
1

Basics of Computer
Networks (cont.)

CprE 450/550x
Distributed Systems and Middleware

Yong Guan
3216 Coover

Tel: (515) 294-8378
Email: guan@ee.iastate.edu

January 27, 2004

2

Transport Layer

Message Stream (UDP)
Byte-Stream (TCP)

2

3Transport Layer
Outline

– End-to-End Protocols
– Underlying Network Service Model
– Message vs. Byte Streams
– Connection Establishment/Termination
– Sliding Window Revisited
– Flow Control
– Adaptive Timeout

byte stream

Send buffer

segments

Receive buffer

byte stream

Application Application

ACKsTransmitter Receiver

Figure 8.18

4

Physical
layer

Data link
layer

Physical
layer

Data link
layer

End system
α

Network
layer

Network
layer

Physical
layer

Data link
layer

Network
layer

Physical
layer

Data link
layer

Network
layer

Transport
layer

Transport
layer

Messages Messages

Segments

End system
β

Network
service

Network
service

End-to-End Protocols over A Network Layer

3

5Transport Services and Protocols

• Provide logical communication capability between application
processes running on different hosts

• Transport protocols run in end systems
• Transport vs. Network Layer services:

– network layer: data transfer between end systems
– transport layer: data transfer between processes

• relies on, enhances, network layer services

6End-to-End Protocols

• Underlying Best-Effort network (IP)
– drop messages
– re-orders messages
– delivers duplicate copies of a given message
– limits messages to some finite size
– delivers messages after an arbitrarily long delay

• Common End-to-End services
– guarantee message delivery
– deliver messages in the same order they are sent
– deliver at most one copy of each message
– support arbitrarily large messages
– support synchronization
– allow the receiver to flow control the sender
– support multiple application processes on each host

4

7

Application

TCP UDP

IPICMP ARP RARP

Physical
Network

Application

Transport
Layer

IP Related Protocols

8Transport-Layer Protocols

Internet Transport Services:
• TCP: Reliable, in-order unicast delivery

– congestion
– flow control
– connection setup

• UDP: Unreliable (“best-effort”), unordered unicast or multicast
delivery

• Services not supported:
– real-time
– bandwidth guarantees
– reliable multicast.

5

9UDP Overview [RFC 768]

1. UDP is a connectionless datagram service.
� No connection establishment: packets may show up at any time.

2. UDP packets are self-contained.
● Every UDP packet is a single message ;

● “Message-oriented” communication ;

● Message “boundaries” are maintained by UDP ;

● UDP reassenbled at destintation and delivered as single message

3. UDP is unreliable:
1. No acknowledgements to indicate delivery of data.
2. Checksums cover the header, and only optionally cover the data.
3. Contains no mechanism to detect missing or mis-sequenced packets.
4. No mechanism for automatic retransmission.
5. No mechanism for flow control, and so can over-run the receiver.

10User Datagram Protocol (UDP)

• Unreliable and
unordered datagram
service [RFC 768]

• No flow control
• Simple Packet

Multiplexor for Transport
Users
– Endpoints identified

by port numbers:
ports are the de-
multiplexing keys

– servers have well-
known ports

– see /etc/services
on Unix

App

A2

App

A1

UDP

UDP
OS

IP

App

A1

App

B1

App

B2

UDP
OS

IP

Host BHost A

6

11Simple Packet Multiplexor (UDP)

• Header Format [RFC 768]
– Source / Destination Ports: 16 bit integers of source and sink;

– UDP Length: 16 bit unsigned integer for entire datagram.

• Size ≤ 216 (64KB); Fragmentation by IP
– Optional IP checksum: pseudo-header + UDP-header + data

Source Port Destination Port

UDP Length UDP Checksum

Data

0 16 31

0 0 0 0 0 0 0 0 Protocol = 17 UDP Length

Source IP Address

Destination IP Address

0 8 16 31

12User-Datagram Protocol (UDP)

● Applications may prefer using UDP:
● don’t need reliable delivery ;
● do not need connection oriented service or cannot
afford the connection setup overhead ;
● have their own special needs, such as streaming of
real-time audio or video ;
● tftp, RIP, DNS, SNMP, RTP, etc.

7

13

TCP Overview [RFC793, 1122, 1323, 2018, 2581]

• Connection-oriented
• Byte-stream

– Application writes bytes
– TCP sends segments
– appl. reads bytes

Segment Segment Segment

write() bytes
(byte stream)

TCP

Transmit segments

…

…

read()
bytes

TCP

Application
Process

Application
Process

Send Buffer Receive Buffer

Segment stream

…

• Full duplex
• Flow control: keep sender

from overrunning receiver
• Congestion control: keep

sender from overrunning
network

14TCP Characteristics

1. TCP is connection-oriented.
! 3-way handshake used for connection setup/teardown.

2. TCP provides a stream-of-bytes service.
3. TCP is reliable:

! Acknowledgements indicate delivery of data.
! Checksums are used to detect corrupted data.
! Sequence numbers detect missing, or mis-sequenced data.
! Corrupted data is retransmitted after a timeout.
! Mis-sequenced data is re-sequenced.
! (Window-based) Flow control prevents over-run of receiver.

