
1

Security

CprE 450/550x
Distributed Systems and Middleware

Yong Guan
3216 Coover

Tel: (515) 294-8378
Email: guan@ee.iastate.edu

April 29, 2004

2

Readings for Today’s Lecture

! References
! Chapter 8 of “Distributed Systems: Principles and Paradigms”
! Ross Anderson, “Security Engineering”

2

3

Security Threats

" Leakage: An unauthorized party gains
access to a service or data (eavesdropping).

"Tampering: Unauthorized change of data,
tampering with a service

"Vandalism: Interference with proper
operation, without gain to the attacker

4

Security Threats in Comm. Channels

" Eavesdropping – Obtaining copies of messages without
authority.

" Masquerading – Sending or receiving messages with the
identity of another principal.

" Message tampering – Intercepting messages and altering
their contents before passing them onto the intended
recipient.

"Replaying – Intercepting messages and sending them at a
later time.

"Denial of Service Attack – flooding a channel or other
resources with messages.

3

5

Security Policies & Mechanisms
" Security Policy indicates which actions each entity

(user, data, service) is allowed or prohibited to take.
" Security Mechanism enforces the policy

! Encryption: transform data to a form only
understandable by authorized users.

! Authentication: verify the claimed identity of a user,
client, service, program, etc.

! Authorization: verify access rights for an authenticated
entity.

! Auditing: make record of and check access to data and
resources. Mainly an analysis tool to measure the success
of security policies and mechanisms

6

Familiar Names for Principals in Security
Protocols

Alice First participant

Bob Second participant

Carol Participant in three- and four-party protocols

Dave Participant in four-party protocols

Eve Eavesdropper

Mallory Malicious attacker

Sara A server

4

7

Cryptography Notations

KA Alice’s secret key

KB Bob’s secret key

KAB Secret key shared between Alice and Bob

KApriv Alice’s private key (known only to Alice)

KApub Alice’s public key (published by Alice for all to read)

{M}K Message Mencrypted with key K

[M]K Message Msigned with keyK

8

Encryption

Plain Text
(M)

Encryption
K, E

Cryptography
" Encoding (encryption) of a message that can only be read (decryption) by

a key.
" In shared key cryptography (symmetric cryptography) the sender and

the recipient know the key, but no one else does.
" How do Alice and Bob get the shared key KAB to begin with?

" In public/private key pairs messages are encrypted with a published
public key, and can only be decrypted by a secret private decryption key.

Plain Text
(M)

Decryption
K, D

Decryption
Alice Bob

E(K,M)={M}K
D(K, {M}K)=M

{M}K

5

9

Authentication

" Use of cryptography for safeguarding communication
between two principals.

" In direct authentication, the server uses a shared
secret key to authenticate the client.

" In indirect authentication, a trusted authentication
server provides a ticket to an authenticated client.
"The authentication server knows keys of principals and

generates temporary shared keys.
"In electronic commerce or wide area applications,

public/private key pairs are used rather than shared
keys.

10

Direct Authentication

#Authentication based on a shared secret key.

6

11

“Optimized” Direct Authentication

Authentication based on a shared secret key,
but using three instead of five messages.

12

Reflection Attack

7

13

Authentication Using a Key Distribution Center

Using a ticket and letting Alice set up a
connection to Bob.

14

Needham-Schroeder Authentication

KB

KA
KB …

System A

System B

Authentication
System

<A, B, NA>

1

< {KAB, A} > KB
3

< {NB} > KAB 45

< {f(NB), req} >KAB

KA

6< {res} >KAB

<NA,B,KAB, {KAB, A} >

2

KAKB

Ticket

A asks for a
key to

communicate
with B

A demonstrates
that it is the sender

of the previous
message

8

15

Why Do We Need Nonce NA in Message 1?

KB

KA
KB …

System A

System C

Authentication
System

<A, B>

1

<B, KAB, {KAB, A} > KA

2

KB

KA

<B, KAB, {KAB, A} >
KB

KA

Because we need to relate message 2 to message 1

Chuck has stolen KB and
Intercepted message 2

1’

<A, B>

<B, KAB, {KAB, A} >
KB

KA

2’

16Needham–Schroeder Secret-key
Authentication Protocol

Header Message Notes

1. A->S: A, B, NA
A requests S to supply a key for communication
with B.

2. S->A: {NA , B, KAB,

{KAB, A}KB}KA

S returns a message encrypted in A’s secret key,
containing a newly generated key KAB and a
‘ticket’ encrypted in B’s secret key. The nonce NA
demonstrates that the message was sent in response
to the preceding one. A believes that S sent the
message because only S knows A’s secret key.

