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Security Threats

+** Leakage: An unauthorized party gains
access to a service or data (eavesdropping).

*¢ Tampering: Unauthorized change of data,
tampering with a service

**Vandalism: Interference with proper
operation, without gain to the attacker

Security Threats in Comm. Channels

+» Eavesdropping - Obtaining copies of messages without
authority.

+*» Masquerading - Sending or receiving messages with the
identity of another principal.

+» Message tampering - Intercepting messages and altering
their contents before passing them onto the intended
recipient.

**Replaying - Intercepting messages and sending them at a
later time.

*»*Denial of Service Attack - flooding a channel or other
resources with messages.




Security Policies & Mechanisms

¢+ Security Policy indicates which actions each entity
(user, data, service) is allowed or prohibited to take.
+* Security Mechanism enforces the policy
> Encryption: transform data to a form only

understandable by authorized users.

» Authentication: verify the claimed identity of a user,
client, service, program, etc.

» Authorization: verify access rights for an authenticated
entity.

» Auditing: make record of and check access to data and
resources. Mainly an analysis tool to measure the success
of security policies and mechanisms

Familiar Names for Principals in Security
Protocols

Alice First participant

Bob Second participant

Carol Participant in three- and four-party protocols
Dave Participant in four-party protocols

Eve Eavesdropper

Mallory Malicious attacker

Sara A server




Cryptography Notations

Ka Alice's secret key

Kg Bob's secret key

Kag Secret key shared between Alice and Bob

Kapriv Alice s private key (known only to Alice)

Kapub Alice s public key (published by Alice for al to read)
{M}k MessageM encrypted with keyK

[M] MessageM signed with ke

Cryptography

< Encoding (encryption) of a message that can only be read (decryption) by
akey.

«* In shared key cryptography (symmetric cryptography) the sender and
the recipient know the key, but no one else does.

*» How do Alice and Bob get the shared key K,z to begin with?

<+ In public/private key pairs messages are encrypted with a published
public key, and can only be decrypted by a secret private decryption key.

E(K,M)={M}, DK, {M},)=M

@ Plain Text Plain Text
(M) (M) KD




Authentication

+» Use of cryptography for safeguarding communication
between two principals.

** In direct authentication, the server uses a shared
secret key to authenticate the client.

+** In indirect authentication, a trusted authentication
server provides a ticket to an authenticated client.

“»*The authentication server knows keys of principals and
generates temporary shared keys.

“*In electronic commerce or wide area applications,
public/private key pairs are used rather than shared
keys.
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Direct Authentication

Authentication based on a shared secret key.
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“Optimized” Direct Authentication

Authentication based on a shared secret key,
but using three instead of five messages.
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Authentication Using a Key Distribution Center

Using a ticket and letting Alice set up a
connection to Bob.
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Needham-Schroeder Authentication

A asks for a Authentication
System

key to \
cdmmunicate

with B l
System A 5 Ky

\\‘_ S
A demonstrates - -

that it is the sender

of the previous
message




Why Do We Need Nonce N, in Message 17?
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System A

Because we need to relate message 2 to message 1

Authentication
System

System C Chuck h.és stolen Ky
Intercepted messag

and
je 2

Needham-Schroeder Secret-key
Authentication Protocol

Header  Message Notes
LA->S A BN A requests S to supply akey for communication
A with B.
2.5>A:  {N,,B, K, S returns a message encrypted in A’s secret key,
A K :B containing a newly generated key K,z and a
{Kag: AtKe}Ka “ticket' encrypted in B's secret key. The nonce N,

demonstrates that the message was sent in response
to the preceding one. A believesthat S sent the
message because only S knows A’s secret key.

3. A->B: {Kue Alks A sends the ‘ticket’ to B.

4.B->A: {Ng}kas B decrypts the ticket and uses the new key K, to
encrypt another nonce Ng.

5. A->B: {Ng- Lkas A demonstrates to B that it was the sender of the

previous message by returning an agreed
transformation of Ng.
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Kerberos Authentication
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Digital Signatures

¢ Cryptography is also used to verify that a message
or document is a true copy by verified signature.
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Digital Signature Using Public-Private Keys
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Digital Signature Using Message Digest
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Digital Certificates

¢ A digital certificate is a statement signed by a third party

principal.