4. TCP uses congestion control to share network capacity
among users.

8

15

User Data

TCP
Header

20 bytes of
TCP header

20 bytes
of IP

header
IP

Header

Figure 8.26

Encapsulation of User Data

• User data are encapsulated in TCP Segments.
• A TCP Segment is the unit of data for user messages.

• Maximum Segment Size (MSS) ≤ Path MTU

16TCP Segment Format

• TCP Segment Format

Source Port Destination Port

Sequence Number

Acknowledgement Number

Checksum Urgent Pointer

Options Padding

0 4 10 16 24 31

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Header
Length Reserved Window Size

Data

9

17
TCP Segment Format – 1

• Source / Destination Ports (16b unsinged int):
– the source and sink port numbers of transport user

• Sequence (Acknowledgement) Numbers (32b unsigned int):
– number of first byte sent (expected from other side) in the

segment to other side
– Initial Sequence Number (ISN) by sender (ISN + 1) (SYN)

• ISN is (must be) chosen at random.
– Acknowledgement Number is byte expected next (ACK)

• Header Length: in 32b words
• Reserved (0)

18
TCP Segment Format – 2

• Flags:
– URG: urgent pointer is valid
– ACK: Acknowledgement number is valid
– PSH: deliver data received by receiving TCP immediately
– RST: Receving TCP must abort connection
– SYN: Connection Request with ISN = SN;
– FIN: Sender has no more data to send to receiving TCP;

•shutdown(sd, 1) /* C */;

• (“Advertised”) Window Size: amount of data receiver is willing to
accept.
– Credit of data

• Urgent Pointer (if URG flag is set)
– points to last byte of “urgent” data;
– any data from beginning of segment to UP are “urgent”

10

19

TCP Header Fields (Cont'd)

• TCP Checksum is computed over
– TCP header + TCP Pseudo-header + TCP segment

data

• Options Field includes optional settings

0 0 0 0 0 0 0 0 Protocol = 6 TCP Segment Length

Source IP Address

Destination IP Address

0 8 16 31

20TCP Segment Structure (Summary)

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

rcvr window size

ptr urgent datachecksum

FSRPAU
head
len

not
used

Options (variable length)

URG: urgent data

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

11

21Segment Format (cont'd)

• Each TCP connection is identified with 4-tuple:
– (TCP, SrcPort, SrcIPAddr, DsrPort, DstIPAddr)

• TCP Sliding Window + Flow Control:
– (acknowledgment, SequenceNum, AdvertisedWindow)

• Flags
– FIN, RESET, PUSH, URG, ACK

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver

22TCP Connection Management

TCP sender, receiver establish
“connection” before exchanging
data segments

• Initialize TCP variables:

– sequence numbers

– buffers, flow control info (e.g.,
RcvWindow)

• client : connection initiator
– socket(); sockaddress;

– connect();

• server : contacted by client
– socket(); sockaddress;
bind(); listen();
accept();

Three way handshake:

Step 1: client end system sends TCP
SYN control segment to server

– specifies initial sequence
number

– sides exchange initialization
parameters, such as MSS.

Step 2: server end system receives
SYN, replies with SYNACK
control segment

– ACKs received SYN

– allocates buffers

– specifies server→ receiver
initial sequence number.

12

23

Host A Host B

SYN, SN(x), MSS(mssA)

SYN, SN(y), ACK, ACK(x +1),

MSS(mssB)

SN(x +1), ACK, ACK(y +1)

Figure 8.22

Active participant
(client)

Passive participant
(server)

TCP Three-way Handshake for Connection
Establishment

• Upon Connection
Establishment, both sides
exchange the Maximum
Segment Sizes (MSS)
which are willing to accept:
– If client is non-local, MSS

= 536 (default)

– 536 = 576 – 20+20

– MSS only if SYN is set

24

Host A Host B

SYN, SN(n)

SYN, SN(m), ACK, ACK(n +1)

SN(n +1), ACK, ACK(m +1)
Delayed segment with
SN (n +2)
will be accepted

TCP: Initial Sequence Number

• The ISN should
change over time
[RFC 793].
– ISN should be

viewed as a
counter which
increments every
4µ−seconds

• When the same initial
sequence number is
chosen by a host, old
segments cannot be
distinguished from
new current ones.

13

25Data Transfer: Sequence Numbers and ACKs

❒ Sequence Numbers:
– byte stream

“number” of first byte
in segment’s data

❒ ACKs:

– seq. # of next byte
expected from other
side

– cumulative ACK

❒ TCP spec doesn’t say
how receiver handles
out-of-order segments

❍ up to implementor

❒ Example next figure:
❍ telnet interaction;

Host A Host B

SN(42), ACK(79),data(‘C’)

SN(79), ACK(43),

data(‘C’)

SN(43), ACK(80)

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

B ACKs
receipt of
‘C’;
echoes
back ‘C’

time

Simple telnet scenario

26TCP Connections: Graceful Close

Closing a TCP connection:
• TCP close is symmetric
• client close(); socket
• Step 1: client end system

sends TCP FIN control
segment to server (client
knows when input has finished

• Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

• Note: Connections stay for
2MSL in TIME_WAIT state;
– MSL = 30, 60, 120 secs

FIN, SN(5086)