3. A->B: A sends the ‘ticket’ to B.

4. B->A: B decrypts the ticket and uses the new key KAB to
encrypt another nonce NB.

5. A->B: A demonstrates to B that it was the sender of the
previous message by returning an agreed
transformation of NB.

{KAB, A}KB

{NB}KAB

{NB - 1}KAB

9

17

Kerberos Authentication

Read section 8.5 from text

18

Digital Signatures
" Cryptography is also used to verify that a message

or document is a true copy by verified signature.

<m,{m} >KA- KB+

A’s Priv.
Key, KA-

B’s Pub
Key, KB+

m

m,{m}KA-

B’s Priv.
Key, KB-

A’s Pub
Key, KA+

m

m,{m}KA-

A B

<m, D(m)>KA-

Digest
Function

A’s Priv.
Key, KA-

m

m,D(m)
Compare

A’s Pub
Key, KA+

mA B Digest
Function

m,D(m)

D(m)

Digital Signature Using Public-Private Keys

Digital Signature Using Message Digest

10

19

Digital Certificates
" A digital certificate is a statement signed by a third party

principal.
" To be useful, certificates must have:

" A standard format, for construction and interpretation
" A protocol for constructing chains of certificates
" A trusted authority at the end of the chain

Alice

Third Party

Service
(S)

Request with
digital signature1

{Certificate} 2KS-

KS+

Transaction + {Certificate}KS-

3
Certificate=She

is Alice

20

Alice’s Bank Account Certificate

1. Certificate type: Account number
2. Name: Alice
3. Account: 6262626
4. Certifying authority: Bob’s Bank
5. Signature: {Digest(field 2 + field 3)}KBpriv

Alice may pretend to be the bank and create a new key pair, KB+, KB-

11

21

Public-Key Certificate for Bob’s Bank

1. Certificate type: Public key

2. Name: Bob’s Bank

3. Public key: KBpub

4. Certifying authority: Fred – The Bankers Federation

5. Signature: {Digest(field 2 + field 3)} KFpriv

Eventually KF-, KF+ have to be obtained reliably.

22

Focus of Access Control

Three approaches for
protection against security
threats

a) Protection against invalid
operations

b) Protection against
unauthorized invocations

c) Protection against
unauthorized users

12

23

" Control of access to resources of a server.
" A basic form of access control checks <principal, op,

resource> requests for:
! Authenticity of the principal or its credentials.
! Access rights for the requested resource & op.

" Access control matrix M.
" Each principal is represented by a row, and each resource object

is represented by a column.
" M[s,o] lists precisely what operations principal s can request to

be carried out on resource o.
" May be sparse.

" Access control list (ACL)
" Each object maintains a list of access rights of principals, I.e., an

ACL is some column in M with the empty entries left out.

Access Control

24

Access Control Matrix

Comparison between
ACLs and
capabilities for
protecting
objects.

a) Using an ACL
b) Using

capabilities.

13

25

" The server may issue to each principal a list of capabilities.
" A list of capabilities corresponds to an entry in the

access control matrix.
" To reduce ACLs, the notion of protection domain is

introduced.
" A protection domain is a set of (object, access rights)

pairs kept by a server.
" Whenever a principal requests an operation to be carried

out on an object, the access control monitor checks if the
principal belongs to that domain, and then if the request is
allowed for that object.

" Each principal can carry a certificate listing the groups it
belongs to.
" The certificate should be protected by a digital signature.

Access Control

26

Firewalls
" Firewall filtering can be done at diff. levels

" IP packet filtering: operates as a router and makes decisions as to
whether or not to pass a packet based on its source/destination
addresses.
"The gateway on the outside LAN protects against incoming packets.

The gateway on the inside LAN protects against outgoing packets.
" TCP gateway: checks all TCP connection requests and segment

transmissions. TCP segments will be checked for correctness and may be
routed to an application-level gateway for content checking.

" Application-level filtering (proxy gateway): inspects the content of
incoming/outgoing messages.
"To prevent applets to be downloaded to the inside LAN, all Web

traffic could be directed through a Web proxy gateway. The
gateway accepts regular HTTP requests, but may discard certain
requests/pages.

14

27

Firewall Configuration

#A common implementation of a firewall.

28

" SSL was developed by Netscape for electronic transaction
security.

" A protocol layer is added below the application layer for:
! Negotiating encryption and authentication methods.
! Bootstrapping secure communication

" It consists of two layers:
! The Record Protocol Layer implements a secure channel

by encrypting and authenticating messages
! The Handshake Layer establishes and maintains a

secure session between two nodes.

