
1

Fault Tolerance

CprE 450/550x
Distributed Systems and Middleware

Yong Guan
3216 Coover

Tel: (515) 294-8378
Email: guan@ee.iastate.edu

April 22 & 27, 2004

2

Readings for Today’s Lecture

! References
! Chapter 7 of “Distributed Systems: Principles and Paradigms”

3

Basic Concepts
" Availability
" Reliability
" Safety
" Maintainability

" Security

4

Basic Concepts (cont.)
" A system is said to fail when it cannot meet its 

promises
" An error is a part of a system’s state that may lead to 

a failure
" The cause of an error is called fault

" Building dependable systems closely relates to 
controlling faults

" Fault tolerance means that a system can provide its 
services even in the presence of faults

5

Basic Concepts (cont.)
" Transient fault
" Intermittent fault
" Permanent fault

6

Failure Models

Different types of failures.

A server may produce arbitrary responses at arbitrary timesArbitrary failure

The server's response is incorrect
The value of the response is wrong
The server deviates from the correct flow of control

Response failure
Value failure
State transition failure

A server's response lies outside the specified time intervalTiming failure

A server fails to respond to incoming requests
A server fails to receive incoming messages
A server fails to send messages

Omission failure
Receive omission
Send omission

A server halts, but is working correctly until it haltsCrash failure

DescriptionType of failure



2

7

Failure Masking by Redundancy

Triple modular redundancy. (TMR)

8

Process Resilience
" Design issues
" Group Memberships
" Failure Masking and Replication

– Primary-based replication
– Replication-write protocols (quorum-based protocols, etc.)

" K fault tolerance

" Agreement in Faulty Systems

9

Flat Groups versus Hierarchical Groups

a) Communication in a flat group.
b) Communication in a simple hierarchical group

10

Agreement in Faulty Systems
" The general goal: Have all the non-faulty processes 

reach consensus on some issues and establish it within 
a finite number of steps.

" Example: Two-army problem

Blue 1Blue 1 Blue 2Red

11

Agreement in Faulty Systems (1)

The Byzantine generals problem for 3 loyal generals and1 traitor.
a) The generals announce their troop strengths (in units of 1 

kilosoldiers).
b) The vectors that each general assembles based on (a)
c) The vectors that each general receives in step 3.

12

Agreement in Faulty Systems (2)

The same as in previous slide, except now with 
2 loyal generals and one traitor.



3

13

Agreement in Faulty Systems
" Lamport (1983)

Given m faulty processes, agreement can be achieved 
only if 2m+1 correctly functioning processes are 
present, for a total of 3m+1 processes.

14

15

Reliable Client-Server Communication
" A communication channel may exhibit crash, omission, 

timing, and arbitrary failures.

" Reliable transport protocol: TCP

" RPC semantics in the presence of failures
– RPC: hide communication by making remote procedure 

calls as local ones
– If both C and S work perfectly, RPC does its job well.
– Problem: It is not easy to mask the difference between 

remote and local calls in the presence of failures.

16

Reliable Client-Server Communication
" Five classes of RPC failures:

1. The client is unable to locate the server
2. The request message from the client to the server is 

lost
3. The server crashes after receiving a request
4. The reply message from the server to the client is lost
5. The client crashes after sending a request

17

RPC: Server Crashes (1)

A server in client-server 
communication

a) Normal case
b) Crash after execution 
c) Crash before execution

Guarantee nothing

At least once semantics

At most once semantics

Exactly once semantics

18

RPC: Server Crashes (2)

" Different combinations of client and server strategies in the 
presence of server crashes.

DUP

OK

OK

DUP

PC(M)

OK

DUP

OK

DUP

PMC

Strategy P -> M

OK

ZERO

ZERO

OK

C(MP)

Server

OKZEROOKOnly when not ACKed

ZEROOKDUPOnly when ACKed

ZEROZEROOKNever

OKOKDUPAlways

C(PM)MC(P)MPCReissue strategy

Strategy M -> P

Client



4

19

RPC: Lost reply message
" Idempotent: Some operations can safely be repeated 

as often as necessary with no damage being done.

20

RPC: Client Crashes
" What happens if a client sends a request to a server to do 

some work and crashes before the server replies?