ACK(5087)

Data, SN(303), ACK(5087)

Deliver
150 bytes

FIN, SN(453), ACK(5087)

ACK(454)

Host A Host B

ACK(453)

closed

T
IM

E
_W

A
IT

14

27State Transition Diagram

CLOSED

LISTEN

SYN_RCV
D

ESTABLISHE
D

CLOSING

TIME_WAIT

SYN_SENT

FIN_WAIT_1

CLOSE_WAI
T

LAST_ACK

FIN_WAIT_2

active open,create TCB

send SYN

passive open,
create TCB

send SYN

receive SYN,

send SYN, ACK

receive

RST

receiveACK receive SYN, ACK,
send ACKapplic.

close,
send
FIN

applic. cl
ose,

sen
d FIN

receive FIN,send ACK

receive FIN
send ACKreceive FIN, ACK

send ACK
receive

ACK

receive FIN
send ACK

receive
ACK

applic. close
send FIN

receive
ACK

application
close()
or timeout,
delete TCB

2MSL timeout
delete TCB

receive SYN,
send ACK

appl.
close

Figure 8.28

28

Host A (Client) Host B (Server)

SYN, SN(x)

SYN, SN(y), ACK, ACK(x+1)

SN(x +1), ACK, ACK(y +1)

socket()
bind()
listen()
accept()
blocking

socket()
connect()

blocking

connect()
returns

accept returns
read()
blocks

write()
read()

(blocking)
read returns

write()
read (blocks)

read returns

request message

reply message

TCP and POSIX Socket API

15

29TCP: Reliable Data Transfer

Simplified Sender
Assume:

1. one way data transfer ;
2. no flow control ;
3. no congestion control .

wait
for

event

wait
for

event

event: data received
from application above

event: timer timeout for
segment with seq # y

event: ACK received,
with ACK # y

Create and Send segment

Retransmit segment

ACK processing

30TCP ACK Generation [RFC 1122, RFC 2581]

Event

in-order segment arrival,
no gaps,
everything else already ACKed

in-order segment arrival,
no gaps,
one delayed ACK pending

out-of-order segment arrival
higher-than-expect seq. #
gap detected

arrival of segment that
partially or completely fills gap

TCP Receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single
cumulative ACK

send duplicate ACK, indicating seq. #
of next expected byte

immediate ACK if segment starts
at lower end of gap

16

31TCP: Reliable Data Transfer (SSender)

Simplified TCP Sender (SSender)
00 sendbase = initial_sequence number ;
01 nextseqnum = initial_sequence number ;
03 while (TRUE) {
04 switch (event)
05 event Data received from application above :
06 create TCP segment with sequence number nextseqnum ;
07 start timer for segment nextseqnum ;
08 pass segment to IP;
09 nextseqnum = nextseqnum + length(data) ;
10 event Timer Timeout for segment with sequence number y :
11 Retransmit segment with sequence number y ;
12 compue new timeout interval for segment y ;
13 restart timer for sequence number y ;
14 event ACK received, with ACK field value of y :
15 if (y > sendbase) { /* cumulative ACK of all data up to y */
16 cancel all timers for segments with sequence numbers < y ;
17 sendbase = y ;
19 } else { /* a duplicate ACK for already ACKed segment */
20 increment number of duplicate ACKs received for y ;
21 if ((number of duplicate ACKS received for y) == 3) {
22 /* TCP fast retransmit */
23 resend segment with sequence number y ;
24 restart timer for segment y ;
25 }
26 } /* end of while (TRUE) */

32

TCP Basic Problem: Flow Control
• How much traffic can sender introduce in a connection and the

network?
� How much data can a TCP sender have outstanding in the

network?
� How much data should TCP retransmit when an error occurs?

Just selectively repeat the missing data?
� How does the TCP sender avoid over-running the receiver’s

buffers?

• Two components

1. Flow Control: Make sure that the receiver can receive as
fast as you send them out ;

2. Congestion Control: Make sure that the network can
deliver the packets to the receiver as fast as you send them
out.

17

33

TCP Flow Control
sender shouldn’t overrun

receiver’s buffers by
transmitting data too fast

Receiver must determine the
data rate

TCP Window Flow Control

TCP Receiver: explicitly informs sender of (dynamically
changing) amount of free buffer space in RcvBuffer
– RcvWindow field in TCP Header contains the free

buffer space
TCP Sender: keeps the amount of transmitted, unACKed

data less than most recently received RcvWindow

RcvBuffer = size or TCP Receive Buffer
RcvWindow = amount of spare room in Buffer
RcvWindow = Advertised Window

