
1

Inter-process Communication

CprE 450/550x
Distributed Systems and Middleware

Yong Guan
3216 Coover

Tel: (515) 294-8378
Email: guan@ee.iastate.edu

February 11, 2004

2

Potential Topics of Term PapersPotential Topics of Term Papers

The topic should be related to distributed systems in
general, such as

• Group Communications,
• Peer-to-Peer systems,
• Overlay Networks,
• Grid Computing,
• Object Middleware,
• and others.

3

Potential Topics of Term PapersPotential Topics of Term Papers
! Resource Discovery and Management
! Security and Policy Management
! Resource Scheduling and Load Balancing
! Synchronization (e.g., clock synchronization, Election Algorithm, mutual exclusion,

etc.)
! Consistency and replication
! Reliability and Survivability
! Performance Evaluation
! Anonymity. Censor-resistent
! Workload characterization
! Multi-cast Fingerprinting
! Anonymous authentication in dynamic group communications
! Data Replication strategies for Grid Computing systems
! Reputation-based resource scheduling for Grid Computing systems
! Middleware-based application design and development (e.g., real-time CORBA,

fault-tolerant CORBA, etc.)

! You are welcome to propose your own topic!!!

4

Your Term Papers
! Every student is required to finish a term paper.

! Deadlines:
– Feburary 26 (Thursday, 5:00pm), topic selection due (UG).
– March 11 (Thursday, 5:00pm), 3-pages proposal (problem definition) due

(UG).
– March 25 (Thursday, 5.00pm), 5-pages solutions and drafted evaluation

plan due (G).
– April 6 (Tuesday, 5:00pm), 5-pages summary of the papers you read and

important issues you think (U)
– April. 15 (Thursday 5:00pm), experimental results and improved solution

due (G).
– April. 27 (Tuesday 5:00m), 10-page literature survey (U) and 15-pages

full term paper (G) due, including problem definition, solutions,
experimental data, conclusion and future works.

! Paper format: Latex or WORD, IEEE transactions, please refer:
– http://www.ieee.org/organizations/pubs/transactions/stylesheets.

htm

5

Readings for Today’s Lecture

" References
" Chapter 2 of “Distributed Systems: Principles and Paradigms”

6Object-Oriented Distributed
Technology
! Objects

! Objects in Distributed Systems

! Requirements of Multi-User Applications

2

7

Object-Oriented Languages

! Object Identity
– “object identifiers” (OIDs)
– OIDs as first class values

! Actions
– Inititiated by sending message to object requesting method

invocation
– State in object may change
– cascaded invocations of methods

! Dynamic Binding
– The method executed is chosen according to the class of the

recipient of the message.
! Garbage Collection

– Dynamically allocated instances may be explicitely deleted or
space is freed implicitely by garbage collector.

8

Objects in Distributed Systems
! Object Identity in a Distributed System

– Remote object identifiers (ROIDs)
– Ex. Java: ROID = endpoint (Java vm) + identifier (ObjID)
– ROIDs as first-class values
– Service for comparing remote object identifiers

» e.g. Java: RemoteObject::equals()
! Actions in a Distributed Object System

– Remote Method Invocation
! The Role of Proxies for Transparent RMI

– Local proxy for each remote object that can be invoked by
local object.

– Local proxy behaves like local object, but, instead of executing
message, forwards it to the remote object. (client stubs)

– Remote object has skeleton object with server stub procedures

9

Distributed Objects

! Common organization of a remote object with client-side proxy.

2-16

10

Proxies and Skeletons

X
skeleton

for A
proxy for A

dispatcher

A

ROID module

communication
module

request

reply

11

Proxies and Skeletons (cont)

! Proxies:
– Need proxies to invoke remote objects.
– Proxies are created when needed whenever ROID arrives

in Reply message.
– ROID module manages proxies and ROIDs.

! Dispatchers and Skeletons:
– Not necessary for systems with reflection capabilities.
– e.g. class Method in Java 1.2 reflection package:

method invoke can be called on instance of Method.
Dispatcher now generic and skeleton unnecessary.

12

Binding a Client to an Object

(a) Example with implicit binding using only global references
(b) Example with explicit binding using global and local references

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = …; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(a)

Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = …; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

(b)

3

13

Parameter Passing

! The situation when passing an object by reference or by value.

2-18

14

Arguments and Results in RMI
! Semantics of passing arguments for RMI in object-oriented languages

needs to be defined.
! Argument and Result passing in Java RMI:

– When type of parameter is defined as remote interface,
argument or result is passed as ROID (by reference).

