
1

Inter-process Communication

CprE 450/550x
Distributed Systems and Middleware

Yong Guan
3216 Coover

Tel: (515) 294-8378
Email: guan@ee.iastate.edu

February 3, 2004

2

Readings for Today’s Lecture

! References
! Chapter 2 of “Distributed Systems: Principles and Paradigms”

! Chapter 4 of “Distributed Systems: Concepts and Design
”

! Chapter 14 & Chapter 15 of “Advanced Programming in
the UNIX Environment”

2

3

Interprocess Communication

" Primitives

" Message Passing: issues

" Communication Schemes

4

Interprocess Communication (IPC)

Primitives for interprocess communication
" message passing

– the RISC among the IPC primitives
" remote procedure call (RPC)

– process interaction at language level
– type checking

" transactions
– support for operations and their synchronization on

shared objects

lack of shared memory
communicate by
sending messages

3

5

Message Passing
" The primitives:

send expression_list to destination_identifier;

receive variable_list from source_identifier;

• Variations:

guarded receive:
receive variable_list from source_id when B;

selective receive:
select

receive var_list from source_id1;
|receive var_list from source_id2;
|receive var_list from source_id3;
end

6

Semantics of Message-Passing Primitives

" blocking vs. non-blocking

" buffered vs. unbuffered

" reliable vs. unreliable

" fixed-size vs. variable-size messages

" direct vs. indirect communication

4

7

Blocking vs. Non-Blocking Primitives

send

receive

blocking non-blocking

Returns control as soon as
message queued or copied.

Signals willingness to
receive message.
Buffer is ready.

Returns control to user
only after message has
been sent, or until
acknowledgment has
been received.

Returns only after message
has been received.

•Need buffering:
•still blocking
•deadlocks!

•Tricky to program.

•Reduces concurrency.

problems

8

Buffered vs. Unbuffered Primitives

" Asynchronous send is never delayed
– may get arbitrarily ahead of receive.

" However: messages need to be buffered.
" If no buffering available, operations become blocking, and

processes are synchronized on operations: rendezvous.

invoke
entry

copy input parms

copy output parms

accept
on entry

rendezvous

invoke
entry

copy input parms

copy output parms

accept
on entryrendezvous

5

9

Reliable vs. Unreliable Primitives
" Transmission problems:

corruption loss duplication reordering
" Recovery mechanism: Where?
" Reliable transmission: acknowledgments

• At-least-one vs. exactly-one semantics

send

receive

time-out

send

receive

time-out

A = 0
inc(A)

A = 1

A = 2

inc(A)

A = 0
inc(A)

A = 1

A = 1

inc(A)

deja-vu!

re
qu

es
t

ta
bl

e
10

Direct vs. Indirect Communication

" Direct communication:

• Variation thereof:

send(P, message)
receive(Q, message)

send(P, message)
receive(var, message)

C1

C2

S

receive(&client_id, &msg)

receive(&client_id, &msg)

send(S, msg1)

send(S, msg2)

server

6

11

Direct vs. Indirect Communication
(cont.)

" Indirect communication:
– Treat communication paths as first-class objects.

" Mailboxes:

send(M, msg1)

send(M, msg1)

send(M, msg1)

receive(M, &msg)

receive(M, &msg)

....
mailbox M

12

Direct vs. Indirect Communication
(cont.)

" Indirect communication (cont)
" Ports:

– example: Accent (CMU)

Process

Port P

FIFO queue

send(P, msg1)

send(P, msg2)

receive(P, &msg)

• multiple senders

• only one receiver

• access to port is
passed between
processes in form of
capabilities

7

13

Communication Schemes

one-to-one unicast

one-to-many multicast

many-to-one

many-to-many

14

Case Study: IPC on the Same Host

" Ways of Inter-process Communication
#Signal
#Passing file descriptor between parent and child processes
#UNIX IPC

$Pipes
$FIFOs
$Stream Pipes
$Named Stream Pipes
$Message Queues
$Semaphores
$Shared Memory

8

15

Case Study: IPC on the Same Host (cont.)
" Pipes

– Half-duplex
– Only used between processes that have a common

ancestor, e.g., parent and child processes.

fd[0] fd[1] fd[0] fd[1]

Pipe

Kernel

Parent Child

16

Case Study: IPC on the Same Host (cont.)
" FIFO (also called named pipe)

– Half-duplex
– Can be used between unrelated processes (not necessarily

between parent and child processes).

Server

Well-known
FIFO

Client Client

Read request

write request write request

9

17

Case Study: IPC on the Same Host (cont.)
" Message Queues

– A linked list of messages stored in the kernel and identified by
mesg queue id.

