CprE 450/550x
Distributed Systems and Middleware

Inter-process Communication

Yong Guan
3216 Coover
Tel: (515) 294-8378
Email: guan@ee.iastate.edu
February 11, 2004

Potential Topics of Term Papers

The topic should be related to distributed systems in
general, such as

Group Communications,
Peer-to-Peer systems,
Overlay Networks,
Grid Computing,
Object Middleware,
and others.

Potential Topics of Term Papers

Resource Discovery and Management

Security and Policy Management

Resource Scheduling and Load Balancing

Synchronization (e.g., clock synchronization, Election Algorithm, mutual exclusion,
etc.)

Consistency and replication

Reliability and Survivability

Performance Evaluation

Anonymity. Censor-resistent

Workload characterization

Multi-cast Fingerprinting

Anonymous authentication in dynamic group communications

Data Replication strategies for Grid Computing systems
Reputation-based resource scheduling for Grid Computing systems

Middleware-based application design and development (e.g., real-time CORBA,
fault-tolerant CORBA, etc.)

You are welcome to propose your own topic!!!

Your Term Papers

Every student is required to finish a term paper.

Deadlines:

- Feburary 26 (Thursday, 5:00pm), topic selection due (UG).

- %&g’)ch 11 (Thursday, 5:00pm), 3-pages proposal (problem definition) due

- March 25 (Thursday, 5.00pm), 5-pages solutions and drafted evaluation
plan due (G).

- April 6 (Tuesday, 5:00pm), 5-pages summary of the papers you read and
important issues you think (U)

- Qpril(.G)15 (Thursday 5:00pm), experimental results and improved solution

ue .

- April. 27 (Tuesday 5:00m), 10-page literature survey (U) and 15-pages
full term paper (G) due, including problem definition, solutions,
experimental data, conclusion and future works.

Paper format: Latex or WORD, IEEE transactions, please refer:

http://www.ieee.org/organizations/pubs/transactions/stylesheets.
htm

Readings for Today's Lecture

» References
» Chapter 2 of “Distributed Systems: Principles and Paradigms”

Object-Oriented Distributed
Technology

Objects
Objects in Distributed Systems

Requirements of Multi-User Applications

Object-Oriented Languages

Object ldentity
“object identifiers” (OIDs)
OIDs as first class values
Actions

Inititiated by sending message to object requesting method
invocation

State in object may change
cascaded invocations of methods
Dynamic Binding
The method executed is chosen according to the class of the
recipient of the message.
Garbage Collection

Dynamically allocated instances may be explicitely deleted or
space is freed implicitely by garbage collector.

Objects in Distributed Systems

Object Identity in a Distributed System
Remote object identifiers (ROIDs)
Ex. Java: ROID = endpoint (Java vm) + identifier (ObjID)
ROIDs as first-class values
Service for comparing remote object identifiers
e.g. Java: RemoteObject: equals()
Actions in a Distributed Object System
Remote Method Invocation
The Role of Proxies for Transparent RMI

Local proxy for each remote object that can be invoked by
local object.

Local proxy behaves like local object, but, instead of executing
message, forwards it to the remote object. (client stubs)

Remote object has skeleton object with server stub procedures

Distributed Objects

Chnnd maching

=l Dl T 1
Clant Saner &
Same
. -l
Chernt Moriace
[tH LY L 1 e I
& rraifiod -
: ¥ a4 Shiduta | 'y
Py “1-';"!- ez Gknbelnn
] el 1 A]
Clirg OS5 B 05
| : |
Mgz

Fdmintmbed sreocahion
i Pabdsind @500 (TS

Citnesct

Wiathnd

miaace

Common organization of a remote object with client-side proxy

Proxies and Skeletons

communication

module
_ request
° proxy for A
reply

ROID module

10

11

Proxies and Skeletons (cont)

Proxies:

Need proxies to invoke remote objects.
Proxies are created when needed whenever ROID arrives

in Reply message.

ROID module manages proxies and ROIDs.

Dispatchers and Skeletons:
Not necessary for systems with reflection capabilities.

e.g. class Method in Java 1.2 reflection package:
method /nvoke can be called on instance of Method.
Dispatcher now generic and skeleton unnecessary.

12

Binding a Client to an Object

Distr_object* obj_ref;
obj_ref = ...;
obj_ref-> do_something();

@
Distr_object objPref;
Local_object* obj_ptr;
obj_ref = ...;
obj_ptr = bind(obj_ref);
obj_ptr -> do_something();

(b)

//Declare a systemwide object reference
// Initialize the reference to a distributed object
// Implicitly bind and invoke a method

//Declare a systemwide object reference

//Declare a pointer to local objects

//nitialize the reference to a distributed object
//Explicitly bind and obtain a pointer to the local proxy
//Invoke a method on the local proxy

(a) Example with implicit binding using only global references
(b) Example with explicit binding using global and local references

Parameter Passing

13

Wlaciting i Maoking B
= e 1 P Hemote ohject
- o L1 = Ramaia for)
heshoiiod adl setmrenos f1 -
. -
o Y
Cliant code with
Rl 13 v 5l O
Erouy] Fros i
Tl i fesn Copy ol O
L
Remobe Y |
imccation with Npgr =3 y .
LT and Rt am - Cangry of RS o O
s o TP T Sarver codo

imethod implemensatan

The situation when passing an object by reference or by value.

