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The reliability of the electric power system is becom-
ing an increasingly important issue for utility planners
because of the recent increase in load demand growth
and the limited amount of new generation that is cur-
rently planned.

The primary function of an electric utility is to pro-
vide energy to satisfy the system load demand as
economically as possible while maintaining a
reasonable level of reliability. If a utility has no inter-
connections to outside systems and operates in a total-
ly isolated environment, the only options available for
maintaining system reliability are to upgrade existing
equipment or to add new generating units and transmis-
sion facilities. If a utility has ties to neighboring sys-
tems, which is usually the case, it will rely on these
systems to provide some of the reserves needed for
reliability. This sharing of reserves takes advantage of
the load and outage diversities that may exist between
neighboring systems, and allows each utility to main-
tain the desired level of reliability with lower installed
reserves compared to isolated operation. The result is
reduced reserve costs.

In the past, calculating the reliability of a system with
many interconnected areas has been difficult dueto the
lack of accurate and efficient computer models. Most of
the system reliability models currently used are based
on the traditional analytical approach of convolving the
generation outages with the loads to determine an ex-
pected number of outages per year. While this techni-
que works well for single-area systems, it requires
excessive computation time when expanded to several
areas. Modeling a multi-area system within a
reasonable amount of computer time mandates
numerous approximations and assumptions; these can
often lead to inaccurate results.

Monte Carlo Simulation
for Reliability Evaluation

The Monte Carlo approach to reliability evaluation
avoids these problems. It provides a detailed and ac-
curate modeling of the system with computer running
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times that are significantly less than those of other
methods for studying multi-area systems.

In a Monte Carlo simulation, a series of scenarios or
snapshots of the system is obtained by hourly random
drawings on the status of each generating unit and
transmission link and determining the hourly load
demand. The desired capacity margins or other
measures of performance are calculated for the hour,
with the process repeated for the remaining hours in
the year. Annual indices are calculated from the year’s
accumulation of data generated by the simulation
process. The year continues to be simulated, with new
sets of random events, until obtaining statistical con-
vergence of the desired indices.

There are two types of Monte Carlo simulation ap-
proaches:

m Nonsequential

m Sequential.

Rather than progressing through time chronological-
ly or sequentially, a nonsequential simulation process
considers each hour to be independent of every other
hour. Consequently, nonsequential simulation cannot
accurately model issues that involve time correlations.
Therefore, the modeling of unplanned outage
postponements or unit starting failures and the calcula-
tion of time-related indices, such as frequency and
duration, are impossible with this technique.

A sequential simulation, however, steps through time
chronologically, recognizing that the status of a piece
of equipment is not independent of its status in ad-
jacent hours. Equipment forced outages, for example,
are modeled by taking the equipment out of service for
contiguous hours, with the length of the outage period
determined from the equipment’s mean time to repair.
The sequential simulation can model any issues of con-
cern that involve time correlations and can be used to
calculate indices such as frequency and duration.

The Multi-Area Reliability Simulation (MARS) pro-
gram is based on a sequential Monte Carlo simulation.
The first phase of the program was funded by the
Empire State Electric Energy Research Corporation
(ESEERCO) to enable New York State utilities to analyze
comprehensively the reliability of the interconnected
electric power generation system in New York and
neighboring areas. The version of the program current-
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iy being tested by the New York Power Pool models 5
pools, 15 areas, and 1,300 generating units, with up to
10 partial outage states modeled for each unit.

Reliability Measures Available

from Monte Carlo Simulation

Monte Carlo simulation can be used to calculate the
traditional reliability indices, including:

e Daily loss-ol-load expectation (LOLE), days per

year

w Hourly LOLE, hours per vear

m Loss-of-energy expectation (LOEE), MWh per year

w Expectednumber of days per year that emergency

operating procedures would be initiated.

