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Readings for Today’s Lecture

! References
! Chapter 8 of “Distributed Systems: Principles and Paradigms”
! Ross Anderson, “Security Engineering”
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Security Threats 

" Leakage: An unauthorized party gains 
access to a service or data (eavesdropping).

"Tampering: Unauthorized change of data, 
tampering with a service

"Vandalism: Interference with proper 
operation, without gain to the attacker

4

Security Threats in Comm. Channels 

" Eavesdropping – Obtaining copies of messages without 
authority.

" Masquerading – Sending or receiving messages with the 
identity of another principal. 

" Message tampering – Intercepting messages and altering 
their contents before passing them onto the intended 
recipient.

"Replaying – Intercepting messages and sending them at a 
later time. 

"Denial of Service Attack – flooding a channel or other 
resources with messages.
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Security Policies & Mechanisms 
" Security Policy indicates which actions each entity 

(user, data, service) is allowed or prohibited to take.
" Security Mechanism enforces the policy

! Encryption: transform data to a form only 
understandable by authorized users.

! Authentication: verify the claimed identity of a user, 
client, service, program, etc.

! Authorization: verify access rights for an authenticated 
entity.

! Auditing: make record of and check access to data and 
resources.  Mainly an analysis tool to measure the success 
of security policies and mechanisms

6

Familiar Names for Principals in Security 
Protocols

Alice First participant

Bob Second participant

Carol Participant in three- and four-party protocols

Dave Participant in four-party protocols

Eve Eavesdropper

Mallory Malicious attacker

Sara A server
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Cryptography Notations

KA Alice’s secret key

KB Bob’s secret key

KAB Secret key shared between Alice and Bob

KApriv Alice’s private key (known only to Alice)

KApub Alice’s public key (published by Alice for all to read)

{M}K Message Mencrypted with key K

[M]K Message Msigned with keyK

8

Encryption

Plain Text 
(M)

Encryption 
K, E

Cryptography 
" Encoding (encryption) of a message that can only be read (decryption) by 

a key.
" In shared key cryptography (symmetric cryptography) the sender and 

the recipient know the key, but no one else does.
" How do Alice and Bob get the shared key KAB to begin with?

" In public/private key pairs messages are encrypted with a published 
public key, and can only be decrypted by a secret private decryption key.

Plain Text 
(M)

Decryption 
K, D

Decryption
Alice Bob

E(K,M)={M}K
D(K, {M}K)=M

{M}K



5

9

Authentication 

" Use of cryptography for safeguarding communication 
between two principals.

" In direct authentication, the server uses a shared 
secret key to authenticate the client.

" In indirect authentication, a trusted authentication 
server provides a ticket to an authenticated client.
"The authentication server knows keys of principals and 

generates temporary shared keys.
"In electronic commerce or wide area applications, 

public/private key pairs are used rather than shared 
keys.

10

Direct Authentication

#Authentication based on a shared secret key.



6

11

“Optimized” Direct Authentication

# Authentication based on a shared secret key, 
but using three instead of five messages.

12

Reflection Attack
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Authentication Using a Key Distribution Center

# Using a ticket and letting Alice set up a 
connection to Bob.

14

Needham-Schroeder Authentication 

KB

KA 
KB …

System A

System B

Authentication 
System

<A, B, NA>

1

< {KAB, A}  > KB
3

< {NB} > KAB 45

< {f(NB), req}     >KAB

KA

6< {res}     >KAB

<NA,B,KAB, {KAB, A} >

2

KAKB

Ticket

A asks for a 
key to 

communicate 
with B

A demonstrates
that it is the sender

of the previous
message
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Why Do We Need Nonce NA in Message 1? 

