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Abstract— This paper presents a description of a Mixed 

Integer Programming (MIP) solution for solving the PJM Unit 
Commitment problem.   Included is a description of the Day-
ahead market clearing problem and the Reliability Analysis 
problem.  This is followed by an overview of the MIP 
development process and some selected comparisons with our 
previously existing Lagrangian Relaxation (LR) algorithm.  The 
paper describes many of the inherent problems associated with 
MIP solutions and illustrates how these issues were dealt with to 
provide a fast, accurate, and robust MIP solution. 
 

Index Terms—Electricity market, Power Generation Dispatch, 
Mixed Integer Programming, Unit Commitment 

I.  INTRODUCTION 

AREVA’s T&D division has developed a Mixed Integer 
Programming (MIP) solution to the Unit Commitment 
problem for use in Day-ahead market clearing and Reliability 
Analysis studies at large Regional Transmission Organizations 
(RTOs).  This implementation has been tested and refined for 
over a year and was put into production use at PJM in August, 
2004 [1].   

The benefits of the MIP formulation compared to the 
Lagrangian Relaxation (LR) include: 1) Global optimality. 2) 
a more accurate measure of optimality, 3) improved modeling 
of security constraints, and 4) enhanced modeling capabilities 
and adaptability.  

Another major benefit in using a MIP formulation is that 
the developer’s focus is on problem definition (i.e. 
codification of the requirements) rather than algorithmic 
development.  Addition of new constraints and variables does 
not require continual enhancement of complex scheduling 
methods (e.g. addition of new LR multipliers).  Even 
relatively simple ideas such as unit ramping constraints can 
result in extensive research and algorithmic development in 
case of the LR [2], while the corresponding MIP formulation 
is straightforward. 

There are many issues associated with the MIP that, if not 
dealt with carefully, can lead to a poor implementation.  
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These include: increased memory requirements, large 
variations in run times, and complex constraint formulations.  
This paper describes how we have dealt with these issues to 
provide a fast, accurate, and robust MIP solution. 

The following sections describe the motivation for the MIP 
development, a brief description of the RTO Unit 
Commitment problem, an overview of the MIP method and 
some selected comparisons with our Lagrangian Relaxation 
(LR) algorithm.  These are followed by a description of some 
newly developed MIP-Based models (e.g. combined cycle 
modeling).  

It is not the intent of this paper to provide detailed 
descriptions of LR [3] and MIP algorithms as these are well 
documented elsewhere. 

II.  MOTIVATION FOR MIP DEVELOPMENT 

As the operator of the world’s largest wholesale market for 
electricity, PJM must ensure that market-priced electricity 
flows reliably, securely and cost-effectively from more than 
1100 Generating resources to serve a peak load in excess of 
100,000 MW.  In doing so, PJM must balance the market’s 
needs with thousands of reliability-based constraints and 
conditions before it can schedule and commit units to 
generate power the next day.  The PJM market design is based 
on the Two Settlement concept [4].  The Two-Settlement 
System provides a Day-ahead forward market and a real-time 
balancing market for use by PJM market participants to 
schedule energy purchases, energy sales and bilateral 
contracts.  Unit commitment software is used to perform 
optimal resource scheduling in both the Day-ahead market 
and in the subsequent Reliability Analysis.  

As the market was projected to more than double its 
original size, PJM identified the need to develop a more 
robust approach for solving the unit commitment problem.  
The LR algorithm was adequate for the original market size, 
but as the market size increased, PJM desired an approach 
that had more flexibility in modeling transmission constraints.  
In addition, PJM has seen an increasing need to model 
Combined-cycle plant operation more accurately.  While these 
enhancements present a challenge to the LR formulation, the 
use of a MIP formulation provides much more flexibility.  For 
these reasons, PJM began discussion with its software 
vendors, in late 2002, concerning the need to develop a 
production grade MIP-based approach for large-scale unit 
commitment problems.  
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The partnership with AREVA T&D in the development of 
the production grade MIP-based unit commitment has been 
very successful from PJM’s perspective.   The resulting MIP-
based approach has given PJM more flexibility in deploying 
enhancements in the Day-ahead market analysis and in the 
daily reliability analysis that is performed to ensure that 
adequate resources are committed to reliably meet demand.   
In practice, unit commitment in the PJM Day-ahead energy 
market often solves faster than the LR-based approach. 

