CprE 450/550x Distributed Systems and Middleware

Basics of Computer Networks (cont.)

Yong Guan 3216 Coover Tel: (515) 294-8378 Email: <u>guan@ee.iastate.edu</u> January 22, 2004

Challenge 2: Different Packet Sizes

7

8

- Define a maximum packet size over all networks. Why not?
- Implement fragmentation/re-assembly
 - who is doing fragmentation?
 - who is doing re-assembly?

Other Challenges

- Errors \rightarrow require end-to-end reliability
 - Add a transport layer on top of IP
- Different (routing) protocols \rightarrow coordinate these protocols

IP: Global Addresses					23
 Properties globally unique, meaningful to IP layer; hierarchical: network + host Five classes of IP addresses "Classful Addressing" 					
Bit position	n:0123	8	16	31	_
Class A	0 Net II)	Host	ID	
Class B	1 0	Net ID		Host ID]
Class C	1 1 0	Ne	et ID	Host ID]
Class D	1 1 1 0 Multicast Address				
Class E	1 1 1 Reserved for experiments				

ARP Address Translation

31

- DLL requires L2 (MAC/hw) address to use for DA in the L2 frame.
- IP does not know L2 addresses.
- Mechanism to map IP (32b) numbers → physical addresses (48b)
 - destination host
 - next hop router
- Approaches
 - encode physical address in host part of IP address ;
 - table-based.

Internet Control Message Protocol (ICMP)

35

- ICMP [RFC 792] is a "sibling" protocol with IP and it is used by hosts, routers, gateways to communicate network-level information among each other.
- ICMP is a Request / Reply protocol.
- Services:
 - ECHO Request / Reply (ping)
 - Timestamp Request / Reply (ping)
 - Redirect (from router to source host)
 - Destination unreachable (protocol, port, or host)
 - TTL exceeded (stop datagram endless "cycling")
 - Checksum failed
 - Reassembly failed
 - Cannot fragment

36 ICMP: Internet Control Message Protocol Type Code description ICMP is used by hosts, routers, echo reply (ping) 0 0 gateways to communicate 3 0 dest. network unreachable network-level information 3 1 dest host unreachable - error reporting: unreachable 3 2 dest protocol unreachable host, network, port, protocol 3 3 dest port unreachable - echo request/reply (used by 3 6 dest network unknown ping) 3 7 dest host unknown network-layer "above" IP: 4 0 source quench (congestion - ICMP msgs carried in IP control - not used) datagrams 5 redirects х ICMP message: type, code plus 8 0 echo request (ping) first 8 bytes of IP datagram 9 0 route advertisement causing error 10 0 router discovery ping 11 0 TTL expired traceroute 12 0 bad IP header 13 0 timestamp request, + 17 0 addrmask request, +