KB

KA 
KB …

System A

System C

Authentication 
System

<A, B>

1

<B, KAB, {KAB, A} > KA

2

KB

KA

<B, KAB, {KAB, A} >
KB

KA

Because we need to relate message 2 to message 1

Chuck has stolen KB and
Intercepted message 2

1’

<A, B>

<B, KAB, {KAB, A} >
KB

KA

2’

16Needham–Schroeder Secret-key 
Authentication Protocol

Header Message Notes

1. A->S: A, B, NA
A requests S to supply a key for communication
with B.

2. S->A: {NA , B, KAB, 

{KAB, A}KB}KA

S returns a message encrypted in A’s secret key,
containing a newly generated key KAB and a
‘ticket’ encrypted in B’s secret key. The nonce NA
demonstrates that the message was sent in response
to the preceding one. A believes that S sent the
message because only S knows A’s secret key.

3. A->B: A sends the ‘ticket’ to B.

4. B->A: B decrypts the ticket and uses the new key KAB to
encrypt another nonce NB.

5. A->B: A demonstrates to B that it was the sender of the
previous message by returning an agreed
transformation of NB.

{KAB, A}KB

{NB}KAB

{NB - 1}KAB
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Kerberos Authentication

Read section 8.5 from text

18

Digital Signatures 
" Cryptography is also used to verify that a message 

or document is a true copy by verified signature.

<m,{m}    >KA- KB+

A’s Priv. 
Key, KA-

B’s Pub 
Key, KB+

m

m,{m}KA-

B’s Priv. 
Key, KB-

A’s Pub 
Key, KA+

m

m,{m}KA-

A B

<m, D(m)>KA-

Digest 
Function

A’s Priv. 
Key, KA-

m

m,D(m)
Compare

A’s Pub 
Key, KA+

mA B Digest 
Function

m,D(m)

D(m)

Digital Signature Using Public-Private Keys

Digital Signature Using Message Digest
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Digital Certificates 
" A digital certificate is a statement signed by a third party 

principal. 
" To be useful, certificates must have:

" A standard format, for construction and interpretation
" A protocol for constructing chains of certificates
" A trusted authority at the end of the chain 

Alice

Third Party  

Service 
(S)

Request with 
digital signature1

{Certificate} 2KS-

KS+

Transaction + {Certificate}KS-

3
Certificate=She 

is Alice

20

Alice’s Bank Account Certificate

1. Certificate type: Account number
2. Name: Alice
3. Account: 6262626
4. Certifying authority: Bob’s Bank
5. Signature: {Digest(field 2 + field 3)}KBpriv

Alice may pretend to be the bank and create a new key pair, KB+, KB-
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Public-Key Certificate for Bob’s Bank

1. Certificate type: Public key

2. Name: Bob’s Bank

3. Public key: KBpub

4. Certifying authority: Fred – The Bankers Federation

5. Signature: {Digest(field 2 + field 3)} KFpriv

Eventually KF-, KF+ have to be obtained reliably.

22

Focus of Access Control

# Three approaches for 
protection against security 
threats

a) Protection against invalid 
operations

b) Protection against 
unauthorized invocations

c) Protection against 
unauthorized users
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" Control of access to resources of a server.
" A basic form of access control checks <principal, op, 

resource> requests for:
! Authenticity of the principal or its credentials.
! Access rights for the requested resource & op. 

" Access control matrix M.
" Each principal is represented by a row, and each resource object

is represented by a column.
" M[s,o] lists precisely what operations principal s can request to 

be carried out on resource o.
" May be sparse.

" Access control list (ACL)
" Each object maintains a list of access rights of principals, I.e., an 

ACL is some column in M with the empty entries left out.

Access Control 

24

Access Control Matrix

Comparison between 
ACLs and 
capabilities for 
protecting 
objects.

a) Using an ACL
b) Using 

capabilities.
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" The server may issue to each principal a list of capabilities. 
" A list of capabilities corresponds to an entry in the 

access control matrix.
" To reduce ACLs, the notion of protection domain is 

introduced.
" A protection domain is a set of (object, access rights) 

pairs kept by a server.
" Whenever a principal requests an operation to be carried 

out on an object, the access control monitor checks if the 
principal belongs to that domain, and then if the request is 
allowed for that object.

" Each principal can carry a certificate listing the groups it 
belongs to.
" The certificate should be protected by a digital signature.