Since the MIP-based commitment provides the ability to 
more accurately incorporate the transmission system in the 
unit commitment problem, it provides the opportunity to 
develop enhanced system operator tools to reduce the cost of 
maintaining grid reliability. In the future, PJM expects to 
employ the MIP-based unit commitment approach in the real-
time energy market to manage the optimal deployment of 
Combustion Turbines. 

III.  RTO UNIT COMMITMENT PROBLEM 

The Day-ahead market clearing problem includes next-day 
generation offers, demand bids, virtual bids and offers, and 
bilateral transactions schedules.  The objective of the problem 
is to minimize costs subject to system constraints.  The Day-
ahead market is a financial market that provides participants 
an operating plan with known compensation:  If their 
generation (or load) is the same in the real-time market, their 
revenue (or cost) is the same.  Compensation for any real-time 
deviations is based on real-time prices, providing participants 
with opportunities to improve profit (or reduce cost) if they 
have flexibility to adjust their schedules. 

The Reliability Analysis problem includes the same data as 
provided to the Day-ahead market, with modification as 
permitted during the re-bidding period after the Day-ahead 
market closes (for PJM, re-bidding is permitted only for 
generators not committed in the Day-ahead market).  The goal 
of the Reliability Analysis problem is to purchase sufficient 
and appropriate additional capacity to ensure reliable 
operations, regardless of the capacity cleared in the Day-
ahead financial market.  When PJM calls on additional 
capacity, it provides a guarantee (known as the “make-whole 
payment”) that the affected generators will receive additional 
payments if real-time prices are insufficient to cover their bid-
in costs.  Consequently, a secondary goal of the Reliability 
Analysis problem is to minimize the cost of potential make-
whole payments by minimizing the cost of capacity (versus 
the cost of energy) committed by PJM.   

In both problems, unit commitment accepts data that 
define bids (e.g., generator constraints, generator costs, and 
costs for other resources) and the physical system (e.g., load 
forecast, reserve requirements, security constraints).  In real-
time, the limited responsiveness of units and additional 
physical data (e.g., state estimator solution, net-interchange 
forecast) further constrains the unit commitment problem.   

In all problems, resources are selected based on minimum 
cost based on bid prices and on physical deliverability by the 

transmission system. 

IV.  PROBLEM FORMULATION 

The following describes the Day Ahead Unit Commitment 
Problem: 

 
Minimize Objective Cost1 =  
 Unit Energy Cost + Startup Cost 
 + Transaction Cost + Virtual Bid Cost 
 + Demand Bid Cost + Wheeling Cost 

 
Subject to: 

Area Constraints: 
 Demand + Net Interchange 
 Spinning and Operating Reserves 
Zonal Constraints: 
 Spinning and Operating Reserves 
Security Constraints 
Unit Constraints: 
 Minimum and Maximum Generation limits 
 Reserve limits 
 Minimum Up/Down times 

Hours up/down at start of study 
 Must run schedules 
 Pre-scheduled generation schedules 
 Ramp Rates 
 Hot, Intermediate, & Cold startup costs 
 Maximum starts per day and per week 
 Maximum Energy per day and per study length 
 

A.  Security Constraints 

Two significant requirements for this project were: 1) To 
include the impact of all significant security constraints within 
the commitment process; and 2) To accurately model the 
impact of congestion on the Unit Commitment (UC). 