– Other non-remote objects may be passed by value if they are
serializable.

! Which objects can be accessed by RMI?
– Any object can be accessed by RMI
– Distinguish between remote objects and local objects. (e.g.

Java)
– Use interface definition language (IDL)

! Problem: migration/replication

15

Dynamic Binding

! Dynamic method binding should also apply to RMI.

! Smalltalk: Allow any message to be sent to any object, and
raise exception if method is not supported.
– Distributed Smalltalk: general-purpose proxies.

! Java RMI:
– dynamic binding as a natural extension of local case
– Example:

Shape aShape = (Shape) stack.pop();

float f = aShape.perimeter();

16

Garbage Collection

! Some languages (Java, Smalltalk) support garbage collection.
! Explicit memory management difficult/impossible in distributed

environment.
! Distributed garbage collection typically realized in ROID modules.

Each ROID module:
– keeps track how many sites hold remote ROIDs for each local

object
(maintains holders table)

– informs other ROID modules about generation/deletion of
ROIDs for their local objects (through the use of addRef()
and removeRef())

! Local garbage collector collects objects with no local or remote
references.

! Reference counting (addROID()/removeROID()) over unreliable
networks

17

The DCE Distributed-Object Model

a) Distributed dynamic objects in DCE.
b) Distributed named objects

2-19

18

Readings for Today’s Lecture

" References
" Chapter 2 of “Distributed Systems: Principles and Paradigms”
" Chapter 11 of “Java Network Programming and Distributed

Systems”

4

19

Jave RMI

" RMI: A Java technology that allows one JVM to communicate
with another JVM and have it execute an object method.

" RPC and RMI
" RPC supports multiple languages, whereas RMI only support

Java
" RMI deals with objects, but RPC does not support the notion of

objects
" RPC offers procedures (not associated with a particular object)

20

How RMI works
! The format used by RMI for representing a remote

object reference: rmi://hostname:port/servicename

RMIregistry

RMI server RMI server RMI server

21

How RMI works

RMI Client RMI Server

Stub
object

Method()

Skeleton
object

Method()

request

response

22

Define a RMI Service Interface

Public interface RMILightBulb extends java.rmi.Remote
{

Public void on() throws java.rmi.remoteexecution;
Public void off() throws java.rmi.remoteexecution;
Public boolean ison() throws java.rmi.remoteexecution;

}

23

Implement a RMI Service Interface
Public class RMILightBulbImpl

extends java.rmi.server.UnicastRemoteObject
implements RMILightBulb

{
Public RMILightBulbImpl () throws java.rmi.remoteexecution
{setBulb(false);}

Private boolean lighton;

Public void on() throws java.rmi.remoteexecution
{ setBulb(true); }

Public void off() throws java.rmi.remoteexecution
{ setBulb(false); }

Public boolean ison() throws java.rmi.remoteexecution
{return getBulb();}

Public void setBulb(boolean value)
{lighton = value;}

Public void getBulb()
{return lighton;}

}

24

Create Stub and Skeleton Classes

Rmic RMILightBulbImpl

Two files would be produced:

– RMILightBulbImpl_Stub.class
– RMILightBulbImpl_Skeleton.class

5

25

Create a RMI Server
import java.rmi.*;
Import java.rmi.server.*;

Public class LightBulbServer
{

Public static void main(String args[])
{

Try{
RMILightBulbImpl bulbService=new RMILightBulbImpl();
RemoteRef location = bulbService.getRef();

String registry = args[0];

String registration = “rmi://”+registry+”/RMILightBulb”;

Naming.rebind(registration, bulbService);
}

}
}

26

Create a RMI Client
import java.rmi.*;

Public class LightBulbClient
{

Public static void main(String args[])
{

Try{
String registry = args[0];

String registration = “rmi://”+registry+”/RMILightBulb”;

Remote remoteService = Naming.lookup(registration);

bulbService.on();
system.out.println(bulbService.isOn());

bulbService.off();
system.out.println(bulbService.isOn());

}
}

}

27

Running the RMI system
! Copy all necessary files to a directory on the local file

system of all clients and the server.
! Change to the directory where the files are located,

and run rmiregistry.
! In a separate console window, run the server with a

hostname where rmiregistry is running.
– Java LightBulbServer hostname

! In a separate console window (another machine), run
the client with a hostname where rmiregistry is
running.
Java LightBulbServer hostname

28

Any Questions?

See you next time.

