
1

Consistency and Replication

CprE 450/550x
Distributed Systems and Middleware

Yong Guan
3216 Coover

Tel: (515) 294-8378
Email: guan@ee.iastate.edu
April 13 & 15 & 20, 2004

2

Readings for Today’s Lecture

! References
! Chapter 6 of “Distributed Systems: Principles and Paradigms”

3

Introduction to Consistency & Replication
Object Replication

Organization of a distributed remote object shared by two
different clients.

4

Object Replication (2)

a) A remote object capable of handling concurrent invocations on its own.
b) A remote object for which an object adapter is required to handle

concurrent invocations

5

Object Replication (3)

a) A distributed system for replication-aware distributed objects.
b) A distributed system responsible for replica management

6

Data-Centric Consistency Models

The general organization of a logical data store, physically
distributed and replicated across multiple processes.

2

7

Strict Consistency

" Behavior of two processes, operating on the same data item.
" A strictly consistent store.
" A store that is not strictly consistent.

8

Linearizability and Sequential Consistency (1)

a) A sequentially consistent data store.
b) A data store that is not sequentially consistent.

9

Linearizability and Sequential Consistency (2)

Three concurrently executing processes.

z = 1;

print (x, y);

y = 1;

print (x, z);

x = 1;

print (y, z);

Process P3Process P2Process P1

10

Linearizability and Sequential Consistency (3)

Four valid execution sequences for the processes of the previous
slide. The vertical axis is time.

y = 1;

x = 1;

z = 1;
print (x, z);

print (y, z);

print (x, y);

Prints: 111111

Signature:
111111

(d)

y = 1;

z = 1;

print (x, y);
print (x, z);

x = 1;

print (y, z);

Prints: 010111

Signature:
110101

(c)

x = 1;

y = 1;

print (x,z);
print(y, z);

z = 1;

print (x, y);

Prints: 101011

Signature:
101011

(b)

x = 1;

print ((y, z);

y = 1;
print (x, z);

z = 1;

print (x, y);

Prints: 001011

Signature:
001011

(a)

11

Casual Consistency (1)

" Necessary condition:
Writes that are potentially casually related must be
seen by all processes in the same order. Concurrent
writes may be seen in a different order on different
machines.

12

Casual Consistency (2)

This sequence is allowed with a casually-consistent store, but not
with sequentially or strictly consistent store.

3

13

Casual Consistency (3)

a) A violation of a casually-consistent store.
b) A correct sequence of events in a casually-consistent store.

14

FIFO Consistency (1)

" Necessary Condition:
Writes done by a single process are seen by all other
processes in the order in which they were issued, but
writes from different processes may be seen in a
different order by different processes.

15

FIFO Consistency (2)

A valid sequence of events of FIFO consistency

16

FIFO Consistency (3)

Statement execution as seen by the three processes from the
previous slide. The statements in bold are the ones that

generate the output shown.

y = 1;
print (x, z);

z = 1;

print (x, y);
x = 1;

print (y, z);

Prints: 01

(c)

x = 1;
y = 1;

print(x, z);
print (y, z);
z = 1;

print (x, y);

Prints: 10

(b)

x = 1;
print (y, z);
y = 1;

print(x, z);
z = 1;

print (x, y);

Prints: 00

(a)

17

FIFO Consistency (4)

Two concurrent processes.

y = 1;
if (x == 0) kill (P1);

x = 1;
if (y == 0) kill (P2);

Process P2Process P1

18

Weak Consistency (1)

" Properties:
" Accesses to synchronization variables associated

with a data store are sequentially consistent
" No operation on a synchronization variable is

allowed to be performed until all previous writes
have been completed everywhere

" No read or write operation on data items are
allowed to be performed until all previous
operations to synchronization variables have been
performed.

4

19

Weak Consistency (2)

A program fragment in which some variables may be kept
in registers.

int a, b, c, d, e, x, y; /* variables */
int *p, *q; /* pointers */
int f(int *p, int *q); /* function prototype */

a = x * x; /* a stored in register */
b = y * y; /* b as well */
c = a*a*a + b*b + a * b; /* used later */
d = a * a * c; /* used later */
p = &a; /* p gets address of a */
q = &b /* q gets address of b */
e = f(p, q) /* function call */

20

Weak Consistency (3)

a) A valid sequence of events for weak consistency.
b) An invalid sequence for weak consistency.

21

Release Consistency (1)

A valid event sequence for release consistency.

22

Release Consistency (2)

" Rules:
" Before a read or write operation on shared data is

performed, all previous acquires done by the
process must have completed successfully.