In the production implementation, security constraints are 
modeled within the Unit Commitment program using a set of 
linearized sensitivities (distribution factors) to represent the 
change in line flow with respect to injection and Phase Angle 
Regulator.  There are three sources for these data: 1) Manual 
entries; 2) the system Topology Processor; and 3) 
Contingency Analysis (also called Simultaneous Feasibility 
Test or SFT). 

Manual entries and the Topology Processor are used to 
define an initial set of constraints based on operator 
experience and history.  Additional constraints are identified 
by iterating between the UC and SFT applications.  Each SFT 
is a single period (hour) analysis over multiple contingencies.  
This means the SFT analysis can be decomposed both by hour 
and contingency as shown in Figure 1.  The implementation is 
flexible in that any number of CPUs can be allocated to the 

                                                           
1 Revenue from transaction sales, virtual bids and demand bids are added as 

negative costs so that by minimizing the objective cost the profit is maximized.  
For Day Ahead studies, this results in a large negative objective cost. 
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SFT analysis.  SFT jobs are put in a system queue which 
allocates them to specific processors as they become 
available. 

 

 
 
Figure 1.  Iteration with Parallel SFT Applications 

 
Each SFT solution may result in the identification of new 

active constraints, which are then introduced into the 
subsequent UC execution.  This process generally converges 
within 2-3 iterations. 

V.  THE UNIT COMMITMENT PROBLEM 

The Unit Commitment problem is a large-scale non-linear 
mixed integer programming problem.  Integer variables are 
required for modeling: 1) Generator hourly On/Off-line status, 
2) generator Startups/Shutdowns, 3) conditional startup costs 
(hot, intermediate & cold).  Due to the large number of 
integer variables in this problem, it has long been viewed as 
an intractable optimization problem.  Most existing solution 
methods make use of simplifying assumptions to reduce the 
dimensionality of the problem and the number of 
combinations that need to be evaluated.  Examples include 
priority-based methods, decomposition schemes (LR) and 
stochastic (genetic) methods.  While many of these schemes 
have worked well in the past, there is an increasing need to 
solve larger (RTO-size) problems with more complex (e.g. 
security) constraints, to a greater degree of accuracy. 

Over the last several years, the number of units being 
scheduled by RTOs has increased dramatically.  PJM started 
with about 500 units a few years ago, and is now clearing over 
1100 each day.  MISO cases will be larger still. 

As the RTO markets have increased in size, there has been 
an increasing requirement for more accurate and complete 
models of security constraints.  This requires iterating 
between the unit commitment software and network security 
analysis applications, resulting in the need to solve the UC 
problem multiple times to obtain good results.  Security 
constraints are particularly difficult to model with LR 
methods due to the large number of multipliers that must be 
added to the problem [5].  As a result, finding optimal security 
constrained solutions with the LR is a very demanding 
problem for large RTO-sized problems.  On the other hand, 
these constraints pose little problem for the MIP and may 
actually speed up the convergence process by reducing the 

size of the feasible region. 
Market clearing applications have a greater need for 

transparency and true optimality than traditional UC 
implementations can provide.  Each commitment result is 
subject to review by the participants for correctness.  
Solutions that are even 1% away from optimal will not stand 
up to this type of analysis.  Ideally the problem should be 
solved to optimality.  In practice, solutions within 0.1% of 
optimality appear to be acceptable for Day-ahead and 0.5% 
for Reliability Analysis.  While this level of accuracy has been 
obtained in the past using the LR (See Section IX.), 
maintaining this level has been programmatically and 
computationally difficult with the increasing number of 
security constraints. 

VI.  RECENT ADVANCES IN MIXED INTEGER PROGRAMMING 

The classical MIP implementation utilizes a Branch and 
Bound scheme. This method attempts to perform an implicit 
enumeration of all combinations of integer variables to locate 
the optimal solution.  In theory, the MIP is the only method 
that can make this claim.  It can, in fact, solve non-convex 
problems with multiple local minima.   

Since the MIP methods utilize multiple Linear 
Programming (LP) executions, they have benefited from 
recent advances in both computer hardware and software [6].   