Because a sequential Monte Carle simulation steps
through time chronologically while modeling the random
forced outages on the generating units and transmission
equipment, time-correlated indices such as the frequency
of system outages (outages per year) and average dura-
tion of the cutages (hours per outage) can also be com-
puted on both a single-area and multi-area basis.

in addition to calculating the expected values for the
different reliability indices, a Monte Carlo simulation
can provide probability distributions for the various
indices (see Figure 1). The probability distributions are
developed from the results of repeated system simula-
tions using a different combination of random forced
outages each time. The distributions show the yvear-to-
year variation in the reliability indices that a system
would actually experience over time, rather than just
the single average value. This gives the planner addi-
tional information to use in measuring the reliability of
the system.

Expected Values Versus
Probability Distributions

The expected value of a reliability index is the
average of the observed values of the index over a
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sufficiently long period of thme. It is very likely that the
index for a given vear will never exactly equal the
expected value; some years it will be greater and other
yvears less depending on the random foreed outages
that actually occur during the year. The expected value
contains no information as to how much the index will
vary from vear to vear. Historically, expected value
reliability indices have been widely accepted due to
their beingthe only measures readily available from the
analytical models generally used.

The probability distributions that are available from a
Monte Carlo simulation show the actual annual varia-
tions that a system can be expected to experience. If
the variation about the expected value is large (as
shown by the distribution), it will be difficult for the
consumer or the utility to detect small to moderate
changes in the expected value. This suggests that a
confidence interval on the reliability index may be a
more meaningful measure of reliability than the ex-
pected value. In practice, alternatives with substantial-
ty overlapping confidence intervals would be viewed as
vielding levels of reliability that are indistinguishable
for all practical purposes.

An exampie of a probability distribution available
from a Monte Cario simulation is shown in Figure 1. The
distribution enables the planner to address the ques-
tion, "How many days of outage will actually be ex
perienced inagiven year?” From the system’s expected
value of 2.6 days per year, one might surmise that 40
percent of the years will experience 2 days of outage,
while 60 percent will experience 3 days of outage. On
the other hand, the system might experience 26 days of
outage one year out of every 1{), and no ocutages during
the other U years. Both scenarios give an expected
value of 2.6 days per year, but the expected value index
does not provide any information as to the actual yearly
variation that will be experienced.

When simulating the year 1,000 times, the results
show that more that 25 percent of the time the system
will not experience any days of outage during that year.
However, there will also be years in which the system
will experience as many as 16 days of outage in a year.

This type of information is essential for a true under-
standing of the reliability of a system. A year with 16
days of outage will certainly be remembered much
longer by the affected parties and, most likely, have a
much severer economic impact than those years
having {ust a couple of occurrences. If a utility can take
measures to minimize the occurrence of many outages
in a given year, even if the long-term average remains
the same, they may be very well worth taking.

Emergency Operating Procedures

The daily LOLE indicates the expected number of
days per vear when the available capacity at the time
of daily peak is less than the load. This does not neces-



sarity imply, however, that a utility will not be able to
satisfy the load demand; there are steps a utility can
enact, known as emergency operating procedures
(EQPs), as the reserve conditions on the system ap-
proach critical levels.

Emergency operating procedures consist of load con-
trol and generation supplements that can be imple-
mented before the load has to be actually
disconnected. Load control measures might include
disconnecting interruptible loads, voltage reductions,
and public appeals to reduce demand. Generation sup-
plements might include operating units at emergency
ratings, initiating emergency purchases, and reducing
operating reserves.

The use of emergency operating procedures in
reliability evaluations permits a system’s reliability to
be stated in physical terms that relate to the way in

which the system would actually be operated. informa’

tion contained in the distributions available from the
Monte Carlo simulation also can be used to evaluate the
emergency operating procedures that can be enacted
a limited number of times in a year. An example of this
might be an interruptible load for which the contract
specifies a limit on the number of allowable interrup-
tions.

For the sample system, what would be the impact on
the LOLE if an emergency operating procedure were
available that could cover any generating capacity
deficiency, but could only be instituted twice duringthe
year? The answer can be found in the distribution of
daily LOLE shown in Figure 1.