Access Control 

26

Firewalls 
" Firewall filtering can be done at diff. levels

" IP packet filtering: operates as a router and makes decisions as to 
whether or not to pass a packet based on its source/destination 
addresses.
"The gateway on the outside LAN protects against incoming packets. 

The gateway on the inside LAN protects against outgoing packets.
" TCP gateway: checks all TCP connection requests and segment 

transmissions. TCP segments will be checked for correctness and may be 
routed to an application-level gateway for content checking.

" Application-level filtering (proxy gateway): inspects the content of 
incoming/outgoing messages.
"To prevent applets to be downloaded to the inside LAN, all Web 

traffic could be directed through a Web proxy gateway. The 
gateway accepts regular HTTP requests, but may discard certain 
requests/pages.
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Firewall Configuration

#A common implementation of a firewall.

28

" SSL was developed by Netscape for electronic transaction 
security.

" A protocol layer is added below the application layer for:
! Negotiating encryption and authentication methods.
! Bootstrapping secure communication

" It consists of two layers:
! The Record Protocol Layer implements a secure channel 

by encrypting and authenticating messages
! The Handshake Layer establishes and maintains a 

secure session between two nodes.

Secure Socket Layer Protocol 
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SSL Protocol Stack

SSL
Handshake
protocol

SSL Change
Cipher Spec

SSL Alert
Protocol

Transport layer (usually TCP)

Network layer (usually IP)

SSL Record Protocol

HTTP Telnet

SSL protocols: Other protocols:

30

SSL Record Protocol

# The record protocol takes an 
application message to be 
transmitted, 
$ fragments the data into 

manageable blocks,
$ optionally compresses the 

data, 
$ computes a message 

authentication code 
(MAC),

$ encrypts and 
$ adds a header.

Application data abcdefghi

abc def ghiRecord protocol units

Compressed units

MAC

Encrypted

TCP packet

Fragment/combine

Compress

Hash

Encrypt

Transmit
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SSL Handshake Protocol

Client Server

ClientHello

ServerHello

Certificate

Certificate Request

ServerHelloDone

Certificate

Certificate Verify

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Establish protocol version, session ID, 
cipher suite, compression method, 
exchange random values

Optionally send server certificate and 

request client certificate

Send client certificate response if 

requested

Change cipher suite and finish 
handshake

Cipher suite: a list of cryptographic
algorithm supported by the client

The client sends a change Cipher Spec
message and copies the pending
CipherSpec into the current CipherSpec.

Phase 1: Establish security capabilities

Phase 2: Sever authentication and key exchange

Phase 3: Client authentication and key exchange

Phase 4: Finish

Distributed File Systems and P2P 
Systems

CprE 450/550x
Distributed Systems and Middleware

Yong Guan
3216 Coover

Tel: (515) 294-8378
Email: guan@ee.iastate.edu

April 29, 2004
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Readings for Today’s Lecture

! References
! Chapter 10 of “Distributed Systems: Principles and Paradigms”
! Paper list on Peer-to-Peer systems on the course page.

34

Distributed File Systems

# A comparison between NFS, Coda, Plan 9, xFS. N/S indicates that nothing has been specified.

NFS BASEDUNIX basedUNIX basedDirectory operationsMany operationsAccess control

Self-cert.No pathnamesNeedham-SchroederNeedham-SchroederExisting mechanismsSecure channels

N/SCheckpoint & write logsN/SReintegrationClient-basedRecovery

Reliable comm.StripingReliable comm.
Replication and 
caching

Reliable comm.Fault tolerance

NoneStripingNoneROWAMinimalReplication

write-backwrite-backwrite-throughwrite-backwrite-backCache consist.

N/SUNIXUNIXTransactionalSessionSharing sem.

File systemGlobalServerGlobalFile serverFile ID scope

GlobalGlobalPer processGlobalPer clientName space

DirectoryFile systemFile systemFile systemDirectoryMount granularity

NoYesNoYesNoServer groups

MediumFatThinFatThin/FatClient process

RPCActive msgsSpecialRPCRPCCommunication

RemoteLog-basedRemoteUp/DownloadRemoteAccess model

Scalable securityServerless systemUniformityHigh availabilityAccess transparencyDesign goals

SFSxFSPlan 9CodaNFSIssue
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How Did it Start?