– Not necessarily first-in first-out order
– Can fetch messages based on type
– Bi-directional

Mesg Queuesender receiver

write mesg: msgsnd() Receive mesg: msgrcv()

18

Case Study: IPC on the Same Host (cont.)
" Semaphore

– Not really a form of IPC as pipe, FIFOs, and message
queues

– A counter used to provide access to a shared data object
for multiple processes

1. Test the semaphore that controls the
resource

2. If the value is positive, the process can use
the resource and the value of semaphore
decrements by one.

3. If the value is 0, the process goes to sleep
until the semaphore value is greater than 0.

10

19

Case Study: IPC on the Same Host (cont.)
" Shared Memory

– Allow two or more processes to share a given region of
memory.

– Fastest IPC mechanism
– Synchronization access

20

Case Study: IPC on the Same Host (cont.)
" Stream pipes

– Allow passing open file descriptors between processes (parent
and a child)

– Bi-directional

" Similar to FIFO, we have named Stream Pipe

11

21

Remote Procedure Call (RPC)

! Now we study RPC.

22

Remote Procedure Call (RPC)

" Paradigms in building distributed applications

" The RPC model

" Primitives

" Issues

" Case study: Sun RPC

12

23

Building Distributed Programs: Two Paradigms

" Communication-Oriented
Design
– Start with communication

protocol
– Design message format and

syntax
– Design client and server

components by specifying how
they react to incoming
messages

" Protocol-design problems
" Application components as finite-

state machines !?
" Focus on communication instead of

application!

Application-Oriented Design
– Start with application

– Design, build, test conventional
implementation

– Partition program

Concurrency
Problems:

Paradigms:

24

Conventional Procedure Call

a) Parameter passing in a local procedure call: the stack before the call to read
b) The stack while the called procedure is active

13

25

RPC: Client and Server Stubs

" Principle of RPC between a client and server program.

26

Asynchronous RPC (1)

a) The interconnection between client and server in a
traditional RPC

b) The interaction using asynchronous RPC

2-12

14

27

Asynchronous RPC (2)

" A client and server interacting through two asynchronous RPCs

2-13

28

Model of Execution for RPCs

" Procedure-call structure of a program

Model of execution with remote procedure call

main

proc A

proc B

machine 1
machine 2

machine 3

call remote
proc A

call remote
proc B

respond
to caller

exit

main program
on machine 1

procedure A
on machine 2

procedure B
on machine 3

respond
to caller

15

29

RPC Properties

" Uniform call structure

" Type checking

" Full parameter functionality

" Distributed binding

" Recovery of orphan computations

30

RPC Primitives

" Invocation at caller side
call service (value_args; result_args);

" Definition at server side
– declaration

remote procedure service (in value_pars;

out result_pars);

begin body end;

– rendezvous statement
accept service (in value_pars;

out result_pars) -> body;

16

31

Structure of an RPC Call

clientclient

client stubsclient stubs

RPC libraryRPC library

serverserver

server-stubsserver-stubs

RPC libraryRPC library

1

2

3

8

7

6 5

49

10

32

Steps of a Remote Procedure Call
1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

17

33

RPCs: Issues

" Parameter passing
– value parameters
– reference parameters?

" Marshalling
– simple data types
– complex data structures

" Exception handling
– language dependent
– need to deal with asynchronous events

34

Passing Value Parameters

" Steps involved in doing remote computation through RPC

2-8

18

35

Locating Servers
" Broadcast requests

– broadcast call and process incoming replies
" Name servers

– server registers with name server

stub

client
name server

stub

server
register

Combination: publish/subscribe

stub

client
name server

stub

server
publishsubscribe

36

Communication Protocols for RPC
" Reliable protocols: e.g. TCP
" Unreliable datagram protocols: e.g. UDP
" Specifically designed protocols: Example

Simple Call

(id,request)

(id,reply,ack)
(id,request)

(id,reply,ack)

Client times out and retransmits request.
Three cases:

• request lost
• server still executing
• ack lost

Complicated Call

• long gaps between requests
• acknowledge each message

transmission separately
or
• periodically send “I-am-

alive” message and use
simple-call scheme.

• long messages (don’t fit into
packet)

• segment message
• segment-relative seq #’s
• retransmission scheme for

segments

19

37

RPC in Heterogeneous Environments

" Compile-time support

" Binding protocol

" Transport protocol

" Control protocol

" Data representation

38

Case Study: SUN RPC

" Defines format for messages, arguments, and results.
" Uses UDP or TCP.
" Uses XDR (eXternal Data Representation) to represent

procedure arguments and header data.
" Compiler system to automatically generate distributed

programs.
" Remote execution environment: remote program.

shared data

proc A proc B proc C

remote program

Mutually exclusive execution of procedure in remote program.