Using expected values, the emergency operating
procedure would be expected to reduce the LOLE from
2.6 to 0.6 days per year. But there are years in which
the LOLE is less than 2 days per year before emergency
operating procedures are instifuted; in these years, the
emergency operating procedure would have an impact
of less than 2 days.

The actual effect of the emergency operating proce-
dure on the LOLE can be determined from the informa-
tion in the probability distribution by calculating a new
expected value based only on the simulated years with
3 or more days per year LOLE. This calculation results
in an LOLE of 1.3 days per year, after the emergency
operating procedure, In terms of its effect on the LOLE,
the emergency operating procedure that can be in-
stituted twice a year is only worth 1.3 days per vear
reduction in LOLE on this system. This impact would
he very difficult to evaluate correctly with a traditional
analytical model.

Evaluation of Benefits

from Generation Reserve Sharing
Generation reserve sharing is one solution many

utilities are adopting to maintain system reliability. The

sharing of reserves allows each utility to maintain a

desired level of reliability with less installed capacity.
However, this approach can be very computer-inten-
sive when using traditional methods for calculating the
reliability of a system that consists of many intercon-
nected areas.

Table 1. Sample system area capacities and peak loads
(Pool 1 is Areas 1 through 11.)

Area Capacity (MW)  Peak Load(MwW)
1 5300 2,800
2 900 1,300
3 6,100 2600
4 800 1,200
5 750 L1880
6 LA 1900
7 3500 2,100
8 1900 280
9 100 1,280
10 7,500 8,500
i 3,300 3,700
12 22,00 19,00
13 2400 21,00
4 21.00 18.00

The following example demonstrates the applica-
tion of Monte Carlo simulation in evaluating the
reliability benefits of sharing reserves in a multi-area
environment. The data for the sample system Is
based on actual utility data but has been modified for
this example and is not intended to reflect the
reliability of any actual utility systems. The sample
system comprises 15 areas and 5 pools. The first pool
consists of 11 areas (Area | through Area 11), and the
remaining pools have one area each (Area 12 through
Area 15). The entire system has approximately 1,100
generating units.

The installed capacities and peak loads for the areas
are listed in Table 1. Within Pool 1, the locations of the
generation and load are such that some areas have

Figure 2. Sample system configuration
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significantly less capacity than load and must import
much of their generation from neighboring areas.

The area configuration of the sample system is
shown in Figure 2, together with the transfer limits (in
MW) of the interfaces between the areas. If an area had
excess resources available, they were allocated first to
the areas in Pool | (Area | through Area 11), followed
by the remaining pools.

The MARS program evaluated the reliability of the
sample system. The reliability benefits resuilting from
Pool 1's interconnections with the surrounding pools
were determined by first studying Pool 1 as an isolated
pool, without ties to the other four pools. The reliability
of Pool 1 was then evaluated as part of the 5-pool,
{5-area system.

Table 2 shows the daily LOLE for the 11 areas of Pool
1. Two measures are shown for each area. The first
displays the reliability of the areas assuming no inter-
connections with the other areas in the pool The
second shows the reliability of the areas after receiving
a%‘sisiance from areas with surplus capacity. The iso-
lated values show the wide diversity in reliability that
would be expected from the area capacities and loads
showninTable 1. When the interconnections withinthe
pool are considered, all of the areas except for two are
at about the same level of reliability. Areas 10 and 11
remain the most unreliable because of the transfer
limitations into those areas.

The reliability of the 5 pools was then evaluated
using the full 15-area model. Theresults in Table 3 show
the reliability of the individual pools before and after
the interconnections that exist between them are taken
into account, Because of the available assistance from
the neighboring pools, the reliability of Pool Limproves
from almost 29 days per year to less than 8 days per
vear. Pools 3 and 5 also experienced a similar improve-
ment in reliability on an interconnected basis.