¢ To be useful, certificates must have:

«* A standard format, for construction and interpretation
«*» A protocol for constructing chains of certificates

«* A trusted authority at the end of the chain

Transaction +

- _‘ Request with
digital signature
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Alice’'s Bank Account Certificate

1. Certificate type

2. Name

3. Account

4. Certifying authority
5. Sgnature

Account number
Alice

6262626

Bob’s Bank
{Digest(field 2 + field 3@

Bpriv

20
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Public-Key Certificate for Bob's Bank

1. Certificate type

2. Name

3. Public key

4. Certifying authority
5. Sgnature

Public key

Bob’s Bank

KBpub

Fred — The Bankers Federation
{Digest(field 2 + field 3)} Keoriv
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Focus of Access Control
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Access Control

*%* Control of access to resources of a server.

*%* A basic form of access control checks <principal, op,
resource> requests for:
»  Authenticity of the principal or its credentials.
» Access rights for the requested resource & op.

*%* Access control matrix M.

«» Each principal is represented by a row, and each resource object
is represented by a column.

** M[s,0] lists precisely what operations principal s can request to
be carried out on resource o.

«* May be sparse.
¢+ Access control list (ACL)

¢ Each object maintains a list of access rights of principals, I.e., an
ACL is some column in M with the empty entries left out.
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Access Control

** The server may issue to each principal a list of capabilities.
¢ A list of capabilities corresponds to an entry in the
access control matrix.
¢+ To reduce ACLs, the notion of protection domain is
introduced.

¢+ A protection domain is a set of (object, access rights)
pairs kept by a server.

*“* Whenever a principal requests an operation to be carried
out on an object, the access control monitor checks if the
principal belongs to that domain, and then if the request is
allowed for that object.

*%* Each principal can carry a certificate listing the groups it
belongs to.

+** The certificate should be protected by a digital signature.

26

Firewalls

Firewall filtering can be done at diff. levels
“ 1P packet filtering: operates as a router and makes decisions as to
whether or not to pass a packet based on its source/destination
addresses.

“ The gateway on the outside LAN protects against incoming packets.
The gateway on the inside LAN protects against outgoing packets.

% TCP gateway: checks all TCP connection requests and segment
transmissions. TCP segments will be checked for correctness and may be
routed to an application-level gateway for content checking.

< Application-level filtering (proxy gateway): inspects the content of
incoming/outgoing messages.

“ To prevent applets to be downloaded to the inside LAN, all Web
traffic could be directed through a Web proxy gateway. The
gateway accepts regular HTTP requests, but may discard certain
requests/pages.

13
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Firewall Configuration

A common implementation of a firewall.

Packet  Application Packet
filtering gateway fikering

FaLber raLter

- . . i
Connections e | | t—- Connections
ta internal —] = to outsde
networks : - ! - I I I nefeorks

Inside LAM  Quisede LAN

Fwenvaall
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Secure Socket Layer Protocol

%+ SSL was developed by Netscape for electronic transaction
security.

¢+ A protocol layer is added below the application layer for:
» Negotiating encryption and authentication methods.
» Bootstrapping secure communication

“* 1t consists of two layers:

» The Record Protocol Layer implements a secure channel
by encrypting and authenticating messages

» The Handshake Layer establishes and maintains a
secure session between two nodes.

14



SSL Protocol Stack

SSL

Handshake SSL Change SSL Alert
R Cipher Spec Protocol

protocol

HTTP Telnet

SSL Record Protocol

SSL protocols:

Transport layer (usually TCP)

Network layer (usually IP)

Other protocols:
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SSL Record Protocol

The record protocol takes an
application message to be
transmitted,

fragments the data into
manageable blocks,

optionally compresses the
data,

computes a message
authentication code
(MAQC),

encrypts and
adds a header.

