CprE 450/550x Distributed Systems and Middleware

Security

Yong Guan 3216 Coover Tel: (515) 294-8378 Email: guan@ee.iastate.edu April 29, 2004

Readings for Today's Lecture

- References
- > Chapter 8 of "Distributed Systems: Principles and Paradigms" Ross Anderson, "Security Engineering"

Security Threats

- Leakage: An unauthorized party gains access to a service or data (eavesdropping).
- Tampering: Unauthorized change of data, tampering with a service
- Vandalism: Interference with proper operation, without gain to the attacker

Security Threats in Comm. Channels

- Eavesdropping Obtaining copies of messages without authority.
- Masquerading Sending or receiving messages with the identity of another principal.
- Message tampering Intercepting messages and altering their contents before passing them onto the intended recipient.
- Replaying Intercepting messages and sending them at a later time.
- Denial of Service Attack flooding a channel or other resources with messages.

Security Policies & Mechanisms

Security Policy indicates which actions each entity (user, data, service) is allowed or prohibited to take.

- Security Mechanism enforces the policy

 - Encryption: transform data to a form only understandable by authorized users.
 Authentication: verify the claimed identity of a user, client, service, program, etc.
 - Authorization: verify access rights for an authenticated entity.
 - Auditing: make record of and check access to data and resources. Mainly an analysis tool to measure the success of security policies and mechanisms

Familiar Names for Principals in Security Protocols

- Alice First participant
- Bob Second participant
- Carol Participant in three- and four-party protocols
- Dave Participant in four-party protocols
- Eve Eavesdropper
- Mallory Malicious attacker
- A server Sara

Authentication

- Use of cryptography for safeguarding communication between two principals.
- In direct authentication, the server uses a shared secret key to authenticate the client.
- In indirect authentication, a trusted authentication server provides a ticket to an authenticated client.
- The authentication server knows keys of principals and generates temporary shared keys.
 In electronic commerce or wide area applications,
- public/private key pairs are used rather than shared keys.

., ,		
Header	Message	Notes
1. A->S:	A, B, N _A	A requests S to supply a key for communication with B.
2. S->A:	$ \{ N_A, B, K_{AB'} \\ \{ K_{AB'}, A \}_{KB} \}_{KA} $	S returns a message encrypted in A's secret key, containing a newly generated key K_{AB} and a "ticket" encrypted in B's secret key. The nonce N_A demonstrates that the message was sent in response to the preceding one. A believes that S sent the message because only S knows A's secret key.
3. A->B:	$\{K_{AB^*}A\}_{KB}$	A sends the 'ticket' to B.
4. B->A:	$\{N_B\}_{KAB}$	B decrypts the ticket and uses the new key K_{AB} to encrypt another nonce N_B .
5. A->B:	$\{N_B - 1\}_{K\!A\!B}$	A demonstrates to B that it was the sender of the previous message by returning an agreed transformation of N

ublic-Key Certificate for Bob's Bank				
1. Certificate type	Public key			
2. Name	Bob's Bank			
3. Public key	K _{Bpub}			
4. Certifying authority	Fred – The Bankers Federation			
5. Signature	$\{Digest(field 2 + field 3)\}_{K_{Fniv}}$			

- Control of access to resources of a server.
- A basic form of access control checks <principal, op, resource> requests for:
 - Authenticity of the principal or its credentials.
 - Access rights for the requested resource & op.
- Access control matrix M.
 - Each principal is represented by a row, and each resource object is represented by a column.
 - M(s,o) lists precisely what operations principal s can request to be carried out on resource o.
 May be sparse.
- Access control list (ACL)
 - * Each object maintains a list of access rights of principals, I.e., an ACL is some column in M with the empty entries left out.

Model
 Each user stores a subset of files Each user has access (can download) files from all users in the system

Insert
 Searching: like query, but nodes maintain state after a collision is detected and the reply is sent back to the originator
 Insertion
Follow the forward path; insert the file at all nodes along the path
A node probabilistically replace the originator with itself; obscure the true originator

Freenet Summary

- Advantages
 - Provides publisher anonymity Totally decentralize architecture \rightarrow robust and scalable
 - Resistant against malicious file deletion
- Disadvantages
 Does not always guarantee that a file is found, even
 if the file is in the network

Data Structure

Assume identifier space is 0..2^m

• Each node maintains

Finger table Entry / in the finger table of n is the first node that succeeds or equals $n + 2^{i}$

Predecessor node

An item identified by *id* is stored on the succesor node of *id*

Node Joining	72
 Node n joins the system: n picks a random identifier, id n performs n' = lookup(id) n->successor = n' 	-

10
12