" Before a release is allowed to be performed, all
previous reads and writes by the process must have
completed

" Accesses to synchronization variables are FIFO
consistent (sequential consistency is not required).

23

Entry Consistency (1)

" Conditions:
" An acquire access of a synchronization variable is not allowed to

perform with respect to a process until all updates to the
guarded shared data have been performed with respect to that
process.

" Before an exclusive mode access to a synchronization variable by
a process is allowed to perform with respect to that process, no
other process may hold the synchronization variable, not even in
nonexclusive mode.

" After an exclusive mode access to a synchronization variable has
been performed, any other process's next nonexclusive mode
access to that synchronization variable may not be performed
until it has performed with respect to that variable's owner.

24

Entry Consistency (2)

" A valid event sequence for entry consistency.

5

25

Summary of Consistency Models

a) Consistency models not using synchronization operations.
b) Models with synchronization operations.

(b)

Shared data pertaining to a critical region are made consistent when a critical region is entered.Entry

Shared data are made consistent when a critical region is exitedRelease

Shared data can be counted on to be consistent only after a synchronization is doneWeak

DescriptionConsistency

(a)

All processes see writes from each other in the order they were used. Writes from different processes may not
always be seen in that order

FIFO

All processes see causally-related shared accesses in the same order.Causal

All processes see all shared accesses in the same order. Accesses are not ordered in timeSequential

All processes must see all shared accesses in the same order. Accesses are furthermore ordered according to
a (nonunique) global timestamp

Linearizability

Absolute time ordering of all shared accesses matters.Strict

DescriptionConsistency

26

27

Client-Centric Consistency Models
" Data-centric consistency models

– Multiple concurrent processes may simultaneously update
the data store

" Today, we are focusing on a special class of
distributed data stores.
– There are no or very few simultaneous updates on the

data store.
– When such concurrent updates happen, they can be easily

resoved.
– Most operations are reading.

– We will introduce a very weak consistency model –
eventual consistency.

28

Client-Centric Consistency Models
" Examples in which concurrency happens in a

restricted manner:
– Database systems: read-only
– DNS
– WWW
– They are in common that they can tolerate a relatively

high degree of inconsistency.
" Eventual consistency: If no updates take place for a

long time, all replicas will gradually and eventually
become consistent.

29

Eventual Consistency: Issue

The principle of a mobile user accessing different
replicas of a distributed database.

Will work fine if
client always
access the same
replica.

What about
when different
replicas are
accessed?

30

The previous problem can be alleviated
" By Using Client-centric consistency:

– Client-centric consistency provides guarantees for a
single client concerning the consistency of accesses to a
data store by that client

– No guarantees are given concerning concurrent accesses
by different clients.

– Originated from the work Bayou.
– In this model, we assume there is only one process that

is permitted to update the data store.

6

31

Monotonic Reads
" Condition:

– If a process reads the value of a data item x, any
successive read operations on x by that process will always
return that same value or a more recent value.

32

Monotonic Reads

The read operations performed by a single process P at two different
local copies of the same data store.

a) A monotonic-read consistent data store
b) A data store that does not provide monotonic reads.

33

Monotonic Writes
" Condition:

– A write operation by a process on a data item x is
completed before any successive write operation on x by
the same process.

34

Monotonic Writes

" The write operations performed by a single process P at two different
local copies of the same data store

a) A monotonic-write consistent data store.
b) A data store that does not provide monotonic-write consistency.

35

Read your Writes
" Condition:

– The effect of a write operation by a process on a data
item x will always be seen by a successive read operation on
x by the same process.

36

Read Your Writes

a) A data store that provides read-your-writes consistency.
b) A data store that does not.

7

37

Writes Follow Reads
" Condition:

– A write operation by a process on a data item x following a
previous read operation on x by the same process, is
guaranteed to take place on the same or a more recent
value of x that was read.

38

Writes Follow Reads

a) A writes-follow-reads consistent data store
b) A data store that does not provide writes-follow-reads

consistency

39

Implementations Issues
" Relatively straightforward without considering

performance issues
" Each write operation is assigned a globally unique

identifier.

40

Distributed Protocols
" Replica Placement
" Update Propagation
" Epidemic Protocols

41

Replica Placement

The logical organization of different kinds of copies
of a data store into three concentric rings.

42

Server-Initiated Replicas

Counting access requests from different clients.