Application data abcdefghi
Fragment/compi

Record protocol unitsI abc I rdeTI

ghi
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Compress
Compressed units

Hash
MAC

Encrypt

Encrypted
Transmit

TCP packet

15



SSL Handshake Protocol

Establish protocol version, session ID,

__ Clienttello | cipher suite, compression method,
ServerHello exchange random values
—
\ I ¥
Certificate

Optionally send server certificate and

——————
Certificate Request . o
request client certificate

ServerHelloDone

Certificate Server

—_—
Certificate Verify

Client Send client certificate response if

requested

Change Cipher Spec
o Change cipher suite and finish
_  Finished handshake

Change Cipher Spec

Finished
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Readings for Today's Lecture

> References
» Chapter 10 of “Distributed Systems: Principles and Paradigms”
» Paper list on Peer-to-Peer systems on the course page.
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Distributed File Systems

+ A comparison between NFS, Coda, Plan 9, xFS. N/S indicates that nothing has been specified.

34
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How Did it Start?

A Killer application: Naptser
Free music over the Internet

Key idea: share the content, storage and bandwidth of
individual (home) users

B o

Internet

=,
q
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Model

Each user stores a subset of files

Each user has access (can download) files
from all users in the system

18
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Main Challenge

Find where a particular file is stored
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Other Challenges

Scale: up to hundred of thousands or
millions of machines
Dynamicity: machines can come and go any

time

19
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Napster

Assume a centralized index system that
maps files (songs) to machines that are
alive

How to find a file (song)

- Query the index system -> return a machine
that stores the required file

» ldeally this is the closest/least-loaded
machine

- ftp the file
Advantages:

- Simplicity, easy to implement sophisticated
search engines on top of the index system

Disadvantages:
- Robustness, scalability (?)

40

Napster: Example

m4

m3

20
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Gnutella

Distribute file location
Idea: flood the request
How to find a file:
- Send request to all neighbors
- Neighbors recursively multicast the request

- Eventually a machine that has the file receives the
request, and it sends back the answer

Advantages:
- Totally decentralized, highly robust
Disadvantages:

- Not scalable; the entire network can be swamped with
request (to alleviate this problem, each request has a
TTL)

42

Gnutella: Example

Assume: ml’'s neighbors are m2 and m3; m3'’s
neighbors are m4 and m5;...

21
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Freenet

Addition goals to file location:

- Provide publisher anonymity, security

- Resistant to attacks - a third party shouldn't be
able to deny the access to a particular file (data
item, object), even if it compromises a large
fraction of machines

Architecture:

- Each file is identified by a unique identifier

- Each machine stores a set of files, and maintains a
“routing table” to route the individual requests
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Data Structure

Each node maintains a common stack
- Id - file identifier
- next_hop - another node that store
the file id
- file - file identified by /d being T Tnext hop| Tie
stored on the local node
Forwarding:
- Each message contains the file /d it
is referring to
- If file id stored locally, then stop;
- If not, search for the “closest” /din
the stack, and forward the message
to the corresponding next_hop

22
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Query

API: file = query(/d);
Upon receiving a query for document /id
- Check whether the queried file is stored locally
» If yes, return it
» If not, forward the query message
Notes:

- Each query is associated a TTL that is decremented each time
the query message is forwarded; to obscure distance to
originator:

» TTL can be initiated to a random value within some bounds

» When TTL=1, the query is forwarded with a finite
probability

- Each node maintains the state for all outstanding queries that
have traversed it - help to avoid cycles

- When file is returned, the file is cached along the reverse path

46

Query Example

query(10)
nl l n2
4 n1|f4 1 oln3lfo |« _ ’
12| n2(f12 ~ A
5(n3 4 \\\ n4 n5
2 *[14[ns[t14 5 4|n1|f4
13[n2[f13 |7 [10|n5]f10
n3 / 3|n6 8[n6
3[n1][f3
14| n4[f14
5|n3

Note: doesn't show file caching on the reverse path
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Insert

API: insert(/d, file),

Two steps
Search for the file to be inserted
If not found, insert the file

48
Insert

Searching: like query, but nodes maintain state after a
collision is detected and the reply is sent back to the
originator
Insertion
Follow the forward path; insert the file at all nodes
along the path
A node probabilistically replace the originator with
itself; obscure the true originator