TCP Receiver Buffering

TCP
Data in
Buffer

Spare
Space

Application
Process

RcvBuffer

RcvWindow

Data
from IP

34Sliding Window Flow-Control Revisited

• Sending TCP side
– LastByteAcked < =
LastByteSent

– LastByteSent < =
LastByteWritten

– buffer bytes between
LastByteAcked and
LastByteWritten

LastByteWritten
TCP

LastByteSentLastByteAcked

LastByteRead

LastByteRcvdNextByteExpected

Sending Application Receiving Application

TCP

• Receiving TCP side
– LastByteRead <

NextByteExpected
– NextByteExpected < =

LastByteRcvd +1
– buffer bytes between

NextByteRead and
LastByteRcvd

18

35TCP Flow Control

• TCP Send buffer size: MaxSndBuff
• TCP Receive buffer size: MaxRcvBuff

• Receiving side:
– LastByteRcvd – LastByteRead ≤ MaxRcvBuff
– AdvertisedWind = MaxRcvBuff - (LastByteRcvd -
NextByteRead)

• Sending side
– LastByteSent - LastByteAcked ≤ AdvertisedWindow
– EffectiveWind = AdvertisedWind - (LastByteSent -
LastByteAcked)

– LastByteWritten - LastByteAcked ≤ MaxSendBuff
– if ((LastByteWritten - LastByteAcked) + y > MaxSenderBuff)

block sender; /* application write() blocks */

• Always send ACK in response to arriving data segment
– See later TCP ACK transmisstion policies

• Persist when AdvertisedWind = 0

36TCP Flow Control

• Receiver window (MaxRcvBuff – maximum buffer size at
receiver)

• Sender window (MaxSendBuff – maximum size at sender)

LastByteAcked LastByteSent

LastByteWritten

Sending Application

NextByteExpected LastByteRcvd

LastByteRead

Receiving Application

Sequence Number increases

AdvertisedWind = MaxRcvBuff – (LastByteRcvd – LastByteRead)
EffectiveWind = AdvertisedWind – (LastByteSent – LastByteAcked)
MaxSendBuff ≥ LastByteWritten – LastByteAcked

Sequence Number increases

19

37

Rlast highest-numbered octet not yet
read by the application
Rnext next expected octet
Rnew highest numbered octet received
correctly
Rlast+WR-1 highest-numbered octet that
can be accommodated in receive
buffer

Transmitter Receiver

Receive Window

Slast Slast+Ws-1

...

Send Window

Srecent
Rnext

... ...

Slast+Wa-1 Rlast
Rlast+WR+1

Slast oldest unacknowledged octet
Srecent highest-numbered transmitted
octet
Slast+Wa-1 highest-numbered octet that
can be transmitted
Slast+Ws-1 highest-numbered octet that
can be accepted from the application

Rnew

Octets
transmitted
and ACKed

TCP Sender and Receiver State [Gavi]

38

Host A Host B

SN(2000), ACK(1), AWin(1024),Data(2000 –3023)

SN(1), ACK(4048), AWin(512),

Data(1 – 128)

SN(3024), ACK(1), AWin(1024),Data(3024 – 4047)

SN(4048), ACK(129), AWin(1024),
Data(4048-4559)

t1

t2

t3

t4

SN(1), ACK(2000), AWin(2048),

No Data

t0

TCP Window Flow Control

• TCP exchange of
segments and ACKs

• TCP: Window Flow-Control
receiver sends explicit
amount of free space in
RcvBuffer (credit amount)

• SN(n): sequence number
n,

• ACK(m): acknowledge
m-1

• AWin(k): the amount of
credit at TCP receiver
buffer (advertised
window or
AdvertisedWind)

20

39

Flow Control: Window Size and Throughput

" Sliding-window based flow
control:

- Higher window → higher
throughput

- Throughput = wnd/RTT

- Need to worry about
sequence number
wrapping

" Window size controls
throughput:

- WS ≥ 2α + 1
- Familiar ?

wnd = 3
segment 1
segment 2
segment 3

ACK 1

segment 4

ACK 2

segment 5
segment 6

ACK 3

R
T

T
 (

R
ou

nd
 T

rip
 T

im
e)

40

Host A

Host B
ACK

TWindow Size

Round-trip time

(1) RTT > TWindow Size

ACK

TWindow Size

Round-trip time

(2) RTT = TWindow Size

ACK

TWindow SizeChannel

Idle

Flow Control: Window Size and Throughput

21

41

TCP Round Trip Time and Timeout

TCP Retransmission
Timeout Value

• Longer than RTT
– RTT is varying with

time
• Too short: premature

timeout
– unnecessary

retransmissions
• Too long: slow reaction

to segment loss

RTT Estimation
• SampleRTT: measured time

from segment transmission
until ACK receipt
– ignore retransmissions,

cumulatively ACKed
segments

• SampleRTT will vary, want
estimated RTT “smoother”
– use several recent

measurements, not just
current SampleRTT

42

TCP: Retransmission and Timeouts

Sender

ACK(2
)

Round-trip time (RTT) Retransmission TimeOut (RTO)

Estimated RTTSegm
ent(1)

Safety
Margin

TCP has to use adaptive retransmission timeout values:
Congestion

Changes in Routing
RTT changes
frequently

Receiver

Segm
ent(2)

ACK(3
) X

22

43Adaptive Retransmission (Original Algorithm)