# A killer application: Naptser
– Free music over the Internet

# Key idea: share the content, storage and bandwidth of 
individual (home) users

Internet

36

Model

# Each user stores a subset of files
# Each user has access (can download) files 

from all users in the system
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Main Challenge

# Find where a particular file is stored

A
B

C

D

E

F

E?

38

Other Challenges

# Scale: up to hundred of thousands or 
millions of machines 

# Dynamicity: machines can come and go any 
time
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Napster

#Assume a centralized index system that 
maps files (songs) to machines that are 
alive

#How to find a file (song)
– Query the index system % return a machine 
that stores the required file

» Ideally this is the closest/least-loaded 
machine

– ftp the file
#Advantages: 

– Simplicity, easy to implement sophisticated 
search engines on top of the index system

#Disadvantages:
– Robustness, scalability (?)

40

Napster: Example

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

m1  A
m2  B
m3  C
m4  D
m5  E
m6  F

E?
m5

E? E
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Gnutella

#Distribute file location
#Idea: flood the request
#How to find a file:

– Send request to all neighbors
– Neighbors recursively multicast the request
– Eventually a machine that has the file receives the 
request, and it sends back the answer

#Advantages:
– Totally decentralized, highly robust

#Disadvantages:
– Not scalable; the entire network can be swamped with 
request (to alleviate this problem, each request has a 
TTL)  

42

Gnutella: Example

# Assume: m1’s neighbors are m2 and m3; m3’s 
neighbors are m4 and m5;…

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

E?

E?

E?
E?

E



22

43

Freenet

# Addition goals to file location:
– Provide publisher anonymity, security 
– Resistant to attacks – a third party shouldn’t be 

able to deny the access to a particular file (data 
item, object), even if it compromises a large 
fraction of machines

# Architecture:
– Each file is identified by a unique identifier
– Each machine stores a set of files, and maintains a 

“routing table” to route the individual requests

44

Data Structure

# Each node maintains a common stack
– id – file identifier
– next_hop – another node that store 

the file id
– file – file identified by id being 

stored on the local node 
# Forwarding: 

– Each message contains the file id it 
is referring to

– If file id stored locally, then stop;
– If not, search for the “closest” id in 

the stack, and forward the message 
to the corresponding next_hop

id   next_hop     file

…
…
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Query
# API: file = query(id);
# Upon receiving a query for document id

– Check whether the queried file is stored locally
» If yes, return it
» If not, forward the query message

# Notes:
– Each query is associated a TTL that is decremented each time 

the query message is forwarded; to obscure distance to 
originator:

» TTL can be initiated to a random value within some bounds
» When TTL=1, the query is forwarded with a finite 

probability
– Each node maintains the state for all outstanding queries that 

have traversed it % help to avoid cycles
– When file is returned, the file is cached along the reverse path

46

Query Example

# Note: doesn’t show file caching on the reverse path 

4  n1  f4
12  n2  f12
5  n3

9  n3  f9

3  n1  f3
14  n4  f14
5  n3

14  n5  f14
13  n2  f13
3  n6

n1 n2

n3

n4

4  n1  f4
10  n5  f10
8  n6

n5

query(10)

1

2

3

4

4’

5
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Insert

# API: insert(id, file); 
# Two steps 

– Search for the file to be inserted
– If not found, insert the file

48

Insert
# Searching: like query, but nodes maintain state after a 

collision is detected and the reply is sent back to the 
originator

# Insertion
– Follow the forward path; insert the file at all nodes 

along the path
– A node probabilistically replace the originator with 

itself; obscure the true originator
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Insert Example

# Assume query returned failure along “gray” 
path; insert f10

4  n1  f4
12  n2  f12
5  n3

9  n3  f9

3  n1  f3
14  n4  f14
5  n3

14  n5  f14
13  n2  f13
3  n6

n1 n2

n3

n4

4  n1  f4
11  n5  f11
8  n6

n5

insert(10, f10)