24



Insert Example

Assume query returned failure along “gray”

path; insert 10

insert(10, f10)

nll

n2
4[nl(f4 9[n3|f9
12| n2(f12
5| n3

.|

3[n1|f3

14|n4 |f14

49

e

n4 n5
14[n5|f14 4|nl|f4
13[n2|f13 11|n5|f11
3| n6 8|n6

Insert Example

insert(10, f10)

nll

50

) n2
10[n1lr10] 219" [Colnalte
4l 1[4
12/ n2 n4 ns
14[ns|f14 4]n1[ta
13[n2[f13 11[n5 [f11
n3 3|n6 8[n6
3[n1[f3
14[n4|f14
5|n3

25



Insert Example

n2 replaces the originator (nl) with itself

insert(10, f10)

nll

51

n2
10| n1|f10 10[n2|f10
4| n1|f4 9[n3|f9
12/ n2 n4 ns
orig=n2 14|n5]|f14 4(nl1l|f4
13|n2|f13 11|n5|f11
n3 3| n6 8|n6
10[n2f10
3[ni|f3
14| n4
52
n2 replaces the originator (nl) with itself
Insert(10, f10)
nl l n2
10| n1[f10 10[n1|f10
4| n1|f4 9[n3|f9
12/ n2 n4 ns
10|n4|f10 10|n4|f10
14|n5|f14 4|n1|f4
n3 13[n2 11|n5
10[n2f10
3[ni|f3
14| n4

26
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Freenet Properties

Newly queried/inserted files are stored on
nodes storing similar ids

New nodes can announce themselves by
inserting files

Attempts to supplant or discover existing
Tiles will just spread the files
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Freenet Summary

Advantages
Provides publisher anonymity
Totally decentralize architecture - robust and
scalable
Resistant against malicious file deletion
Disadvantages

Does not always guarantee that a file is found, even
it the file is in the network

27



Other Solutions to the Location Problem

Goal: make sure that an item (file) identified is always found
Abstraction: a distributed hash-table data structure
insert(id, item);
item = query(id);

Note: item can be anything: a data object, document, file,
pointer to a file...

Proposals
CAN, Chord, Kademlia, Pastry, Viceroy, Tapestry, etc

55

Content Addressable Network (CAN)

Associate to each node and item a unique /din an d-
dimensional Cartesian space

Goals
Scales to hundreds of thousands of nodes
Handles rapid arrival and failure of nodes
Properties
Routing table size O(d)

Guarantees that a file is found in at most o*//d
steps, where nis the total number of nodes

56
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CAN Example: Two Dimensional Space

Space divided between nodes

All nodes cover the entire space 7 L
Each node covers either asquareora [ [
rectangular area of ratios 1:2 or 2:1 8| ___ AN SR A U S S S
Example: S|

Node n1:(1, 2) first node that joins > e
cover the entire space |- e (R

3 H H H . H H H
A A A

2 H % H H . H H H

1 1 1 1 E 1 1 1

0 [
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CAN Example: Two Dimensional Space

Node n2:(4, 2) joins - space is

divided between nl and n2 5 5
7 1 1 : : 1 1
ol 1 | Lo
I IR TR TS O
£F R S
ol i
B n2yTT T
2 .%. i L i i
1 1 1 E E 1 1
of i P




Node n3:(3, 5) joins = space is
divided between nl and n2
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CAN Example: Two Dimensional Space

---------------------

---------------------

.....................

----------------------

----------------------

......................

____________________

---------------------

_____________________

CAN Example: Two Dimensional Space

Nodes n4:(5, 5) and n5:(6,6) join

60

----------------------

......................

----------------------

....................

____________________

....................

---------------------

_____________________
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CAN Example: Two Dimensional Space

Nodes: nl:(1, 2); n2:(4,2); n3:(3, 5);
n4:(5,5);n5:(6,6)

Items: f1:(2,3); £2:(5,1); 3:(2,1);
f4:(7,5);

~

.....................

------------------------------------------

-----------------------------------------

.....................

---------------------

_____________________

CAN Example: Two Dimensional Space

Each item is stored by the node
who owns its mapping in the space

62

---------------------

---------------------

.....................