Secure Socket Layer Protocol

15

29

SSL Protocol Stack

SSL
Handshake
protocol

SSL Change
Cipher Spec

SSL Alert
Protocol

Transport layer (usually TCP)

Network layer (usually IP)

SSL Record Protocol

HTTP Telnet

SSL protocols: Other protocols:

30

SSL Record Protocol

The record protocol takes an
application message to be
transmitted,
$ fragments the data into

manageable blocks,
$ optionally compresses the

data,
$ computes a message

authentication code
(MAC),

$ encrypts and
$ adds a header.

Application data abcdefghi

abc def ghiRecord protocol units

Compressed units

MAC

Encrypted

TCP packet

Fragment/combine

Compress

Hash

Encrypt

Transmit

16

31

SSL Handshake Protocol

Client Server

ClientHello

ServerHello

Certificate

Certificate Request

ServerHelloDone

Certificate

Certificate Verify

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Establish protocol version, session ID,
cipher suite, compression method,
exchange random values

Optionally send server certificate and

request client certificate

Send client certificate response if

requested

Change cipher suite and finish
handshake

Cipher suite: a list of cryptographic
algorithm supported by the client

The client sends a change Cipher Spec
message and copies the pending
CipherSpec into the current CipherSpec.

Phase 1: Establish security capabilities

Phase 2: Sever authentication and key exchange

Phase 3: Client authentication and key exchange

Phase 4: Finish

Distributed File Systems and P2P
Systems

CprE 450/550x
Distributed Systems and Middleware

Yong Guan
3216 Coover

Tel: (515) 294-8378
Email: guan@ee.iastate.edu

April 29, 2004

17

33

Readings for Today’s Lecture

! References
! Chapter 10 of “Distributed Systems: Principles and Paradigms”
! Paper list on Peer-to-Peer systems on the course page.

34

Distributed File Systems

A comparison between NFS, Coda, Plan 9, xFS. N/S indicates that nothing has been specified.

NFS BASEDUNIX basedUNIX basedDirectory operationsMany operationsAccess control

Self-cert.No pathnamesNeedham-SchroederNeedham-SchroederExisting mechanismsSecure channels

N/SCheckpoint & write logsN/SReintegrationClient-basedRecovery

Reliable comm.StripingReliable comm.
Replication and
caching

Reliable comm.Fault tolerance

NoneStripingNoneROWAMinimalReplication

write-backwrite-backwrite-throughwrite-backwrite-backCache consist.

N/SUNIXUNIXTransactionalSessionSharing sem.

File systemGlobalServerGlobalFile serverFile ID scope

GlobalGlobalPer processGlobalPer clientName space

DirectoryFile systemFile systemFile systemDirectoryMount granularity

NoYesNoYesNoServer groups

MediumFatThinFatThin/FatClient process

RPCActive msgsSpecialRPCRPCCommunication

RemoteLog-basedRemoteUp/DownloadRemoteAccess model

Scalable securityServerless systemUniformityHigh availabilityAccess transparencyDesign goals

SFSxFSPlan 9CodaNFSIssue

18

35

How Did it Start?

A killer application: Naptser
– Free music over the Internet

Key idea: share the content, storage and bandwidth of
individual (home) users

Internet

36

Model

Each user stores a subset of files
Each user has access (can download) files

from all users in the system

19

37

Main Challenge

Find where a particular file is stored

A
B

C

D

E

F

E?

38

Other Challenges

Scale: up to hundred of thousands or
millions of machines

Dynamicity: machines can come and go any
time

20

39

Napster

#Assume a centralized index system that
maps files (songs) to machines that are
alive

#How to find a file (song)
– Query the index system % return a machine
that stores the required file

» Ideally this is the closest/least-loaded
machine

– ftp the file
#Advantages:

– Simplicity, easy to implement sophisticated
search engines on top of the index system

#Disadvantages:
– Robustness, scalability (?)

40

Napster: Example

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

m1 A
m2 B
m3 C
m4 D
m5 E
m6 F

E?
m5

E? E

21

41

Gnutella

#Distribute file location
#Idea: flood the request
#How to find a file:

– Send request to all neighbors
– Neighbors recursively multicast the request
– Eventually a machine that has the file receives the
request, and it sends back the answer

#Advantages:
– Totally decentralized, highly robust

#Disadvantages:
– Not scalable; the entire network can be swamped with
request (to alleviate this problem, each request has a
TTL)

42

Gnutella: Example

Assume: m1’s neighbors are m2 and m3; m3’s
neighbors are m4 and m5;…

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

E?