SampleRTT = AckRcvdTime – SendSegmentTime
EstimatedRTT= α × EstimatedRTT + (1 - α) × SampleRTT
TimeOut = β × EstimatedRTT,
where 0 < α ≤ 1, (in practice α between 0.8 and 0.9, β = 2)

E
st

im
at

ed
R

T
T

SampleRTT

Time

• Measure SampleRTT for each TCP segment / ACK pair
• Compute smoothed estimator EstimatedRTT of RTT with a

low-pass filter (*)
• Set timeout based on EstimatedRTT [RFC 793]

– TimeOut = 2 × EstimatedRTT

Sender Receiver
Segment TransmissionSN(n)

ACK(n +1)S
am

pl
eR

T
T

44Karn/Partridge Algorithm [1987]

• Do not sample RTT when retransmitting
– Measure SampleRTT only for original transmissions

• Double timeout after each retransmission

– Exponential backoff → for each retransmission,
double EstimatedRTT

Sender Receiver

Original transmission

ACK

S
am

pl
eR

T
T

Retransmission

Sender Receiver

ACK

RetransmissionS
am

pl
eR

T
T

Original transmission

23

45

TCP: Retransmission Scenarios

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

time Lost ACK scenario

X

Seq=92, 8 bytes data

ACK=100

Host B

Seq=100, 20 bytes data

ACK=100

S
eq

=
92

 ti
m

eo
ut

time Premature timeout,
Cumulative ACKs

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

S
eq

=
10

0
tim

eo
ut

ACK=120

Host A Host B

46Jacobson/Karels Algorithm

• Smoothed estimator EstimatedRTT of RTT cannot follow dynamic
fluctuations of in the RTT [Jacobson 1988, 1990]

• Need to take into account the variance in SampleRTT

• Note
– accurate timeout mechanism important to congestion control
– algorithm only as good as granularity of clock (500ms on OLD UNIX

systems; modern UNIX 10ms is common)

diff = SampleRTT – EstimatedRTT ;
EstimatedRTT = EstimatedRTT + δ × diff ;
Deviation = Deviation + δ × (| diff | - Deviation) ;
TimeOut = µ × EstimatedRTT + ϕ × Deviation ;
0 < δ ≤ 1,
µ = 1,
φ = 4

24

47

TCP: Implementation Policy Options – 1

• Several policy implementation posibilities are left open by the TCP
standard.
– Send Policy : if PUSH flag is unset and window closed, TCP buffers

application data in the TCP_Transmit_Buffer. TCP may create one
segment per write() or it may concatenate all written data into one
message.

– Delivery Policy : If PUSH flag is unset, receiving TCP may deliver to
application received data, either in units as each segment arrives, or it
may buffer them until the total amount of data exceeds a threshold.

– Segment Accept Policy : Segment data are accumulated in the
TCP_Receive_Buffer as they arrive. When segments arrive out of order
TCP can accept segments:

• In-Order : out of order segments are discarded; this operates similar
to Go-Back-N window flow control ;

• In-Window : accept segments falling within the receive window ;

48

TCP: Implementation Policy Options – 2

• TCP policy implementation (cond't)
– Retransmit Policy : TCP has to retransmit a segment SN(n) if ACK(n+1)

is not received in due time. There are three re-transmission policies:

• First-Only : One re-tranmission timer is maintained for the entire
send queue. ACKs reset timer and allow TCP to remove the ACKed
segments from the queue. On timer expiration TCP retransmits
segment at front of queue and resets the timer ;

• Batch : One re-tranmission timer is maintained for the entire send
queue. ACKs reset timer and allow TCP to remove the ACKed
segments from the queue. On timer expiration TCP retransmits all
segment in the queue and resets the timer ;

• Individual : One re-tranmission timer is maintained for each
segment in the send queue. ACKs reset timers and allow TCP to
remove the ACKed segments from the queue. On timer expiration
TCP retransmits the corresponding segment and resets the timer ;

25

49TCP: Implementation Policy Options – 3

• TCP policy implementation (cond't)
– Acknowledgement Policy : when TCP receives a segment

that is in sequence SN(n), has two options:
• Immediate Acknowledgement : After data is accepted by

application TCP imediately sends ACK(n+1) frame ;
• Cummulative Acknowledgement : TCP may continue

accumulating data waiting until an outbound segment is
ready within which ACK(n+1) is piggybacked. A timer for
the ACK(n+1) is set to expire in case that no outbound
segments need to be transmitted in the near future.

50

TCP Error Control

• TCP implements a variation of Go-Back-N ARQ
retransmission error-control scheme.

• It couples error and congestion control:
– errors are caused by congestion

• TCP maintains four timers per connection.

26

51TCP Implementations: Timers

• TCP maintains four timers per connection.
– Retransmission Timer: started after the transmission of a

segment; expirations causes segment retransmission;
– Persist Timer: used to ensure that window credit

information is replied to, even if the other side (receiver)
has advertised window size = 0;

– Keepalive Timer : used to periodically probe the other side
and detect crashes ;

– 2MSL Timer : measures the time a connection has been in
TIME_WAIT state.