Bixby [7] describes several significant advances in MIP 
algorithms, including Heuristics, Node Presolve, and Cutting 
Planes, that were introduced into CPLEX™ 6.5 [8].  These 
methods intelligently introduce numerous redundant 
constraints (cutting planes [9]) into the problem with the goal 
of finding solutions that are integer feasible at the LP corner 
points.  This idea attempts to transform the combinatorial 
problem into a series of constrained LPs.  When successfully 
implemented, this can lead to dramatic reductions in solution 
times for MIP problems. 

Johnson [10] provides examples applying the MIP to a 
small 17 unit problem using CPLEX versions 3.0 through 6.5.  
Table I shows the results of those studies for the same one 
day problem2. 

Table I. 
One Day Unit Commitment using MIP. 

 

CPLEX 
Version 

Seconds Nodes 

3.0 1687 15637 
4.0 2285 19789 
5.0 1700 18488 
6.0 1253 22258 
6.5 98 281 

 
The following sections will illustrate the use of more recent 

versions of CPLEX on RTO-size UC problems. 

                                                           
2 This problem was solved on a 400 MHz Pentium™ II PC.   
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A.  Solving a RTO Day-ahead Problem 

This section presents results from using the CPLEX 7.1 
and CPLEX 9.0 MIP solvers on a large-scale RTO Day Ahead 
Unit Commitment problem.  This problem has 593 units and a 
48 hour time horizon.   

Figure 2 illustrates the results from a Day-ahead3 study 
solved4 using CPLEX 7.1.  Included are the objective cost of 
the current integer solution (“Best Integer”), the current lower 
bound (“Best LP”), and the CPU time.  The MIP Gap = 
ABS[(Best Integer-Best LP)/Best LP] * 100 (%) provides a 
good measure of optimality that can be used as a convergence 
criteria.  If the MIP Gap goes to zero, then the solution 
represents the true global minima. 

The MIP solution process begins by solving the “relaxed” 
problem in which all integer variables are temporarily allowed 
to have continuous values.  This takes 134 seconds and 
establishes an initial lower bound on the objective cost.  The 
solver then proceeds to the cutting plane logic.  This process 
introduces several hundred cutting planes, but fails to find an 
integer feasible solution.  The solver then enters the Branch 
and Bound phase where it produces the results shown in 
Figure 2.  The solver does not find a solution within the 
convergence criteria of 0.1%, and after reaching a specified 
time limit of 1800 seconds, the solver terminates with a best 
integer solution of -$260,251,8965. 
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Figure 2.  Day-ahead Solutions vs. CPU Time with CPLEX 7.1 

 
The long solution times and slow convergence 

characteristics of earlier MIP solvers is why many 
experienced people question the ability of MIP algorithms to 
solve these “NP Hard”6 problems.  Actually, these results are 
quite remarkable when compared with earlier CPLEX 
versions, which were unable to solve this problem at all.   

                                                           
3 This problem contains 615,792 constraints, 637,943 variables, and 

3,222,740 non-zeros. 
4 Note that all RTO case studies in this paper were run on an Intel® Xeon™  

3.06 GHz. Processor with 3.5 GB of RAM 
5 The objective cost includes revenues from sales, which are modeled as 

negative costs (i.e. a profit).  This is equivalent to maximizing the profit. 
6 NP-hard – non-deterministic Polynomial-time hard. 

   Figure 3 shows the results from solving the same 
problem using CPLEX 9.0.   Notice that in this case the first 
integer feasible solution with CPLEX 9.0 is better than all but 
the last solution using CPLEX 7.1.  Also, CPLEX 9.0 never 
enters the Branch and Bound phase, and converges to the 
specified convergence tolerance of 0.1 % in 386 seconds with 
an objective cost of -$260,351,581. 
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Figure 3.  Day-ahead Solutions vs. CPU Time with CPLEX 9.0 

 
The conclusion reached from this type of analysis was that 

one would want to avoid entering the Branch and Bound 
phase if at all possible.  The development efforts were 
focused on supplementing the cutting plane methodology 
where possible.  This was accomplished using alternative 
constraint formulations, making them as tight as possible, and 
through additional redundant constraints that would 
(hopefully) aid in driving the corner points towards integer 
feasible solutions.  This effort has been so successful that 
virtually all of the current problems solve to within reasonable 
convergence tolerances before entering the Branch and Bound 
phase.  