E?

E?
E?

E

22

43

Freenet

Addition goals to file location:
– Provide publisher anonymity, security
– Resistant to attacks – a third party shouldn’t be

able to deny the access to a particular file (data
item, object), even if it compromises a large
fraction of machines

Architecture:
– Each file is identified by a unique identifier
– Each machine stores a set of files, and maintains a

“routing table” to route the individual requests

44

Data Structure

Each node maintains a common stack
– id – file identifier
– next_hop – another node that store

the file id
– file – file identified by id being

stored on the local node
Forwarding:

– Each message contains the file id it
is referring to

– If file id stored locally, then stop;
– If not, search for the “closest” id in

the stack, and forward the message
to the corresponding next_hop

id next_hop file

…
…

23

45

Query
API: file = query(id);
Upon receiving a query for document id

– Check whether the queried file is stored locally
» If yes, return it
» If not, forward the query message

Notes:
– Each query is associated a TTL that is decremented each time

the query message is forwarded; to obscure distance to
originator:

» TTL can be initiated to a random value within some bounds
» When TTL=1, the query is forwarded with a finite

probability
– Each node maintains the state for all outstanding queries that

have traversed it % help to avoid cycles
– When file is returned, the file is cached along the reverse path

46

Query Example

Note: doesn’t show file caching on the reverse path

4 n1 f4
12 n2 f12
5 n3

9 n3 f9

3 n1 f3
14 n4 f14
5 n3

14 n5 f14
13 n2 f13
3 n6

n1 n2

n3

n4

4 n1 f4
10 n5 f10
8 n6

n5

query(10)

1

2

3

4

4’

5

24

47

Insert

API: insert(id, file);
Two steps

– Search for the file to be inserted
– If not found, insert the file

48

Insert
Searching: like query, but nodes maintain state after a

collision is detected and the reply is sent back to the
originator

Insertion
– Follow the forward path; insert the file at all nodes

along the path
– A node probabilistically replace the originator with

itself; obscure the true originator

25

49

Insert Example

Assume query returned failure along “gray”
path; insert f10

4 n1 f4
12 n2 f12
5 n3

9 n3 f9

3 n1 f3
14 n4 f14
5 n3

14 n5 f14
13 n2 f13
3 n6

n1 n2

n3

n4

4 n1 f4
11 n5 f11
8 n6

n5

insert(10, f10)

50

Insert Example

10 n1 f10
4 n1 f4

12 n2

3 n1 f3
14 n4 f14
5 n3

14 n5 f14
13 n2 f13
3 n6

n1

n3

n4

4 n1 f4
11 n5 f11
8 n6

n5

insert(10, f10)

9 n3 f9

n2
orig=n1

26

51

Insert Example

n2 replaces the originator (n1) with itself

10 n1 f10
4 n1 f4

12 n2

10 n2 f10
9 n3 f9

10 n2 10
3 n1 f3

14 n4

14 n5 f14
13 n2 f13
3 n6

n1 n2

n3

n4

4 n1 f4
11 n5 f11
8 n6

n5

insert(10, f10)

orig=n2

52

Insert Example

n2 replaces the originator (n1) with itself

10 n1 f10
4 n1 f4

12 n2

10 n1 f10
9 n3 f9

10 n2 10
3 n1 f3

14 n4

10 n4 f10
14 n5 f14
13 n2

n1 n2

n3

n4

10 n4 f10
4 n1 f4

11 n5

n5

Insert(10, f10)

27

53

Freenet Properties

Newly queried/inserted files are stored on
nodes storing similar ids

New nodes can announce themselves by
inserting files

Attempts to supplant or discover existing
files will just spread the files

54

Freenet Summary

Advantages
– Provides publisher anonymity
– Totally decentralize architecture % robust and

scalable
– Resistant against malicious file deletion

Disadvantages
– Does not always guarantee that a file is found, even

if the file is in the network

28

55

Other Solutions to the Location Problem

Goal: make sure that an item (file) identified is always found
Abstraction: a distributed hash-table data structure

– insert(id, item);
– item = query(id);
– Note: item can be anything: a data object, document, file,

pointer to a file…
Proposals

– CAN, Chord, Kademlia, Pastry, Viceroy, Tapestry, etc

56

Content Addressable Network (CAN)

Associate to each node and item a unique id in an d-
dimensional Cartesian space

Goals
– Scales to hundreds of thousands of nodes
– Handles rapid arrival and failure of nodes