50

Insert Example

10  n1  f10
4  n1  f4

12  n2

3  n1  f3
14  n4  f14
5  n3

14  n5  f14
13  n2  f13
3  n6

n1

n3

n4

4  n1  f4
11  n5  f11
8  n6

n5

insert(10, f10)

9  n3  f9

n2
orig=n1
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Insert Example

# n2 replaces the originator (n1) with itself

10  n1  f10
4  n1  f4

12  n2

10  n2  f10
9  n3  f9

10  n2 10
3  n1  f3

14  n4 

14  n5  f14
13  n2  f13
3  n6

n1 n2

n3

n4

4  n1  f4
11  n5  f11
8  n6

n5

insert(10, f10)

orig=n2

52

Insert Example

# n2 replaces the originator (n1) with itself

10  n1  f10
4  n1  f4

12  n2

10  n1  f10
9  n3  f9

10  n2 10
3  n1  f3

14  n4 

10  n4  f10
14  n5  f14
13  n2 

n1 n2

n3

n4

10  n4  f10
4  n1  f4

11  n5

n5

Insert(10, f10)
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Freenet Properties

# Newly queried/inserted files are stored on 
nodes storing similar ids

# New nodes can announce themselves by 
inserting files 

# Attempts to supplant or discover existing 
files will just spread the files 

54

Freenet Summary

# Advantages
– Provides publisher anonymity
– Totally decentralize architecture % robust and 

scalable
– Resistant against malicious file deletion

# Disadvantages
– Does not always guarantee that a file is found, even 

if the file is in the network
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Other Solutions to the Location Problem

# Goal: make sure that an item (file) identified is always found
# Abstraction: a distributed hash-table data structure 

– insert(id, item);
– item = query(id);
– Note: item can be anything: a data object, document, file, 

pointer to a file…
# Proposals

– CAN, Chord, Kademlia, Pastry, Viceroy, Tapestry, etc

56

Content Addressable Network (CAN)

# Associate to each node and item a unique id in an d-
dimensional Cartesian space

# Goals
– Scales to hundreds of thousands of nodes
– Handles rapid arrival and failure of nodes

# Properties 
– Routing table size O(d)
– Guarantees that a file is found in at most d*n1/d

steps, where n is the total number of nodes
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CAN Example: Two Dimensional Space

# Space divided between nodes
# All nodes cover the entire space
# Each node covers either a square or a 

rectangular area of ratios 1:2 or 2:1
# Example: 

– Node n1:(1, 2) first node that joins %
cover the entire space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1

58

CAN Example: Two Dimensional Space

# Node n2:(4, 2) joins % space is 
divided between n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2
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CAN Example: Two Dimensional Space

# Node n3:(3, 5) joins % space is 
divided between n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3

60

CAN Example: Two Dimensional Space

# Nodes n4:(5, 5) and n5:(6,6) join

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4

n6
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CAN Example: Two Dimensional Space

# Nodes: n1:(1, 2); n2:(4,2); n3:(3, 5); 
n4:(5,5);n5:(6,6)

# Items: f1:(2,3); f2:(5,1); f3:(2,1); 
f4:(7,5);

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4

n5

f1

f2

f3

f4

62

CAN Example: Two Dimensional Space

# Each item is stored by the node 
who owns its mapping in the space 

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4
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CAN: Query Example

# Each node knows its neighbors in 
the d-space

# Forward query to the neighbor that 
is closest to the query id

# Example: assume n1 queries f4
# Can route around some failures

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

64

Node Failure Recovery

# Simple failures
– Know your neighbor’s neighbors
– When a node fails, one of its neighbors takes over 

its zone

# More complex failure modes
– Simultaneous failure of multiple adjacent nodes 
– Scoped flooding to discover neighbors
– Hopefully, a rare event
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Chord

# Associate to each node and item a unique id in an uni-
dimensional space

# Goals
– Scales to hundreds of thousands of nodes
– Handles rapid arrival and failure of nodes

# Properties 
– Routing table size O(log(N)) , where N is the total 

number of nodes
– Guarantees that a file is found in O(log(N)) steps

66

Data Structure

# Assume identifier space is 0..2m

# Each node maintains
– Finger table

» Entry i in the finger table of n is the first node 
that succeeds or equals n + 2i