B.  Use of Parallel MIP Algorithms 

It should be noted that Branch and Bound algorithms can 
take advantages of parallel processing [11].  Since our 
implementation generally converges before utilizing the 
Branch & Bound step, we do not see any benefit to using 
parallel MIP solvers and have not pursued the use of this 
feature. 

VII.  A HYBRID LAGRANGIAN RELAXATION METHOD 

AREVA’s LR algorithm is a hybrid approach that makes 
use of the fundamental LR concepts, but avoids many of the 
convergence problems associated with these methods.  The 
approach utilizes a procedure described by Zhuang [12] that 
directly computes the exact commitment cost for each 
candidate (uncommitted) unit, in each hour of deficit reserve.  
These costs are determined through multiple executions of a 
Single Unit Dynamic Programming (SUDP) module.  For 
each hour of deficit reserve, each candidate unit is 
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provisionally forced on (must run) and a new SUDP is 
performed to obtain a new profit based on committing the 
unit.  The commitment price of each candidate unit can then 
be computed as the difference between the new and old profit 
divided by the difference in available reserves.  Zhuang 
utilized this commitment price as a way to systematically 
adjust the commitment multipliers in increments that are 
precisely based on the cost to commit the next unit.   

Unfortunately, this does not deal explicitly with the 
problem of identical units.  We have improved on this by 
using the unit commitment price to sequentially (in order of 
increasing price) commit candidate units in each deficit hour 
until a reserve-feasible solution is obtained.  This is similar to 
the “Sequential Bidding” method developed by Prof. Fred Lee 
[13].  The key difference is that Lee’s method utilizes a single 
priority order for all hours in the study whereas ours can 
theoretically utilize different orders in each hour. 

The process is computationally intensive in that numerous 
SUDP solutions must be performed to compute these 
commitment prices.  This time is partially offset by 
eliminating the need to iterate (search) for correct values of 
these multipliers.   

Once a reserve-feasible commitment schedule is found, a 
Linear Programming (LP) model is used to solve the 
Economic Dispatch (ED) problem.  The ED is solved for all 
time periods simultaneously, allowing for inclusion of both 
security and temporal constraints directly into the 
formulation.  While the LP formulation is computationally 
intensive, it eliminates many algorithmic difficulties and 
provides shadow prices for all active constraints.  These 
shadow prices are utilized to drive subsequent iterations in a 
direction that will tend to alleviate system constraints and 
minimize the objective cost. 

One significant disadvantage of this hybrid approach is that 
a dual cost or duality gap cannot be computed. 

VIII.  THE TRANSITION FROM LR TO MIP 

Since we were already solving the ED using an LP 
formulation, the extension of this to a MIP formulation 
consisted of formulating only the unit constraints enforced in 
the SUDP as MIP constraints.  Most of the remaining system 
constraints required little or no modification.  This resulted in 
a single application in which one can run and compare the two 
different algorithms and be reasonably confident that identical 
problems are being solved. 

Our original LR was implemented using the modeling 
system AIMMS [14].  This significantly expedited the 
conversion process to a MIP formulation, and greatly 
improved our communication process with a number of MIP 
consultants that were employed in this project. 

A.  Alternative Constraint Formulations 

The majority of the work involved in this project was 
testing alternative constraint formulations.  The most difficult 
constraints to deal with in this context are conditional 
constraints.  For example, in the PJM model, each unit may 

have a hot, intermediate and cold startup cost, depending on 
how many hours the unit has been shut down.  The classical 
way of dealing with conditional constraints is to introduce 
additional integer variables [15], one for each modeled 
condition.  Consequently, we have three additional integer 
variables for each unit in each hour.  The addition of these 
variables can have dramatic impacts on the MIP solution 
times, and in many cases can result in problems that will not 
solve in reasonable times. 