52

TCP Implementations: Retransmission Timer

• Retransmission Timer (RT): it is started after the transmission
of a segment SN(n); expirations causes retransmission of this
segment ;
– The RT doubles its timer period when consecutive time

outs take place ;

– RT ≤ 64 seconds, always ;
– TCP gives up after a fixed number of retransmissions

(~14).

27

53

TCP Implementations: Persist Timer

• Persist Timer (PT): is used to let sender probe periodically the
receiver with a one byte segment, of its flow control window
size (advertised window) in order to detect when it increases
above zero.
– When a receiver's advertised window goes down to zero

and the ACK that notifies the sender that it has been
opened is lost, is lost the sender wont be notified of the
possibility of restarting transmission.

– The PT forces the sender to query the receiver about its
advertised window size ; the PT is started by the sender ;

– PT is also exponentially backed-off, rounded to 5sec ;

– PT = { 5, 5, 6, 12, 24, 48, 60, 60, ... }, 5 ≤ RT ≤ 64 seconds,
always ;

– TCP continues to probe until advertised window > 0.

54TCP Implementations: Keep-alive Timer

• Keep-alive Timer (AT): is used to let a TCP probe periodically
the other side to make sure that it is still alive.
– A probe packet is sent after the connection has been idle

for 2 hours ;
– After A has probed B:

• B responds with an ACK B is up and running;
• No response from B B has crashed ;

A will send 10 more probes,
each 75sec apart. If still no
response, A closes the con-
nection.

• B responds with a RST B was rebooted; it resets ;
• B responds with a RST B is up but unreachable; it

resets ;

28

55

Transport Layer and Congestion Control

Congestion:
• Informally: “too many sources sending too much data too fast

for network to handle”

• Different from flow control
• Manifestations:

– lost packets (buffer overflow at routers)
– long delays (queueing in router buffers)

• A very important (and often very hard to solve) problem!

56TCP Congestion Control

• Two “phases”
– slow start
– congestion avoidance

• Variables:
– Congwin

– threshold: defines
threshold between two
slow start phase,
congestion control phase

• Probing for usable bandwidth:
– ideally: transmit as fast as

possible (Congwin as large
as possible) without loss

– increase Congwin until loss
(congestion)

– loss: decrease Congwin,
then begin probing
(increasing) again

29

57TCP Congestion Control

• End-to-End control (no
network assistance)

• Transmission rate limited
by congestion window size,
Congwin, over segments

• w segments, each with
MSS bytes sent in one
RTT:

Throughput =
w × MSS

RTT
Bytes/sec

Transmitter

Slast

...

Send Window

Srecent

... ...

Slast+Wa-1

Slast oldest unacknowledged octet
Srecent highest-numbered transmitted
octet
Slast+Wa-1 highest-numbered octet that
can be transmitted
Slast+Ws-1 highest-numbered octet that
can be accepted from the application

Octets /
segments

transmitted
and ACKed

Slast+Ws-1

w

58Transport Layer: Summary

• Principles behind transport layer services:
– multiplexing/demultiplexing
– reliable data transfer
– flow control
– congestion control

• Implementation in the Internet
– UDP
– TCP

30

59

Application Layer

60

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

remote file server
Internet telephony

Application
layer protocol

smtp [RFC 821]
telnet [RFC 854]
http [RFC 2068]
ftp [RFC 959]
proprietary
(e.g. RealNetworks)
NSF
proprietary
(e.g., Vocaltec)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP
typically UDP

31

61

The Web: the http protocol

http: hypertext transfer protocol

• Web’s application layer
protocol

• client/server model
– client: browser that

requests, receives,
“displays” Web objects

– server: Web server sends
objects in response to
requests

• http1.0: RFC 1945

• http1.1: RFC 2068

PC running
Explorer

Server
running

NCSA Web
server

Mac running
Navigator

http request

http request

http response

http response

62

The http protocol: more

http: TCP transport service:

• client initiates TCP connection
(creates socket) to server, port
80

• server accepts TCP connection
from client

• http messages (application-layer
protocol messages) exchanged
between browser (http client)
and Web server (http server)

• TCP connection closed

http is “stateless”

• server maintains no
information about past
client requests

Protocols that maintain “state”
are complex!

• past history (state) must be
maintained

• if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

32

63

http example
Suppose user enters URL

www.someSchool.edu/someDepartment/home.index

1a. http client initiates TCP
connection to http server
(process) at
www.someSchool.edu. Port 80 is
default for http server.

2. http client sends http request
message (containing URL) into
TCP connection socket

1b. http server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. http server receives request
message, forms response
message containing requested
object
(someDepartment/home.index),
sends message into socket

time

(contains text,
references to 10

jpeg images)

64

http example (cont.)

5. http client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. http server closes TCP
connection.

time

33

65Non-persistent, persistent
connections

Non-persistent
• http/1.0: server parses

request, responds, closes
TCP connection

• 2 RTTs to fetch object
– TCP connection

– object request/transfer

• each transfer suffers from
TCP’s initially slow sending
rate

• many browsers open multiple
parallel connections

Persistent
• default for htp/1.1

• on same TCP connection:
server, parses request,
responds, parses new
request,..