20

39

Identifying Remote Programs and
Procedures
" Conceptually, each procedure on a computer is identified by

pair :
(prog, proc)

– prog: 32-bit integer identifying remote program
– proc: integer identifying procedure

" Set of program numbers partitioned into 8 sets.

0x00000000 - 0x1fffffff assigned by SUN
0x20000000 - 0x3fffffff assigned by local system manager
0x40000000 - 0x5fffffff temporary
0x60000000 - 0xffffffff reserved

" Multiple remote program versions can be identified:
(prog, version, proc)

40

Example RPC Program Numbers

name assigned no description
portmap 100000 port mapper

rstatd 100001 rstat, rup, perfmeter

rusersd 100002 remote users

nfs 100003 network file system

ypserv 100004 yp (NIS)
mountd 100005 mount, showmount

dbxd 100006 DBXprog (debug)

ypbind 100007 NIS binder

walld 100008 rwall, shutdown

yppasswdd 100009 yppasswd

21

41

Communication Semantics

" TCP or UDP ?
" Sun RPC semantics defined as function of underlying

transport protocol.
– RPC on UDP: calls can be lost or duplicated.

" at-least-once semantics if caller receives reply.
" zero-or-more semantics if caller does not receive reply.
" Programming with zero-or-more semantics: idempotent

procedure calls.
" Sun RPC retransmission mechanism:

– non-adaptive timeouts
– fixed number of retransmissions

42

Remote Programs and Protocol Ports

" Dynamic port mapping: RPC port mapper

caller remote program
port

program_id vs. port_id

(32 bit) (16 bit)

RPC
program

xx

port
mapper

RPC program
registers

(xx, p)

p 111

port currently used
by this RPC program

well-known port
for port manager

22

43

Sun RPC Message Format: XDR Specification

enum msg_type { /* RPC message type constants */
CALL = 0;
REPLY = 1;

};

struct rpc_msg { /* format of a RPC message */
unsigned int mesgid; /* used to match reply to call */
union switch (msg_type mesgt) {

case CALL : call_body cbody;
case REPLY: reply_body rbody;

} body;
};

struct call_body { /* format of RPC CALL */
u_int rpcvers; /* which version of RPC? */
u_int rprog; /* remote program number */
u_int rprogvers; /* version number of remote prog */
u_int rproc; /* number of remote procedure */
opaque_auth cred; /* credentials for called auth. */
opaque_auth verf; /* authentication verifier */
/* ARGS */

};

44

Message Dispatch for Remote Programs

Proc A1 Proc A2

client stub
for B1

client stub
for B2

dispatcher

server stub
for B1

server stub
for B2

proc B1 proc B2

23

45

Creating Distributed Applications with Sun RPC
Example: Remote Dictionary Using rpcgen

" Procedure call structure:

main

init_dic

insertw deletew

lookupw
nextin

dict1.c
dict2.c

Procedures should execute on the same machines as their resources are located.

46

Specification for rpcgen

Specify:
" constants
" data types
" remote programs,

their procedures,
types of
parameters

/* rdict.x */
/* RPC declarations for dictionary program */
const MAXWORD = 50;
const DICTSIZ = 100;
struct example { /* unused; rpcgen would */
int exfield1; /* generate XDR routines */
char exfield2; /* to convert this structure.*/

};

/* RDICTPROG: remote program that provides
insert, delete, and lookup */

program RDICTPROG { /* name (not used) */
version RDICTVERS { /* version declarat.*/
int INITW(void) = 1;/* first procedure */
int INSERTW(string)= 2;/* second proc.... */
int DELETEW(string)= 3;
int LOOKUP(string) = 4;

} = 1; /* version definit.*/
} = 0x30090949; /* program no */

/* (must be unique)*/

24

47

Program Generation

rpcgen rdict.x

rdict.h

• constants, datatypes
• definitions for remote procedures
rdict_xdr.c

• XDR conversion routines
rdict_clnt.c

• client code: client-side
communication stub.

rdict_svc.c

• server code: server-side
communication stub.

rdict.x

rdict_clnt.c

rdict.h

rdict_xdr.c

rdict_svc.c

rdict_sif.c rdict2.c

cc

cc

rdict_cif.c rdict1.c

rdict (client)

rdictd

rpcgen

48

Any Questions?

See you next time.