" Orphan: At a point, a computation is active and no parent 
is waiting for the result.  Such unwanted computation is 
called orphan.
– Waste CPU cylces
– Can lock files or otherwise tie up valuable resources

21

RPC: Client Crashes
" Four things can be done:

– Extermination: Log what is about to do before RPC stub sends a 
RPC message. After reboot, the log is checked and the orphan is 
explicitly killed off.

– Reincarnation: Divide time up into sequentially numbered epochs.
After reboot, it broadcasts a message to all machines declaring 
the start of a new epoch.  Once such broadcast mesg received, all 
remote computations on behalf of that client are killed.

– Gentle reincarnation: When epoch broadcast comes in, each 
machine checks to see if it has any remote computations, and if so, 
tries to locate their owner. Only if the owner cannot be found is 
the computation killed.

– Expiration: Each RPC is given a time T to do its job.

22

Reliable Group Communication
" TCP offers reliable point-to-point channels.
" How to implement reliable group communication?

" One way: Let each process set up a point-to-point 
connection to each other process it wants to.
– Not efficient

" What do we mean “Reliable Group Communication”?
– A message that is sent to a process group should be delivered 

to each member of that group.

23

Reliable Group Communication
" Need further definition for “Reliable Group 

Communication”
– What about new member joining the group during the 

communication?
– What about an existing member leaving the group? Crashes?

" In the presence of faulty processes, multicasting is 
considered to be reliable when it can be guaranteed that 
all non-faulty group members receive the message. 
Agreement should be reached.

24

Basic Reliable-Multicasting Schemes

A simple solution to reliable multicasting when all 
receivers are known and are assumed not to fail

a) Message transmission
b) Reporting feedback



5

25

Scalability in Reliable Multicasting
" Problem: Feedback implosion

" Will negative acknowledgement solve the problem?

" Is there any problem with only returning negative 
acknowledgement?

" Feedback suppression

26

Nonhierarchical Feedback Control

Several receivers have scheduled a request for 
retransmission, but the first retransmission request 
leads to the suppression of others.

27

Hierarchical Feedback Control

The essence of hierarchical reliable multicasting.
a) Each local coordinator forwards the message to its children.
b) A local coordinator handles retransmission requests.

28

Atomic Multicast
" Atomic multicast problem: A message is delivered to 

either all processes or to none at all. In addition, all 
messages are delivered in the same order to all 
processes

" Why this important? Example: Replicated database

29

Virtual Synchrony (1)

The logical organization of a distributed 
system to distinguish between message 
receipt and message delivery

•Group View: Delivery list, the 
set of processes contained in 
the group

•View Change

•Virtually Synchronous: A mesg
multicast to group view G is 
delivered to each non-faulty 
process in G.  If the sender of 
the mesg crashes during the 
multicast, the mesg may either 
be delivered to all remaining 
processes or ignored by each of 
them.

30

Virtual Synchrony (2)

The principle of virtual synchronous multicast.



6

31

Message Ordering (1)

Three communicating processes in the same group.  
The ordering of events per process is shown along 
the vertical axis.

receives m1receives m2sends m2

receives m2receives m1sends m1

Process P3Process P2Process P1

Four different ordering:
•Unordered multicasts

•FIFO-ordered multicasts

•Causally-ordered multicasts

•Totally-ordered multicasts

32

Message Ordering (2)

Four processes in the same group with two different 
senders, and a possible delivery order of messages 
under FIFO-ordered multicasting

receives m4receives m4

receives m2receives m2

sends m4receives m1receives m3sends m2

sends m3receives m3receives m1sends m1

Process P4Process P3Process P2Process P1

33

Implementing Virtual Synchrony (1)

" Six different versions of virtually synchronous 
reliable multicasting.

YesCausal-ordered deliveryCausal atomic multicast

YesFIFO-ordered deliveryFIFO atomic multicast

YesNoneAtomic multicast

NoCausal-ordered deliveryCausal multicast

NoFIFO-ordered deliveryFIFO multicast

NoNoneReliable multicast

Total-ordered Delivery?Basic Message OrderingMulticast

34

Implementing Virtual Synchrony (2)

a) Process 4 notices that process 7 has crashed, sends a view change
b) Process 6 sends out all its unstable messages, followed by a flush message
c) Process 6 installs the new view when it has received a flush message from 

everyone else

35

Distributed Commit
" The distributed commit problem involves having an 

operation being performed by each member of a process 
group, or none at all.