14

Arguments and Results in RMI

Semantics of passing arguments for RMI in object-oriented languages
needs to be defined.

Argument and Result passing in Java RMI:

When type of parameter is defined as remote interface,
argument or result is passed as ROID (by reference).

Other non-remote objects may be passed by value if they are
serializable.

Which objects can be accessed by RMI1?
Any object can be accessed by RMI
Distinguish between remote objects and local objects. (e.g.
Java)
Use interface definition language (I1DL)
Problem: migration/replication

15
Dynamic Binding
Dynamic method binding should also apply to RMI.

Smalltalk: Allow any message to be sent to any object, and
raise exception if method is not supported.

Distributed Smalltalk: general-purpose proxies.

Java RMI:
dynamic binding as a natural extension of local case
Example:
Shape aShape = (Shape) stack. pop();
float f = aShape. perineter();

16

Garbage Collection

Some languages (Java, Smalltalk) support garbage collection.

Explicit memory management difficult/impossible in distributed
environment.

Distributed garbage collection typically realized in ROID modules.
Each ROID module:

keeps track how many sites hold remote ROIDs for each local
object

(maintains hol der s table)

informs other ROID modules about generation/deletion of

ROIDs for their local objects (through the use of addRef ()
and renoveRef ())

Local garbage collector collects objects with no local or remote
references.

Reference counting (addRO D() /r emoveRA D()) over unreliable
networks

17

The DCE Distributed-Object Model

Server machine Sarver machinge
Cymamss
(prsale) olyec
i Kamed fahared)
chmd
Dhifuiims Dy o 'S L3
[privaie) obed (prieae] oot
Fi | 3
Framsls
L 1R N =
™ L L] L L] L]
Clant 81 Clurt 82 Tl B3 Ol &1 i 82 Chintl ¥3

lal (141}
Distributed dynamic objects in DCE.
Distributed named objects

18

Readings for Today's Lecture

> References

» Chapter 2 of “Distributed Systems: Principles and Paradigms”

» Chapter 11 of “Java Network Programming and Distributed
Systems”

Jave RMI

» RMI: A Java technology that allows one JVM to communicate
with another JVM and have it execute an object method.

> RPC and RMI

» RPC supports multiple languages, whereas RMI only support
Java

» RMI deals with objects, but RPC does not support the notion of
objects

» RPC offers procedures (not associated with a particular object)

19

How RM1 works

The format used by RMI for representing a remote
object reference: rmi://hostname:port/servicename

RMIregistry

IR

RMI server RMI server RMI server

20

10

How RM1 works

RMI Client RMI Server
Stub request .| Skeleton
object) object
Method() response Method()

21

Define a RMI Service Interface

22

Public interface RMILightBulb extends java.rmi.Remote

{

Public void on() throws java.rmi.remoteexecution;
Public void off() throws java.rmi.remoteexecution;

Public boolean ison() throws java.rmi.remoteexecution;

11

Implement a RM1 Service Interface

Public class RMILightBulbImpl
extends java.rmi.server.UnicastRemoteObject
implements RMILightBulb

Public RMILightBulbImpl () throws java.rmi.remoteexecution
{setBulb(false);}

Private boolean lighton;

Public void on() throws java.rmi.remoteexecution
{ setBulb(true); }

Public void off() throws java.rmi.remoteexecution
{ setBulb(false); }

Public boolean ison() throws java.rmi.remoteexecution
{return getBulb();}

Public void setBulb(boolean value)
{lighton = value;}

Public void getBulb()
{return lighton;}

23

Create Stub and Skeleton Classes

Rmic RMILightBulbImpl
Two files would be produced:

- RMILightBulbImpl_Stub.class
- RMILightBulbImpl_Skeleton.class

24

12

25

Create a RMI Server

import java.rmi.*;
Import java.rmi.server.*;

Public class LightBulbServer

Public static void main(String args[])

{
Try{
RMILightBulbImpl bulbService=new RMILightBulbImpl();
RemoteRef location = bulbService.getRef();
String registry = args[0];
String registration = “rmi://”+registry+”/RMILightBulb”;
Naming.rebind(registration, bulbService);
}
}

26

Create a RMI Client

import java.rmi.*;
Public class LightBulbClient

Public static void main(String args[])

{
Try{
String registry = args[0];
String registration = “rmi://"+registry+”/RMILightBulb”;

Remote remoteService = Naming.lookup(registration);

bulbService.on();
system.out.printin(bulbService.isOn());

bulbService.off();
system.out.printin(bulbService.isOn());

13

Running the RM1 system

27

Copy all necessary files to a directory on the local file

system of all clients and the server.

Change to the directory where the files are located,
and run rmiregistry.

In a separate console window, run the server with a
hostname where rmiregistry is running.

Java LightBulbServer hostname
In a separate console window (another machine), run
the client with a hostname where rmiregistry is
running.
Java LightBulbServer hostname

Any Questions?

See you next time.

28

14

