better than the information gain.

On the VOTE data set the naive Bayesian clas-
sifier is the worst, while both versions of Assis-
tant are comparable to the rule based classifier by
Smyth et al. [31].

The most interesting results appear in the
MESH domains. Although attribute learners in
MESH3 have less information than ILP systems,
they all outperform the results by ILP systems
as reported by Dzeroski [7] and Pompe et al.
[23]. With 12 additional attributes in MESH15,
the results of inductive learners are significantly
improved. All inductive learning systems signif-
icantly outperform the naive Bayesian classifier
and the k-NN algorithm.

A detailed analysis showed that this excellent
result by both versions of Assistant is due to the
use of the naive Bayesian formula to calculate the
class probability distribution in “null” leaves (see
Section 3). Namely, for this problem it often hap-
pens that testing instances fall into a “null” leaf
because there are no training instances that have
the same values of significant attributes as the
testing instances. The naive Bayesian classifier
efficiently solves this problem.

LFC generates no “null” leaves as all con-
structed attributes are strictly binary with values
true and false. Therefore, the classification of ob-
jects with a different value of the original attribute
than all training instances always proceeds to the
branch labeled false. The effect of this strategy is
that, for a given testing instance, the correspond-
ing leaf contains training instances with same or
similar values for most of the attributes that ap-
pear on the path from the root to the leaf. This
strategy also works well in MESH problems.

6. Discussion

Note that the null leaves of both versions of Assis-
tant had no influence on the performance on arti-



ficial data sets as there is no missing values in the
data. Also, in MESH15 problem the performance
of LFC is good although it does not generate null
leaves. Therefore, the use of null leaves is not the
crucial difference between Assistant and LFC.

Equation (3) shows an interesting relation be-
tween the RELIEF’s estimates and impurity func-
tion. RELIEF can efficiently estimate continu-
ous and discrete attributes. The implicit normal-
ization in eq. (3) enables RELIEF to appropri-
ately deal with multivalued attributes. However,
if Assistant-I would use eq. (3) instead of the in-
formation gain, it would still be myopic. For ex-
ample, in PAR2-4 problems, eq. (3) would esti-
mate all attributes as equally non-important.

Therefore, the reason of the success of
Assistant-R is in the “nearest instances” heuris-
tic which influences the estimation of probabil-
ities. This heuristic enables RELIEF to detect
strong conditional dependencies between the at-
tributes which would be overlooked if the esti-
mates of probabilities would be done on randomly
selected instances instead of the nearest instances.

RELIEFF is an efficient heuristic estimator of
attribute quality that is able to deal with data sets
with conditionally dependent and independent at-
tributes. The extensions in RELIEFF enable it to
deal with noisy, incomplete, and multi-class data
sets. With increasing the number (k) of near-
est hits/misses the correlation of RELIEFF’s esti-
mates with other impurity functions also increases
unless k is greater than the number of instances
in the same peak of the instance space. The study
reported in [14] showed that RELIEFF has an ac-
ceptable bias with respect to other measures when
estimating attributes with different number of val-
ues.

The myopia of current inductive learning sys-
tems can be partially overcome by replacing
the existing heuristic functions with RELIEFF.
Assistant-R, a variant of top down induction of
decision trees algorithms that uses RELIEFF for
estimating the quality of the attributes, signif-
icantly outperforms other classifiers in domains
with strong conditional dependencies between at-
tributes. The myopia of other inductive learners
may cause them to overlook significant relations.
While this can be easily demonstrated with ar-
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tificial data sets, it was also shown in two real
world problems: HEPA and SAT. In these data
sets RELIEFF detected significant conditional in-
terdependencies between attributes, that resulted
in a significantly better result by Assistant-R than
the result by Assistant-I.

One feature of RELIEF not addressed in this
paper is that if the same attribute is replicated
in a data set, all replications will get the same
estimate. With the increasing number of replica-
tions the quality of estimates will descrease as the
replicated attribute affects the distances between
instances.

For constructive induction LFC uses a limited
lookahead to detect significant conditional depen-
dencies between the attributes. LFC shows simi-
lar advantage over other algorithms as Assistant-
R does. In one artificial problem (KRK2) and
one real world problem (LYMP) LFC performs
significantly better due to constructive induction.
However, in some cases the constructive induction
may spoil the results as is the case with RHEU
data set. LFC performs well in most of the prob-
lems, which suggests that the limited lookahead
is a good search strategy in most real-world prob-
lems. The lookahead, however, should have a rea-
sonable limit as the time complexity exponentialy
increases with the lookahead depth.

Although RELIEFF may overcome the myopia,
it is useless in Assistant-R when the change of rep-
resentation is required. In such cases the construc-
tive induction should be applied. For example, in
the KRK2 problem, Assistant-R achieves good re-
sult which can not be further improved without
constructive induction. A good idea for construc-
tive induction may be to use RELIEFF instead of
or in the combination with the lookahead.

The naive Bayesian classifier has obvious ad-
vantage in domains with conditionally relatively
independent attributes, such as medical diagnos-
tic problems. In such domains, the naive Bayesian
classifier is able to reliably estimate the condi-
tional probabilities and is also able to use all at-
tributes, i.e all available information. It would be
interesting to appropriately combine the power of
RELIEFF and the naive Bayesian classifier.

Current ILP systems [20] are not able to use the
attributes appropriately. This was demonstrated
in the MESH3 domain where all attribute learn-
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ers outperformed existing ILP systems. To enable
ILP systems to deal with the attribute-value rep-
resentation, a combination with the (semi) naive
Bayesian classifier could be useful. On the other
hand, current ILP systems use greedy search tech-
niques and the heuristics that guide the search
are myopic. Pompe and Kononenko [24] imple-
mented an adapted version of RELIEFF in the
FOIL like ILP system called ILP-R and prelemi-
nary experiments show similar advantages of this
system over other ILP systems as Assistant-R has
over Assistant-I.

7. Conclusion

RELIEFF is an efficient heuristic estimator of at-
tribute quality that is able to deal with data sets
with conditionally dependent and independent at-
tributes, with noisy, incomplete, and multi-class
data sets. The myopia of current inductive learn-
ing systems can be partially overcome by replac-
ing the existing heuristic functions with RELI-
EFF. The acceptable increase in computational
complexity may in certain domains payoff with
eventual discovery of strong conditional depen-
dencies between attributes, which cannot be de-
tected using the myopic impurity measure to guide
the greedy search.

The experimental results indicate that in the
majority of real world problems the myopia has
no or only marginal effect. One may wonder
whether myopia is really worth much attention
at all. However, when faced with a new data
set it 1s unreasonable to try only myopic algo-
rithm unless it is know in advance that in the
data set there are no strong conditional depen-
dencies between attributes. Any serious applica-
tion of machine learning on new data should try
to discover as much regularities in the data as pos-
sible. Therefore, non-myopic approaches, such as
one described in this paper, should be used as in-
dispensable tools for analysing the data.
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