CprE 450/550x Distributed Systems and Middleware

Consistency and Replication

Yong Guan 3216 Coover Tel: (515) 294-8378 Email: <u>guan@ee.iastate.edu</u> April 13 & 15 & 20, 2004

Readings for Today's Lecture

- > References
 - > Chapter 6 of "Distributed Systems: Principles and Paradigms"

x = 1;	x = 1;	y = 1;	y = 1;
print ((y, z);	y = 1;	z = 1;	x = 1;
y = 1;	print (x,z);	print (x, y);	z = 1;
print (x, z);	print(y, z);	print (x, z);	print (x, z);
z = 1;	z = 1;	x = 1;	print (y, z);
print (x, y);	print (x, y);	print (y, z);	print (x, y);
Prints: 001011	Prints: 101011	Prints: 010111	Prints: 111111
Signature:	Signature:	Signature:	Signature:
001011	101011	110101	111111
(a)	(b)	(C)	(d)

P1:	W(x)a			W(x)c		
P2:	1	R(x)a	W(x)b			
P3:		R(x)a			R(x)c	R(x)b
P4:	I	R(x)a			R(x)b	R(x)c
P3: P4:		R(x)a R(x)a			R(x)c R(x)b	R(x)c

P1: W(x)a					
P2:	R(x)a	W(x)b	W(x)c			
P3:				R(x)b	R(x)a	R(x)c
P4:				R(x)a	R(x)b	R(x)c
-4.				R(x)a	R(X)D	R(X)

Summary of Consistency Models

Consistency	Description
Consistency	Description
Strict	Absolute time ordering of all shared accesses matters.
Linearizability	All processes must see all shared accesses in the same order. Accesses are furthermore ordered according to a (nonunique) global timestamp
Sequential	All processes see all shared accesses in the same order. Accesses are not ordered in time
Causal	All processes see causally-related shared accesses in the same order.
FIFO	All processes see writes from each other in the order they were used. Writes from different processes may not always be seen in that order
	(a)
Consistency	Description
Weak	Shared data can be counted on to be consistent only after a synchronization is done
Release	Shared data are made consistent when a critical region is exited
Entry	Shared data pertaining to a critical region are made consistent when a critical region is entered.
	(b)
a)	Consistency models not using synchronization operations.
b)	Models with synchronization operations.

 Relatively straightforward without considering performance issues 39

40

Each write operation is assigned a globally unique identifier.

Distributed Protocols

- Replica Placement
- Update Propagation
- Epidemic Protocols

Client-Initiated Replicas

Client cache

Placement of client cache

Update Propagaation

- State versus operations
- Pull versus pull protocols
- Unicast versus multicast

43

ssue	Push-based	Pull-based
State of server	List of client replicas and caches	None
Messages sent	Update (and possibly fetch update later)	Poll and update
Response time at client	Immediate (or fetch-update time)	Fetch-update time

Epidemic Protocols

Variant: Rumor Spreading/gossiping

Consistency Protocols

- We have studied various consistency models.
- Today, we will focus on issues of implementation of consistency models:
 - Whether or not there is a primary copy of the data to which all write operations should be forwarded.

49

50

- When no such primary copy exists, a write operation can be initiated at any replica.
- Primary-based protocols
- Replicated-write protocols
- Cache-coherence protocols

Primary-based protocols

Each date item x has an associated primary for coordinating write operations on x.

Depend on whether primary is fixed or movable.

- Remote-write protocols
 - No replication
 - All read and write operations are carried out at a (remote) single server.
- Local-write protocols
 - Fully-migrating approaches: keeping track of data item
 - Primary-based approaches