Table 2. Area and pool daily LOLE,
hno exter :;dl interc an;wgm)m )

[

lays per vear {Pool 1

Areg Capocity (MW)  Peak Load (MW)
Area 0.0 .0
Arescr 2 3369 8.0
Arec 3 12 0.0
Aracr 4 352.2
Area b 365.0
Area s 133.4
Area 7 13.8
Arecd 540
Arga 9 3650

Areq 10 202.5
Areg 1l 143.4
Pool
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Figure 3. Pool benelits of genera

fion reserve sharing

MARS also calculated the daily LOLE at different
user-specified margin states to simulate the reliability
henefits of emergency operating procedures, Assuming

that 2,000 MW of emergency relief is avallable in each
pool, the reliability of Pool 1 improves from 7.8 10 1.2
days per year.

Figure 3 summarizes the reliability of Pool Lin terms
of the probability distributions, A ce to Pool 1

ssistan
from surrounding pools improves its reliability from
almost 29to less than 8 days per vear. In fact, atan LOLE
of 8 days per year, Pool 1 might be expected to actually
disconnect load about 1 day per vear alter enacting
emergency operating procedures, These results clearly
demonstrate the rellability benefits of reserve sharing
between the pools.

A major problem with many existing multi-area
reliability models is the excessive computation time
rcqmrvd when more than a few areas (typically four or
re studied. Computer running times can be a
function of many variables, such as the total number of
generating units, the number of areas, the number of
units in each area, the number of interconnections
hetween areas, the strength of these interconnections
and the reliability of the areas and the system.

For systems composed of a small number of areas
(four or less), the analytical technique may have
shorter computer running times. However, as the num-
ber of areas increases, the running time of the analytical
approach increases exponentially, resulting in very
fong running times for systems with five or more areas.
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Figure 4. Comparative running times

Figure 4 gives a good indication of the computer time as
a function of the interconnected system size by showing
the relative computer time versus the number of areas
studied for the two different modeling techniques.

With Monte Carlo simulation, the computer time for a
single replication is approximately proportional to the
total number of generating units, and only slightly a func-
tion of the number of areas and interconnections. How-
ever, the number of replications required for statistical
convergence is affected by the reliability of the system; in
general, the more reliable the system, the greater the
amount of simulated history that is required for stable
statistical results. This is offset by the fact that the need
for accuracy is most important for unreliable systems.
Generally, it makes little difference if the system expects
an outage every 100 years or one every 200 years. How-
ever, it is important to know if there will be 10 outages per
year or 20 outages per year.

The nature of the system being studied also influences
the rate of convergence. Large systems that are not
dominated by the status of a few large generators tend to
converge after fewer replications than smaller systems
that are similarly dominated. This is true because the
reliability performance of a large, finely-divided system
has little variation from year to year. compared to a
system with relatively few generating units. As a result.
the computer time required for convergence of the
reliability measures is roughly the same for small and
large systems. Consequently, Monte Carlo simulation
tends to be more computer-time effective than the analyti-
cal methods for large systems.

The large system used in the example was composed
of 15 areas and 1,100 generating units. Forced outages
were modeled with up to four capacity states for each
unit. In addition to calculating daily LOLE, the program
also calculated hourly LOLE, unserved energy (LOEE) and
frequency and duration. The impact of emergency operat-
ing procedures was calculated at 10 different margin
states. The Pool 1 LOLE converged to a standard error of
8 percent in 55 CPU minutes on a VAX mini-computer.
Operation on an IBM mainframe would be about five times
faster.

Summary

Monte Carlo simulation is an effective method for cal-
culating the reliability of systems that consist of five or
more interconnected areas. In addition to being able to
study systems that previously could not be represented
in detail because of the excessive computer running time
of existing models, the Monte Carlo simulation provides
additional information on the reliability measures in the
form of the probability distributions. Results obtained
from the sample system indicate the importance of in-
cluding the benefits derived from the utility’s intercon-
nections with neighboring systems in the reliability
evaluation.
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