
CprE 450/550x Homework Solutions

Homework Solutions for Chapters 1, 2, 3

I. SOLUTIONS TO CHAPTER 1 PROBLEMS

1) Q2: Explain what is meant by (distribution) transparency, and give examples of different types of
transparency.
A: Distribution transparency is the phenomenon by which distribution aspects in a system are
hidden from users and applications. Examples include access transparency, location transparency,
migration transparency, relocation transparency, replication transparency, concurrency transparency,
failure transparency, and persistence transparency.

2) Q4: Why is it not always a good idea to aim at implementing the highest degree of transparency
possible?
A: Aiming at the highest degree of transparency may lead to a considerable loss of performance
that users are not willing to accept.

3) Q15: Explain what false sharing is in distributed shared memory systems. What possible solutions
do you see?
A: False sharing happens when data belonging to two different and independent processes (possibly
on different machines) are mapped onto the same logical page. The effect is that the page is swapped
between the two processes, leading to an implicit and unnecessary dependency. Solutions include
making pages smaller or prohibiting independent processes to share a page.

4) Q16: An experimental file server is up 3/4 of the time and down 1/4 of the time, due to bugs. How
many times does this file server have to be replicated to give an availability of at least 99
A: With k being the number of servers, we have that(1

4
)k < 0.01, expressing that the worst situation,

when all servers are down, should happen at most1
100

of the time. This gives usk = 4.

II. SOLUTIONS TO CHAPTER 2 PROBLEMS

1) Q4: Consider a procedureincr with two integer parameters. The procedure adds one to each
parameter. Now suppose that it is called with the same variable twice, for example, asincr(i, i). If i

is initially 0, what value will it have afterward if call-by-reference is used? How about if copy/restore
is used?
A: If call by reference is used, a pointer toi is passed toincr. It will be incremented two times,
so the final result will be two. However, with copy/restore, i will be passed by value twice, each
value initially 0. Both will be incremented, so both will now be 1. Now both will be copied back,
with the second copy overwriting the first one. The final value will be 1, not 2.

2) Q7: Assume a client calls an asynchronous RPC to a server, and subsequently waits until the server
returns a result using another asynchronous RPC. Is this approach the same as letting the client
execute a normal RPC? What if we replace the asynchronous RPCs with one-way RPCs?
A: No, this is not the same. An asynchronous RPC returns an acknowledgement to the caller,
meaning that after the first call by the client, an additional message is sent across the network.
Likewise, the server is acknowledged that its response has been delivered to the client. Two one-
way RPCs may be the same, provided reliable communication is guaranteed. This is generally not
the case.

3) Q16: Now suppose you could make use of only transient synchronous communication primitives.
How would you implement primitives for transient asynchronous communication?



A: This situation is actually simpler. An asynchronous send is implemented by having a caller append
its message to a buffer that is shared with a process that handles the actual message transfer. Each
time a client appends a message to the buffer, it wakes up the send process, which subsequently
removes the message from the buffer and sends it its destination using a blocking call to the original
send primitive. The receiver is implemented similarly by offering a buffer that can be checked for
incoming messages by an application.

4) Q20: How would you incorporate persistent asynchronous communication into a model of commu-
nication based on RMIs to remote objects?
A: An RMI should be asynchronous, that is, no immediate results are expected at invocation time.
Moreover, an RMI should be stored at a special server that will forward it to the object as soon as
the latter is up and running in an object server.

5) Q: How could you guarantee a maximum end-to-end delay when a collection of computers is
organized in a (logical or physical) ring?
A: We let a token circulate the ring. Each computer is permitted to send data across the ring (in
the same direction as the token) only when holding the token. Moreover, no computer is allowed
to hold the token for more than T seconds. Effectively, if we assume that communication between
two adjacent computers is bounded, then the token will have a maximum circulation time, which
corresponds to a maximum end-to-end delay for each packet sent.

6) Q25: How could you guarantee a minimum end-to-end delay when a collection of computers is
organized in a (logical or physical) ring?
A: Strangely enough, this is much harder than guaranteeing a maximum delay. The problem is
that the receiving computer should, in principle, not receive data before some elapsed time. The
only solution is to buffer packets as long as necessary. Buffering can take place either at the
sender, the receiver, or somewhere in between, for example, at intermediate stations. The best place
to temporarily buffer data is at the receiver, because at that point there are no more unforeseen
obstacles that may delay data delivery. The receiver need merely remove data from its buffer and
pass it to the application using a simple timing mechanism. The drawback is that enough buffering
capacity needs to be provided.

7) Q26: Imagine we have a token bucket specification where the maximum data unit size is 1000
bytes, the token bucket rate is 10 million bytes/sec, the token bucket size is 1 million bytes, and
the maximum transmission rate is 50 million bytes/sec. How long can a burst of maximum speed
last?
A: Call the length of the maximum burst interval∆t. In an extreme case, the bucket is full at the
start of the interval (1 million bytes) and another10∆t comes in during that interval. The output
during the transmission burst consists of50∆t million bytes, which should be equal to(1 + 10∆t).
Consequently,∆t is equal to 25 msec.

III. SOLUTIONS TO CHAPTER 3 PROBLEMS

1) Q1: In this problem you are to compare reading a file using a single-threaded file server and a
multithreaded server. It takes 15 msec to get a request for work, dispatch it, and do the rest of
the necessary processing, assuming that the data needed are in a cache in main memory. If a disk
operation is needed, as is the case one-third of the time, an additional 75 msec is required, during
which time the thread sleeps. How many requests/sec can the server handle if it is single threaded?
If it is multithreaded?



A: In the single-threaded case, the cache hits take 15 msec and cache misses take 90 msec. The
weighted average is2

3
×15+ 1

3
×90. Thus the mean request takes 40 msec and the server can do 25

per second. For a multi-threaded server, all the waiting for the disk is overlapped, so every request
takes 15 msec, and the server can handle662

3
requests per second.

2) Q12: Mention some design issues for an object adapter that is to support persistent objects.
A: The most important issue is perhaps generating an object reference that can be used independently
of the current server and adapter. Such a reference should be able to be passed on to a new server
and to perhaps indicate a specific activation policy for the referred object. Other issues include
exactly when and how a persistent object is written to disk, and to what extent the objects state in
main memory may differ from the state kept on disk.

3) Q19: Consider a process P that requires access to file F which is locally available on the machine
where P is currently running. When P moves to another machine, it still requires access to F. If the
file-to-machine binding is fixed, how could the systemwide reference to F be implemented?
A: A simple solution is to create a separate process Q that handles remote requests for F. Process P
is offered the same interface to F as before, for example in the form of a proxy. Effectively, process
Q operates as a file server.