– Predecessor node
# An item identified by id is stored on the succesor node 

of id
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Chord Example

# Assume an identifier 
space 0..8

# Node n1:(1) joins%all 
entries in its finger 
table are initialized 
to itself

0
1

2

3
4

5

6

7

i  id+2i  succ
0    2      1
1    3      1
2    5      1 

Succ. Table

68

Chord Example

# Node n2:(3) joins

0
1

2

3
4

5

6

7

i  id+2i  succ
0    2      2
1    3      1
2    5      1 

Succ. Table

i  id+2i  succ
0    3      1
1    4      1
2    6      1 

Succ. Table
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Chord Example

# Nodes n3:(0), n4:(6) join 

0
1

2

3
4

5

6

7

i  id+2i  succ
0    2      2
1    3      6
2    5      6 

Succ. Table

i  id+2i  succ
0    3      6
1    4      6
2    6      6 

Succ. Table

i  id+2i  succ
0    1      1
1    2      2
2    4      6 

Succ. Table

i  id+2i  succ
0    7      0
1    0      0
2    2      2 

Succ. Table

70

Chord Examples

# Nodes: n1:(1), n2(3), 
n3(0), n4(6)

# Items: f1:(7), f2:(2)

0
1

2

3
4

5

6

7 i  id+2i  succ
0    2      2
1    3      6
2    5      6 

Succ. Table

i  id+2i  succ
0    3      6
1    4      6
2    6      6 

Succ. Table

i  id+2i  succ
0    1      1
1    2      2
2    4      6 

Succ. Table

7

Items 
1

Items 

i  id+2i  succ
0    7      0
1    0      0
2    2      2 

Succ. Table
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Query
# Upon receiving a query 

for item id, a node
# Check whether stores 

the item locally
# If not, forwards the 

query to the largest 
node in its successor 
table that does not 
exceed id

0
1

2

3
4

5

6

7 i  id+2i  succ
0    2      2
1    3      6
2    5      6 

Succ. Table

i  id+2i  succ
0    3      6
1    4      6
2    6      6 

Succ. Table

i  id+2i  succ
0    1      1
1    2      2
2    4      6 

Succ. Table

7

Items 
1

Items 

i  id+2i  succ
0    7      0
1    0      0
2    2      2 

Succ. Table

query(7)

72

Node Joining 

# Node n joins the system:
– n picks a random identifier, id
– n performs n’ = lookup(id)
– n->successor = n’
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State Maintenance: Stabilization Protocol

# Periodically node n 
– Asks its successor, n’, about its predecessor n’’
– If n’’ is between n’ and n’’

» n->successor = n’’
» notify n’’ that n its predecessor

# When node n’’ receives notification message from n
– If n is between n‘’->predecessor and n’’, then 

» n’’->predecessor = n
# Improve robustness

– Each node maintain a successor list (usually of size 
2*log N) 

74

CAN/Chord Optimizations

# Weight neighbor nodes by RTT
– When routing, choose neighbor who is closer to 

destination with lowest RTT from me
– Reduces path latency

# Multiple physical nodes per virtual node
– Reduces path length (fewer virtual nodes)
– Reduces path latency (can choose physical node 

from virtual node with lowest RTT)
– Improved fault tolerance (only one node per zone 

needs to survive to allow routing through the zone)
# Several others
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Conclusions

# Distributed Hash Tables are a key component of 
scalable and robust overlay networks

# CAN: O(d) state,  O(d*n1/d) distance
# Chord: O(log n) state, O(log n) distance
# Both can achieve stretch < 2
# Simplicity is key
# Services built on top of distributed hash tables

– p2p file storage, i3 (chord)
– multicast (CAN, Tapestry)
– persistent storage (OceanStore using Tapestry)
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Thanks to all of you!!!

Wish you have a happy and safe Summer!

See you next Monday!