• client sends requests for all
referenced objects as soon
as it receives base HTML.

• fewer RTTs, less slow start.

66

http message format: request

• two types of http messages: request, response
• http request message:

– ASCII (human-readable format)

GET /somedir/page.html HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif,image/jpeg
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

34

67

http request message: general format

68

http message format: response

HTTP/1.0 200 OK
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
html file

35

69

http response status codes

200 OK
– request succeeded, requested object later in this message

301 Moved Permanently
– requested object moved, new location specified later in this

message (Location:)

400 Bad Request
– request message not understood by server

404 Not Found
– requested document not found on this server

505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

70

Trying out http (client side) for yourself

1. Telnet to your favorite Web server:
Opens TCP connection to port 80
(default http server port) at www.eurecom.fr.
Anything typed in sent
to port 80 at www.eurecom.fr

telnet www.eurecom.fr 80

2. Type in a GET http request:
GET /~ross/index.html HTTP/1.0 By typing this in (hit carriage

return twice), you send
this minimal (but complete)
GET request to http server

3. Look at response message sent by http server!

36

71

User-server interaction: authentication
Authentication : control access to

server content
• authorization credentials:

typically name, password

• stateless: client must present
authorization in each request

– authorization: header line in
each request

– if no authorization: header,
server refuses access,
sends
WWW authenticate:

header line in response

client server
usual http request msg
401: authorization req.
WWW authenticate:

usual http request msg
+ Authorization: <cred>

usual http response msg

usual http request msg
+ Authorization: <cred>

usual http response msg time

72

Cookies: keeping “state”

• server-generated # ,
server-remembered #, later
used for:

– authentication

– remembering user
preferences, previous
choices

• server sends “cookie” to
client in response msg
Set-cookie: 1678453

• client presents cookie in
later requests
cookie: 1678453

client server
usual http request msg
usual http response +
Set-cookie: #

usual http request msg
cookie: #

usual http response msg

usual http request msg
cookie: #

usual http response msg

cookie-
spectific

action

cookie-
spectific

action

37

73

Conditional GET: client-side caching

• Goal: don’t send object if
client has up-to-date cached
version

• client: specify date of cached
copy in http request
If-modified-since:
<date>

• server: response contains no
object if cached copy is up-to-
date:
HTTP/1.0 304 Not
Modified

client server
http request msg

If-modified-since:
<date>

http response
HTTP/1.0

304 Not Modified

object
not

modified

http request msg
If-modified-since:

<date>

http response
HTTP/1.1 200 OK

<data>

object
modified

74

Web Caches (proxy server)

• user sets browser: Web
accesses via web cache

• client sends all http
requests to web cache

– object in web cache:
web cache returns
object

– else web cache
requests object from
origin server, then
returns object to client

Goal: satisfy client request without involving origin
server

client

Proxy
server

client

http request

http request

http response

http response

http request

http response

origin
server

origin
server

38

75

Why Web Caching?

Assume: cache is “close” to client
(e.g., in same network)

• smaller response time: cache
“closer” to client

• decrease traffic to distant
servers
– link out of institutional/local

ISP network often
bottleneck

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

76

Electronic Mail

Three major components:

• user agents

• mail servers
• simple mail transfer protocol:

smtp

User Agent

• a.k.a. “mail reader”

• composing, editing, reading
mail messages

• e.g., Eudora, Outlook, elm,
Netscape Messenger

• outgoing, incoming messages
stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

39

77

Electronic Mail: mail servers

Mail Servers

• mailbox contains incoming
messages (yet to be read) for
user

• message queue of outgoing (to
be sent) mail messages

• smtp protocol between mail
servers to send email messages

– client: sending mail server

– “server”: receiving mail
server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

78

Electronic Mail: smtp [RFC 821]

• uses tcp to reliably transfer email msg from client to server, port
25

• direct transfer: sending server to receiving server

• three phases of transfer
– handshaking (greeting)

– transfer of messages

– closure

• command/response interaction

– commands: ASCII text
– response: status code and phrase

• messages must be in 7-bit ASCII

40

79

Sample smtp interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

80

Try smtp interaction for yourself:

• telnet servername 25

• see 220 reply from server
• enter HELO, MAIL FROM, RCPT TO, DATA,

QUIT commands

above lets you send email without using email
client (reader)

41

81

smtp: final words
• smtp uses persistent

connections
• smtp requires message

(header & body) to be in
7-bit ASCII

• certain character strings
not permitted in msg
(e.g., CRLF.CRLF). Thus
msg has to be encoded
(usually into either base-
64 or quoted printable)

• smtp server uses
CRLF.CRLF to determine
end of message

Comparison with http:

• http: pull
• email: push

• both have ASCII
command/response
interaction, status codes

• http: each object
encapsulated in its own
response msg

• smtp: multiple objects
sent in multipart msg

82

Mail message format

smtp: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

• header lines, e.g.,
– To:

– From:
– Subject:

different from smtp
commands!