_____________________

.....................
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CAN: Query Example

Each node knows its neighbors in

63

the d-space ; oo |

Forward query to the neighbor that [--- KA TN T
is closest to the query /id 6] N /
Example: assume nl queries f4 5 AT s o

Can route around some failures 4 Ny :

Node Failure Recovery

Simple failures
Know your neighbor’s neighbors

When a node fails, one of its neighbors takes over
its zone

More complex failure modes
Simultaneous failure of multiple adjacent nodes
Scoped flooding to discover neighbors
Hopefully, a rare event

64
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Chord

Associate to each node and item a unique /d in an uni-
dimensional space

Goals
Scales to hundreds of thousands of nodes
Handles rapid arrival and failure of nodes
Properties

Routing table size O(log(N)) , where Nis the total
number of nodes

Guarantees that a file is found in O(log(/\)) steps

65

Data Structure

Assume identifier space is 0..2™
Each node maintains
Finger table

Entry 7in the finger table of nis the first node
that succeeds or equals 77+ 2

Predecessor node

An item identified by /dis stored on the succesor node
of id

66
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Chord Example

Assume an identifier
space 0..8

67

Node n1:(1) joins—>all Succ. Table
entries in its finger i |id+2'|succ
table are initialized <1> g i
to itself 13t
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Chord Example

Node n2:(3) joins

Succ. Table

id+2'|succ

0
1
2

Succ. Table

id+2'|succ

0
1
2
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Chord Example

ucc. Table
i [id+2'|succ

Nodes n3:(0), n4:(6) join

Succ. Table
i lid+2|succ
o 2|2
1 3| 6
2
Succ. Table 516
i lid+2|succ

Succ. Table

id+2'|succ

i

0
1
2

70
Chord Examples
Succ. Table |iems
Nodes: nl:(1), n2(3), Lid;z' suce
n3(0), n4(6) BE
Items: 1:(7), f2:(2) 2
Succ. Table  emg
i lid+2'|succ
o 2 2
11 3| 6
2l 5|6
Succ. Table
i lid+2'|succ
o 710
1l 0| O Succ. Table
2 i lid+2'|succ
0O 3|6
1 4 6
2| 6|6




Query

Upon receiving a query
for item /d, a node
Check whether stores
the item locally

I not, forwards the
query to the largest
node in its successor
table that does not
exceed /id

Succ. Table

i [id+2'|succ
o 7 0
11l 0 0
2

Succ. Table
i

o 1 1
1 2 2
2| 4 6

Iltems

id+2'|succ

/1

query(7)

71

)

ucc. Table |tems

id+2'[succ

NP O™

Succ. Table

id+2'[succ

NP Ol T

3
4
6

6
6
6

Node Joining

Node n joins the system:
n picks a random identifier, id
n performs n’ = lookup(id)
n->successor = n’

72
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State Maintenance: Stabilization Protocol

Periodically node n
Asks its successor, n', about its predecessor n”
If n"is between n" and n”
n->successor = n”
notify n” that n its predecessor
When node n” receives notification message from n
If n is between n"->predecessor and n”, then
n"->predecessor = n
Improve robustness

Each node maintain a successor list (usually of size
2*log N)

73

CAN/Chord Optimizations

Weight neighbor nodes by RTT

When routing, choose neighbor who is closer to
destination with lowest RTT from me

Reduces path latency
Multiple physical nodes per virtual node
Reduces path length (fewer virtual nodes)

Reduces path latency (can choose physical node
from virtual node with lowest RTT)

Improved fault tolerance (only one node per zone
needs to survive to allow routing through the zone)

Several others

74
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Conclusions

Distributed Hash Tables are a key component of
scalable and robust overlay networks

CAN: O(d) state, O(d*nl/d) distance

Chord: O(log n) state, O(log n) distance

Both can achieve stretch < 2

Simplicity is key

Services built on top of distributed hash tables
p2p file storage, i3 (chord)
multicast (CAN, Tapestry)
persistent storage (OceanStore using Tapestry)
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Thanks to all of you!!!

Wish you have a happy and safe Summer!

See you next Monday!
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