8

43

Client-Initiated Replicas
" Client cache
" Placement of client cache

44

Update Propagaation
" State versus operations
" Pull versus pull protocols
" Unicast versus multicast

45

Pull versus Push Protocols

A comparison between push-based and pull-based protocols in
the case of multiple client, single server systems.

Fetch-update timeImmediate (or fetch-update time)
Response time at
client

Poll and updateUpdate (and possibly fetch update later)Messages sent

NoneList of client replicas and cachesState of server

Pull-basedPush-basedIssue

46

Epidemic Protocols
" EP does not solve update conflicts. Propagate updates

to all replicas in as few messages as possible.
" Update Propagation Models

– Infective if it holds an update that it is willing to spread
to other servers

– Susceptible if a server has not been updated yet.
– Removed if an updated server that is not willing to or

able to spread its update
" Anti-entropy model:

– Server P chooses Q randomly and then exchanges updates
with Q:

» P pushes its own update to Q
» P pulls in new updates from Q
» P and Q send updates to each other.

47

Epidemic Protocols
" Variant: Rumor Spreading/gossiping

48

9

49

Consistency Protocols
" We have studied various consistency models.
" Today, we will focus on issues of implementation of

consistency models:
– Whether or not there is a primary copy of the data to which all

write operations should be forwarded.
– When no such primary copy exists, a write operation can be

initiated at any replica.

" Primary-based protocols
" Replicated-write protocols
" Cache-coherence protocols

50

Primary-based protocols
Each date item x has an associated primary for coordinating write

operations on x.
Depend on whether primary is fixed or movable.

" Remote-write protocols
– No replication
– All read and write operations are carried out at a (remote) single

server.
" Local-write protocols

– Fully-migrating approaches: keeping track of data item
– Primary-based approaches

51

Remote-Write Protocols (1)

Primary-based remote-write protocol with a fixed server to
which all read and write operations are forwarded.

52

Remote-Write Protocols (2)

The principle of primary-
backup protocol.

53

Local-Write Protocols (1)

Primary-based local-write protocol in which a single copy is migrated
between processes.

54

Local-Write Protocols (2)

Primary-backup protocol in which the primary migrates to
the process wanting to perform an update.

10

55

Replicated-write protocols
Write operations can be carried out at multiple replicas instead of

only one.

" Active replications
– An operation is forwarded to all replicas

" Consistency protocols based on majority voting

56

Active Replication (1)

The problem of replicated invocations.

57

Active Replication (2)

a) Forwarding an invocation request from a replicated object.
b) Returning a reply to a replicated object.

58

" The basic idea is to require clients to request and
acquire the permission of multiple servers before
either reading or writing a replicated data item.

" Gifford’s scheme:
– Nr: read quorum
– Nw: write quorum

– Two conditions:
1. Nr+Nw > N
2. Nw > N/2

Quorum-Based Protocols (1)

59

Quorum-Based Protocols (2)

Three examples of the voting algorithm:
a) A correct choice of read and write set
b) A choice that may lead to write-write conflicts
c) A correct choice, known as ROWA (read one, write all)

60

Cache-Coherence Protocols
" Cache: A special form of replication
" Controlled by clients, not servers
" Three approaches:
" Coherence detection strategy
" Optimistic approach
" Verify whether the cached data were up to date only when the

transaction committed.

" Coherence enforcement strategy
" Write-through caches: allow clients to directly modify the cached

data and forward the update to the servers.
" Write-back cache: Delay the propagation of updates by allowing

multiple writes to take place before informing the servers.

11

61

Orca

A simplified stack object in Orca, with internal
data and two operations.

OBJECT IMPLEMENTATION stack;
top: integer; # variable indicating the top
stack: ARRAY[integer 0..N-1] OF integer # storage for the stack

OPERATION push (item: integer) # function returning nothing
BEGIN

GUARD top < N DO
stack [top] := item; # push item onto the stack
top := top + 1; # increment the stack pointer

OD;
END;

OPERATION pop():integer; # function returning an integer
BEGIN

GUARD top > 0 DO # suspend if the stack is empty
top := top – 1; # decrement the stack pointer
RETURN stack [top]; # return the top item

OD;
END;

BEGIN
top := 0; # initialization

END;

62

Management of Shared Objects in Orca

Four cases of a process P performing an operation on an
object O in Orca.

63

Casually-Consistent Lazy Replication

The general organization of a distributed data store. Clients are
assumed to also handle consistency-related communication.

64

Processing Read Operations

Performing a read operation at a local copy.

65

Processing Write Operations

Performing a write operation at a local copy.

66

Any Questions?

See you next time.