• body
– the “message”, ASCII

characters only

header

body

blank
line

42

83

Message format: multimedia extensions

• MIME: multimedia mail extension, RFC 2045,
2056

• additional lines in msg header declare MIME
content type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

84

MIME types
Content-Type: type/subtype;

parameters

Text
• example subtypes:
plain, html

Image
• example subtypes:
jpeg, gif

Audio
• exampe subtypes: basic

(8-bit mu-law encoded),
32kadpcm (32 kbps
coding)

Video
• example subtypes:
mpeg, quicktime

Application
• other data that must be

processed by reader
before “viewable”

• example subtypes:
msword, octet-
stream

43

85

Multipart Type
From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=98766789

--98766789
Content-Transfer-Encoding: quoted-printable
Content-Type: text/plain

Dear Bob,
Please find a picture of a crepe.
--98766789
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data
--98766789--

86

Mail access protocols

• SMTP: delivery/storage to receiver’s server
• Mail access protocol: retrieval from server

– POP: Post Office Protocol [RFC 1939]
• authorization (agent <-->server) and download

– IMAP: Internet Mail Access Protocol [RFC 1730]
• more features (more complex)
• manipulation of stored msgs on server

– HTTP: Hotmail , Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP POP3 or
IMAP

receiver’s mail
server

44

87

POP3 protocol

authorization phase

• client commands:
– user: declare username

– pass: password

• server responses
– +OK

– -ERR

transaction phase, client:
• list: list message numbers

• retr: retrieve message by
number

• dele: delete

• quit

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user alice
S: +OK
C: pass hungry
S: +OK user successfully logged on

88

DNS: Domain Name System

People: many identifiers:

– SSN, name, passport #

Internet hosts, routers:
– IP address (32 bit) - used

for addressing datagrams

– “name”, e.g.,
gaia.cs.umass.edu - used
by humans

Q: map between IP addresses
and name ?

Domain Name System:

• distributed database
implemented in hierarchy of
many name servers

• application-layer protocol host,
routers, name servers to
communicate to resolve names
(address/name translation)
– note: core Internet function,

implemented as application-
layer protocol

– complexity at network’s
“edge”

45

89

DNS name servers
• no server has all name-to-IP

address mappings

local name servers:

– each ISP, company has local
(default) name server

– host DNS query first goes to
local name server

authoritative name server:
– for a host: stores that host’s

IP address, name

– can perform name/address
translation for that host’s
name

Why not centralize DNS?

• single point of failure
• traffic volume

• distant centralized database

• maintenance

doesn’t scale!

90

DNS: Root name servers
• contacted by local name server that can not resolve name

• root name server:

– contacts authoritative name server if name mapping not known
– gets mapping

– returns mapping to local name server

b USC-ISI Marina del Rey, CA
l ICANN Marina del Rey, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA

i NORDUnet Stockholm

k RIPE London

m WIDE Tokyo

a NSI Herndon, VA
c PSInet Herndon, VA
d U Maryland College Park, MD
g DISA Vienna, VA
h ARL Aberdeen, MD
j NSI (TBD) Herndon, VA

13 root name
servers worldwide

46

91

Simple DNS example

host surf.eurecom.fr wants
IP address of
gaia.cs.umass.edu

1. contacts its local DNS server,
dns.eurecom.fr

2. dns.eurecom.fr contacts
root name server, if necessary

3. root name server contacts
authoritative name server,
dns.umass.edu, if
necessary

requesting host
surf.eurecom.fr

gaia.cs.umass.edu

root name server

authorititive name server
dns.umass.edu

local name server
dns.eurecom.fr

1

2
3

4
5

6

92

DNS example
Root name server:

• may not know
authoritative name
server

• may know intermediate
name server: who to
contact to find
authoritative name
server

requesting host
surf.eurecom.fr

gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

1

2
3

4 5

6

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

47

93

DNS: iterated queries
recursive query:

• puts burden of name
resolution on contacted
name server

• heavy load?

iterated query:
• contacted server

replies with name of
server to contact

• “I don’t know this
name, but ask this
server”

requesting host
surf.eurecom.fr

gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

1

2
3

4

5 6

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

iterated query

94

DNS: caching and updating records

• once (any) name server learns mapping, it
caches mapping
– cache entries timeout (disappear) after

some time
• update/notify mechanisms under design by

IETF
– RFC 2136
– http://www.ietf.org/html.charters/dnsind-charter.html

48

95

DNS records
DNS: distributed db storing resource records (RR)

• Type=NS
– name is domain (e.g.

foo.com)
– value is IP address of

authoritative name server
for this domain

RR format: (name, value, type,ttl)

• Type=A
– name is hostname
– value is IP address

• Type=CNAME
– name is alias name for some

“cannonical” (the real) name

www.ibm.com is really

servereast.backup2.ibm.com

– value is cannonical name

• Type=MX
– value is name of mailserver

associated with name

96

DNS protocol, messages
DNS protocol : query and reply messages, both with

same message format

msg header
• identification: 16 bit # for

query, reply to query uses
same #

• flags:

– query or reply

– recursion desired

– recursion available

– reply is authoritative

49

97

DNS protocol, messages

Name, type fields
for a query

RRs in reponse
to query

records for
authoritative servers

additional “helpful”
info that may be used

98

Any Questions?

See you next time.