In some cases, one can deal with conditional constraints by 
simply eliminating them.  For example, the LR formulation 
did not enforce unit ramping constraints except as an upper 
bound constraint when units are initially started up.  To 
include this same constraint in the MIP formulation required 
additional integer variables to determine which hours this 
constraint should be enforced.  This problem was finally 
eliminated by simply enforcing the ramping constraint in all 
hours in the MIP formulation.  This resulted in an improved 
ramping model that actually solved in less time than one 
without ramp rates.  In fact, we observed several times that 
inclusion of additional constraints can improve MIP 
performance. 

B.  Improved MIP Solvers 

We chose to utilize the commercially available MIP 
CPLEX solver linked with the AIMMS system.  This 
technology allowed us to upgrade to newer versions of this 
solver without any significant additional time investment.  
With this approach we were able to transition easily from 
CPLEX version 7.0, to 8.1, and 9.0.  Each of these releases 
resulted in major performance improvements. 

IX.  LR VS. MIP COMPARISONS 

In this section we present some comparisons between our 
Lagrangian Relaxation (LR) algorithm and the MIP. 

A.  LR vs. MIP for a Day-ahead Market Case 

This section presents results from a Day-ahead market case 
consisting of 885 units over a 48 hour study horizon.  The LR 
was run for 20 iterations (until no further improvement could 
be obtained), and the MIP7 was run with a zero convergence 
tolerance and a time limit of 600 seconds. 

Figure 4 shows the integer solutions for the LR and MIP 
runs.  The LR found its best solution (-$209,477,011) in 15 
iterations. Additional iterations8 resulted in no improvement 
in this cost. 

The MIP terminated with a solution of -$209,432,693, 
which had a MIP Gap of 0.02%.   

The difference between the best LR and the best MIP 
solution is $5,682 or 0.003 %!  This is quite remarkable, and 
is a strong validation that both formulations are producing 

                                                           
7 This Day-ahead MIP problem consists of 611,272 constraints, 647,540 

variables, and 3,304,707 non-zeros. 
8 The LR sequence of solutions is not monotonic decreasing as.  When an 

increase in objective cost occurs, it indicates we have over-stepped a minima.  
The step size is then reduced for subsequent iterations. 
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excellent results for this problem with similar CPU time. 
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Figure 4.  LR and MIP Solutions for a Day-ahead Case 
 

The MIP takes longer than the LR to find an initial feasible 
solution, but the initial MIP solution tends to be closer to 
optimal than the initial LR solutions.  Results viewed through 
a case comparison function show that the two solutions are 
similar in terms of total number of units committed, constraint 
prices, etc. 

B.  LR vs. MIP for a Reliability Analysis Case 

This section illustrates how the LR can get caught in local 
minimums.  Results are presented from a Reliability Analysis 
case consisting of 593 units over a seven day time horizon.  
The LR was run for 20 iterations and the MIP9 was run to a 
convergence tolerance of zero and a time limit of 1800 
seconds.   

Figure 5 shows the integer solutions for the LR and MIP 
runs.  The first 3 iterations of the LR were infeasible due to 
violations of the security constraints.  The LR found its best 
feasible solution in 10 iterations of $118,979,243.  Additional 
iterations resulted in no improvement in this cost. 

The MIP case took 827 seconds to solve the initial relaxed 
solution.  Shortly thereafter an initial feasible solution was 
found with a MIP gap of 0.58%.  The third feasible solution 
was $99,909,400 with a MIP gap of 0.44%. The MIP 
terminated after the time limit of 1800 seconds with no 
additional integer feasible solutions.  The lower bound on the 
LP solution was raised so that the final MIP Gap was 0.34%. 