" One-phase commit protocol
– Problem: if one of the participant can not perform the 

operation, no way to tell the coordinator
" Two phase commit protocol
" Three phase commit protocol

36

Two Phase Commit Protocol
1. The coordinator sends a VOTE_REQUEST message to all 

participants
2. When a participant receives VOTE_REQUEST, it returns 

either VOTE_COMMIT or VOTE_ABORT to the 
coordinator.

3. The coordinator collects all votes from the participants. 
If all participants have voted to commit the transaction, 
then so will the coordinator. In that case, it sends a 
GLOBAL_COMMIT to all participants.  Otherwise, it 
multicasts a GLOBAL_ABORT.

4. Each participant that voted for a commit waits for the 
final reaction by the coordinator. Locally commit if a 
GLOBAL_COMMIT is received or abort if 
GLOBAL_ABORT is received.



7

37

Two-Phase Commit (1)

a) The finite state machine for the coordinator in 2PC.
b) The finite state machine for a participant.

38

Two-Phase Commit (2)

Actions taken by a participant P when residing in state 
READY and having contacted another participant Q.

Contact another participantREADY

Make transition to ABORTINIT

Make transition to ABORTABORT

Make transition to COMMITCOMMIT

Action by PState of Q

39

Two-Phase Commit (3)

Outline of the steps taken by the coordinator 
in a two phase commit protocol

actions by coordinator:

while START _2PC to local log;
multicast VOTE_REQUEST to all participants;
while not all votes have been collected {

wait for any incoming vote;
if timeout {

while GLOBAL_ABORT to local log;
multicast  GLOBAL_ABORT to all participants;
exit;

}
record vote;

}
if all participants sent VOTE_COMMIT and coordinator votes COMMIT{

write GLOBAL_COMMIT to local log;
multicast GLOBAL_COMMIT to all participants;

} else {
write GLOBAL_ABORT  to local log;
multicast GLOBAL_ABORT to all participants;

}

40

Two-Phase Commit (4)

" Steps taken by 
participant 
process in 2PC.

actions by participant:

write INIT to local log;
wait for VOTE_REQUEST from coordinator;
if timeout {

write VOTE_ABORT to local log;
exit;

}
if participant votes COMMIT {

write VOTE_COMMIT to local log;
send VOTE_COMMIT to coordinator;
wait for DECISION from coordinator;
if timeout {

multicast DECISION_REQUEST to other participants;
wait until DECISION is received; /* remain blocked */
write DECISION to local log;

}
if DECISION == GLOBAL_COMMIT

write GLOBAL_COMMIT to local log;
else if DECISION == GLOBAL_ABORT

write GLOBAL_ABORT to local log;
} else {

write VOTE_ABORT to local log;
send  VOTE ABORT to coordinator;

}

41

Two-Phase Commit (5)

Steps taken for handling incoming decision requests.

actions for handling decision requests: /* executed by separate thread */

while true {
wait until any incoming DECISION_REQUEST is received; /* remain blocked */
read most recently recorded STATE from the local log;
if STATE == GLOBAL_COMMIT

send GLOBAL_COMMIT to requesting participant;
else if STATE == INIT or STATE == GLOBAL_ABORT

send GLOBAL_ABORT to requesting participant;
else

skip;  /* participant remains blocked */

42

Three-Phase Commit

a) Finite state machine for the coordinator in 3PC
b) Finite state machine for a participant



8

43

Recovery
" Backward recovery

– Checkpoint
" Forward recovery

44

Recovery Stable Storage

a) Stable Storage
b) Crash after drive 1 is updated
c) Bad spot

45

Checkpointing

A recovery line.

46

Independent Checkpointing

The domino effect.

47

Message Logging

Incorrect replay of messages after recovery, 
leading to an orphan process.

48

Message Logging Scheme
" A message is stable if it can no longer be lost.

" Pessimistic logging protocols

" Optimistic logging protocols



9

49

Any Questions?

See you next time.