Properties
– Routing table size O(d)
– Guarantees that a file is found in at most d*n1/d

steps, where n is the total number of nodes

29

57

CAN Example: Two Dimensional Space

Space divided between nodes
All nodes cover the entire space
Each node covers either a square or a

rectangular area of ratios 1:2 or 2:1
Example:

– Node n1:(1, 2) first node that joins %
cover the entire space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1

58

CAN Example: Two Dimensional Space

Node n2:(4, 2) joins % space is
divided between n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

30

59

CAN Example: Two Dimensional Space

Node n3:(3, 5) joins % space is
divided between n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3

60

CAN Example: Two Dimensional Space

Nodes n4:(5, 5) and n5:(6,6) join

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4

n6

31

61

CAN Example: Two Dimensional Space

Nodes: n1:(1, 2); n2:(4,2); n3:(3, 5);
n4:(5,5);n5:(6,6)

Items: f1:(2,3); f2:(5,1); f3:(2,1);
f4:(7,5);

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4

n5

f1

f2

f3

f4

62

CAN Example: Two Dimensional Space

Each item is stored by the node
who owns its mapping in the space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

32

63

CAN: Query Example

Each node knows its neighbors in
the d-space

Forward query to the neighbor that
is closest to the query id

Example: assume n1 queries f4
Can route around some failures

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

64

Node Failure Recovery

Simple failures
– Know your neighbor’s neighbors
– When a node fails, one of its neighbors takes over

its zone

More complex failure modes
– Simultaneous failure of multiple adjacent nodes
– Scoped flooding to discover neighbors
– Hopefully, a rare event

33

65

Chord

Associate to each node and item a unique id in an uni-
dimensional space

Goals
– Scales to hundreds of thousands of nodes
– Handles rapid arrival and failure of nodes

Properties
– Routing table size O(log(N)) , where N is the total

number of nodes
– Guarantees that a file is found in O(log(N)) steps

66

Data Structure

Assume identifier space is 0..2m

Each node maintains
– Finger table

» Entry i in the finger table of n is the first node
that succeeds or equals n + 2i

– Predecessor node
An item identified by id is stored on the succesor node

of id

34

67

Chord Example

Assume an identifier
space 0..8

Node n1:(1) joins%all
entries in its finger
table are initialized
to itself

0
1

2

3
4

5

6

7

i id+2i succ
0 2 1
1 3 1
2 5 1

Succ. Table

68

Chord Example

Node n2:(3) joins

0
1

2

3
4

5

6

7

i id+2i succ
0 2 2
1 3 1
2 5 1

Succ. Table

i id+2i succ
0 3 1
1 4 1
2 6 1

Succ. Table

35

69

Chord Example

Nodes n3:(0), n4:(6) join

0
1

2

3
4

5

6

7

i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 6

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

70

Chord Examples

Nodes: n1:(1), n2(3),
n3(0), n4(6)

Items: f1:(7), f2:(2)

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 6

Succ. Table

7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

36

71

Query
Upon receiving a query

for item id, a node
Check whether stores

the item locally
If not, forwards the

query to the largest
node in its successor
table that does not
exceed id

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 6

Succ. Table

7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

72

Node Joining

Node n joins the system:
– n picks a random identifier, id
– n performs n’ = lookup(id)
– n->successor = n’

37

73

State Maintenance: Stabilization Protocol

Periodically node n
– Asks its successor, n’, about its predecessor n’’
– If n’’ is between n’ and n’’

» n->successor = n’’
» notify n’’ that n its predecessor

When node n’’ receives notification message from n
– If n is between n‘’->predecessor and n’’, then

» n’’->predecessor = n
Improve robustness

– Each node maintain a successor list (usually of size
2*log N)

74

CAN/Chord Optimizations

Weight neighbor nodes by RTT
– When routing, choose neighbor who is closer to

destination with lowest RTT from me
– Reduces path latency

Multiple physical nodes per virtual node
– Reduces path length (fewer virtual nodes)
– Reduces path latency (can choose physical node

from virtual node with lowest RTT)
– Improved fault tolerance (only one node per zone

needs to survive to allow routing through the zone)
Several others

38

75

Conclusions

Distributed Hash Tables are a key component of
scalable and robust overlay networks

CAN: O(d) state, O(d*n1/d) distance
Chord: O(log n) state, O(log n) distance
Both can achieve stretch < 2
Simplicity is key
Services built on top of distributed hash tables

– p2p file storage, i3 (chord)
– multicast (CAN, Tapestry)
– persistent storage (OceanStore using Tapestry)

76

Thanks to all of you!!!

Wish you have a happy and safe Summer!

See you next Monday!