Typically, the LR and MIP solutions are much closer for 
Reliability Analysis runs than for this case.  One could easily 
argue that a more sophisticated LR could avoid this particular 
problem.  Guan [16] provides an analysis of these problems 
and presents a penalty-based method that may produce better 
schedules.   

                                                           
9 This Reliability Analysis MIP problem consists of 1,401,056 constraints, 

1,337,911 variables and 7,076,702 non-zeros. 
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Figure 5.  LR and MIP Solutions for Reliability Analysis Case 

 

C.  Solution Characteristics of LR vs. MIP 

For large problems, the MIP solver often takes much 
longer to find an initial feasible solution than the LR.  This is 
primarily related to the solution time for the initial relaxed LP 
problem, which is much larger than any of the LPs solved in 
the LR.  For smaller problems, the MIP can be much faster 
than the LR. 

LR memory requirements and run times grow linearly with 
respect to problem size, whereas the MIP growth is more 
exponential.  This is illustrated in Figure 6. 
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Figure 6.  Run Time vs. Number of Periods in Study 

 
The MIP deals directly with security constraints, and is 

more likely to find good feasible results when the system is 
highly constrained.  Also, the MIP Gap provides a direct 
measure of optimality.  The solver can guarantee that the 
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current best solution is within the resulting MIP Gap of the 
global optimum. 

D.  Day -ahead vs Reliability Analysis 

The Day-ahead market problem tends to be much easier to 
solve than the Reliability Analysis.  One reason for this is the 
large number of dispatchable demands and virtual bids 
available in the Day-ahead market problem.  This results in a 
very large set of integer feasible solutions.  In the Reliability 
Analysis problem, these dispatchable demands are replaced 
with a fixed load forecast and the set of integer feasible 
solutions is much smaller.  When solving the RA problems, 
the LR must determine many more multipliers than is required 
with the Day-ahead runs to find a feasible solution. 

Another significant consideration for solving the 
Reliability Analysis problem is that the study horizon is 
typically 3-7 days.  Memory requirements for the MIP tend to 
grow exponentially with the number of study periods.  This is 
perhaps the single most significant barrier to solving the 
larger MIP problems.  Seven day studies for PJM are very 
close to exceeding the limits of 32 bit systems.  Moving to 64 
bit hardware can alleviate the memory problem, but not 
necessarily the run-time problem. 

X.  VARIABLE TIME STEP MODELING 

The main barrier to solving large MIP problems relates to 
the exponential growth in solution times and memory 
requirements.  One relatively straight-forward way of dealing 
with this problem is to reduce the number of modeled time 
steps.  For example, if we are running a 7 day study, we could 
model the first and second days with hourly intervals, the 3rd 
and 4th days with two hour intervals, and the remaining days 
at 4 hour intervals (Daily Period Length = 1,1,2,2,4,4,4).  This 
achieves a reduction in the study hours from 168 (at hourly 
intervals) to 24 + 24 + 12 + 12 + 6 + 6 + 6 = 90 with the 
above configuration.  To obtain the correct energy usage, the 
period length is used when computing energy usage (e.g. Mwh 
= Mw * Period Length). 

The impact of several combinations of Daily Period 
Lengths on run times and objective cost on a seven day study 
using a convergence tolerance of 0.5 % is illustrated in Table 
II.  Each solution, except the last, was within the convergence 
tolerance relative to the 168 period solution. 

With this approach, significant reductions in run times (and 
memory requirements) can be achieved while preserving the 
optimality of the solution in terms of objective cost.  This 
indicates one can achieve very good solutions that recognize 
major constraints (including temporal constraints) with the 
reduced problem sizes.  Through this type of analysis one can 
determine how much of a reduction can be achieved while 
still preserving optimality.  Other impacts of using variable 
time steps can be viewed through a case comparison function. 

