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Understanding LMPs 
 

 

6.0 Locational marginal price 
 

The following paper provides good additional insight. 

T. Organogianni and G. Gross, “A General Formulation for LMP 

Evaluation,” IEEE Trans. On Power Systems, Vol 22, No 3, Aug 

2007. 

 

Armed with the envelope theorem, we may now identify the 

meaning to (17), which is repeated here for convenience: 
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Equation (17) gives the change in the optimal value of the 

objective function due to a small change in the parameter Pdk.  

 

In other words, if we solve the optimization problem with 

Pdk=Pdk0, obtaining G*(Pdk0), and then resolve the optimization 

problem with Pdk=Pdk0+1, obtaining G*(Pdk0+1), then  
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We call 
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 the LMP for bus k, that is, 
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Written slightly different, it is 
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And (25) show us a very useful way to think about LMPs. They 

consist of three components: 



 2 

component Congestion                                     

component Loss                                      

componentEnergy                 :
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We discuss each one of these terms in what follows. 

 

7.0 Energy component 
 

We are considering the components of the LMP at a particular bus 

k. The first component is the energy component, represented by λ.  

 

To gain better understanding of exactly what this is, we will 

neglect losses in our original formulation (14), resulting in 
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Rewriting the equality constraint in (27) so that the function of 

decision variables is on the left-hand-side and constants on the 

right-hand-side, we have 
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Now write the Lagrangian function: 
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or  
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Notice that λ is the Lagrange multiplier (or dual variable) on the 

power balance equality constraint. This immediately gives us an 

interpretation of λ.  

 

The energy component λ of the LMP is the increase in the 

objective function (in this case, cost per hour) if demand 

PD,tot increases by 1 unit. 

 

Without losses, the LMP expression becomes (from (29)): 
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The summation is the congestion component. If there is no 

congestion, then  
 kLMPloadk :      (32) 

Equation (32) makes the interesting point that, if we ignore losses, 

and if there is no congestion, then the LMP will equal to λ, and this 

will be true for every load bus in the network. 

 

One last comment here. It is worthwhile to identify what 

determines λ. We may gain insight to this via the first order 

condition (16) which, without losses, becomes 
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Solving for λ, we obtain: 
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Under the condition of no congestion, then 

ksgenk  :      (35) 

What does this mean?... 

 

To understand what this means, it is important to understand that 

Pgk for which we differentiate to obtain (35) must be “regulating,” 

i.e., it cannot be at its limit. We could have exposed this idea more 

clearly by including constraints on Pgk in the optimization problem 

formulation, in which case we would have obtained corresponding 

terms in the objective that would have vanished for regulating units 

and would have contributed for non-regulating units.  

 

Now consider how an electricity market works. Each generation 

owner offers in their sk with a corresponding range. The algorithm 

selects the lowest offer, and takes the full range of that offer, and 

then selects the next lowest offer, and then the next, and so on until 

the demand is met. Figure 1 illustrates. 
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Fig. 1 

The only unit that is selected, and is regulating, is unit 5. This is 

the unit for which λ=sk. It is the unit that will pick up the extra 

demand when the demand is increased by 1 unit. We say that unit 5 

is “on the margin.”  

8.0 Loss component 
 

Consider the expression for LMP again, from (25) 
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Assuming no congestion, we have 
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When we increase the demand at bus k by one unit, the losses will 

increase due to more current flowing through the network. 

Therefore the term 
dk

loss

P

P
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 will be positive. This results in each bus 

seeing a higher LMP than that set by the energy component λ.  

 

For a particular bus k, the increase in LMPk beyond λ will depend 

on how an increase in that buses demand Pdk would be 

compensated. The way it would really be compensated is that the 



 6 

marginal unit would increase its generation. This would require 
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9.0 Congestion component 
 

Finally, we reconsider the expression for LMP once again, from 

(25) 
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At this point, our interest is the last term. Let’s ignore the losses, 

resulting in 
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The summation in (37) will contain zero terms for all circuits j for 

which flow is not at the rating, i.e., the only non-zero terms in the 

summation will be for circuits that are at their rating, i.e., that are 

congested. Let’s consider that there is only one such circuit in the 

network, circuit 5. Then 

kk tLMPloadk 55:      (38) 

                                                 
1 I have placed this reference on the web page. It is an excellent paper on LMP calculation. 
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The Lagrange multiplier (dual variable) μ5 is on the flow constraint 

for circuit 5, and it will always be nonnegative. On the other hand, 

t5k, the generation shift factor, representing the change in flow on 

circuit 5 for an increase in injection at bus k, may be positive or 

negative. Thus we see that congestion, although usually increasing 

LMPs for most buses, can also decrease LMPs under certain 

conditions. 

 

We will study the effects of congestion on LMPs in some depth in 

the next set of notes. 

 
                                                 
[1] Eugene Litvinov, Tongxin Zheng, Gary Rosenwald, and Payman Shamsollahi, “Marginal Loss 

Modeling in LMP Calculation,” IEEE Transactions On Power Systems, Vol. 19, No. 2, May 2004. 