 
Table II 

MIP Solutions with Variable Step Sizes 
 

Daily Period 
Length Periods Run Time 

(Sec.) 
Objective 
Cost 

% 
Change 

1,1,1,1,1,1,1 168 1348 $99,909,400  

1,1,1,2,2,2,2 120 641 $99,952,757 0.04% 

1,1,2,2,4,4,4 90 307 $99,938,465 0.03% 

1,2,4,6,8,8,8 55 120 $99,115,120 -0.80% 

 
This scheme focuses the computational effort on the 

periods of greatest interest (and accuracy), while still taking 
into account the effects of long minimum up and down time 
constraints on future days and any multi-hour energy 
constraints in the problem.  When the primary concern is with 
the commitments made in the first day or two of a study 
horizon, then very good results can be achieved with a 
dramatic reduction in run times by modeling future days at a 
lower level of resolution. 

XI.  ENHANCED MODELING WITH THE MIP 

Use of the MIP formulation to solve the Unit Commitment 
problem opens up many opportunities to deal directly with a 
number of constraints and models that tend to be very 
difficult to implement with the LR formulation.  These 
include modeling of combined cycle plants, hydro unit 
commitment, forbidden zones, multi-area and zonal 
constraints, ancillary service markets, and many more. 

A.  Combined Cycle Plants 

Scheduling of combined cycle units violates the LR 
assumption that the problem may be decomposed by unit.  
This has resulted in numerous complex algorithms for dealing 
with these units.  Shahidehpour  [17] presents an excellent 
scheme that utilizes a Dynamic Programming algorithm to 
evaluate pre-defined state-transitions for the combined cycle 
plant.  

The MIP method eliminates the need for these schemes, 
and it is possible to develop relatively complex models by 
adding a few additional constraints to the model.  The MIP 
can implicitly evaluate the commitments of all permissible 
combinations of units at the plant.  Transitions between 
commitments can include startup costs and all other unit 
constraints.  AREVA T&D is currently prototyping a MIP-
based combined cycle model that is expected to go into 
production in the near future. 

B.  Hydro Scheduling and Unit Commitment 

Hydro unit commitment violates the LR decomposition 
assumption when scheduling cascading river systems, where 
the availability of water at a particular plant and time period is 
dependent on the upstream and downstream unit commitment 
decisions.  This is extremely difficult to deal with using LR 
approaches, but relatively straight forward using the MIP.  
AREVA T&D has successfully developed MIP models for 
Pumped Storage plants and cascading river systems.   
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At this time, all hydro is pre-scheduled for the PJM system, 
but the ability to integrate hydro scheduling into the Day 
Ahead market can improve scheduling, to the benefit of both 
PJM and the resource owners.  

C.  Ancillary Service Markets 

As markets become more successful, there will be 
opportunities to expand these to include additional market 
products, such as ancillary services.  While the LR 
formulation can theoretically be expanded for these additional 
products, there is considerable development risk and 
uncertainty to both the RTO and the associated vendor.  The 
MIP formulation considerably reduces this risk since it 
virtually eliminates any algorithmic changes, and simply 
requires the addition of new constraints and variables (i.e. 
codification of requirements).  These changes can be rapidly 
prototyped and validated using the MIP formulation. 

XII.  CONCLUSIONS 

While LR and other methods can produce very accurate 
results, they rely on continual algorithmic development efforts 
that often involve simplifying assumptions and heuristic 
procedures.  Recent advances in MIP algorithms, particularly 
in the area of cutting plane methods, have made this a viable 
alternative for large RTO-size Unit Commitment problems.  
The success of this effort opens many new opportunities for 
more sophisticated modeling (combined cycle units, hydro 
unit commitment, ancillary services, etc.) with a significant 
reduction in project risk.   

We believe that these benefits, combined with expected 
future advances in MIP solvers, will result in an industry-wide 
move towards this methodology.  This can potentially lead to 
significant improvements in system reliability, more 
transparent solutions, improved modeling capabilities and 
reduced cost to the consumers. 
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