CprE 450/550x
Distributed Systems and Middleware

Consistency and Replication

Yong Guan
3216 Coover
Tel: (515) 294-8378
Email: guan@ee.iastate.edu
April 13 & 15 & 20, 2004

Readings for Today's Lecture

» References
» Chapter 6 of “Distributed Systems: Principles and Paradigms”




Introduction to Consistency & Replication

Object Replication

Cheni rraching b=l S A mnk mactine

Senser

|
L4 r ¥
Ehedzin
ik
Sarvar 05
etk

Organization of a distributed remote object shared by two
different clients.

Object Replication (2)

SErwR | Pt e
=t ] S ra e
== ]
Fschian ain w |
ToF FiRilead 1 Ll
i Dl !
- YT Y &
Eka opm v ey =ralal
ot Skakn Feor irartusl sl
:::;;-:I:I'rt } AAL AT | '
J'Cl:h';.'r!l Fadapied [ o ™
[ & A& ko
o5 Cofunaimasl aE
mmeaalnes L

|FBONTH o) Aefpaists OOy eIl

im [1-]]

A remote object capable of handling concurrent invocations on its own.

A remote object for which an object adapter is required to handle
concurrent invocations




Object Replication (3)

Rl
el
F Y
oieamw [rr— MedZinare
[ e I Hetanrk 05
=i

s b

A distributed system for replication-aware distributed objects.
A distributed system responsible for replica management

Data-Centric Consistency Models

Process Process Frocess
| btopu ] Liocal copy
i A i
N S e — -7'*'"-'-,"'"_-.
s =
E —1 e e

Dstnbuted data store

The general organization of a logical data store, physically
distributed and replicated across multiple processes.




Strict Consistency

P W a = Wleia
B Rie)s 2] Rzl
(il [1=4]

Rixla

Behavior of two processes, operating on the same data item.

A strictly consistent store.
A store that is not strictly consistent.

Linearizability and Sequential Consistency (1)

P \x)a P Wixha
Fa Wb P2 Wikl B
P Rix}a Rixja P3 Rixlo
P4 Rixlk Ri<a P4

L&y L]

A sequentially consistent data store.
A data store that is not sequentially consistent.

El:ll.l.i.'l
Hixja Rk




Linearizability and Sequential Consistency (2)

Process P1 Process P2 Process P3
X=1; y=1 z=1;
print (y, 2); print (x, 2); print (x, y);

Three concurrently executing processes.

Linearizability and Sequential Consistency (3)

x=1 Xx=1 y=1 y=1
print ((y, 2); y=1; z=1,; x=1;
y=1; print (x,2); print (x, y); z=1,;
print (x, 2); print(y, z); print (x, 2); print (x, 2);
z=1,; z=1,; x=1; print (y, 2);
print (X, y); print (x, y); print (y, 2); print (X, y);
Prints: 001011 Prints: 101011 Prints: 010111 Prints: 111111
Signature: Signature: Signature: Signature:
001011 101011 110101 111111
(@) (b) (© (d)

Four valid execution sequences for the processes of the previous
slide. The vertical axis is time.




11

Casual Consistency (1)

Necessary condition:

Writes that are potentially casually related must be
seen by all processes in the same order. Concurrent
writes may be seen in a different order on different

machines.

12

Casual Consistency (2)

P1: Wix}a Wixlc

P2 Rixla Wixb

P3 Rixla Fix)c Rix)b
P4 Rix}a Rixib Ric

This sequence is allowed with a casually-consistent store, but not
with sequentially or strictly consistent store.




13

Casual Consistency (3)

P Wix)a

P2 Rixja  Wix)b

F3 Rixib Rix)a
P4 Flda Rixb

{a]

P11 Wixja

P2 Wix)o

Pa _ Rigb R(xa
=F] Rixja Rixik

ik

A violation of a casually-consistent store.
A correct sequence of events in a casually-consistent store.

14

FIFO Consistency (1)

Necessary Condition:

Writes done by a single process are seen by all other
processes in the order in which they were issued, but
writes from different processes may be seen in a
different order by different processes.




15

FIFO Consistency (2)

P1: Wix)a

P2 Hix)a Wikibh  Wilc

P3: Rix)b R(x)a Rix)c
P4 Rixla R(xb Rixlc

A valid sequence of events of FIFO consistency

16

FIFO Consistency (3)

x=1, x=1, y=1,

print (y, z); y=1 print (X, 2);

y=1,; print(x, z); z=1,;

print(x, z); print (y, 2); print (X, y);

z=1; z=1; X =1

print (x, y); print (x, y); print (y, z);

Prints: 00 Prints: 10 Prints: 01
(@ (b) ()

Statement execution as seen by the three processes from the
previous slide. The statements in bold are the ones that
generate the output shown.




FIFO Consistency (4)

Process P1 Process P2
x=1; y=1,
if (y == 0) kill (P2); if (x == 0) kill (P1);

Two concurrent processes.

17

Weak Consistency (1)

Properties:

Accesses to synchronization variables associated
with a data store are sequentially consistent

No operation on a synchronization variable is
allowed to be performed until all previous writes
have been completed everywhere

No read or write operation on data items are
allowed to be performed until all previous
operations to synchronization variables have been
performed.

18




19

Weak Consistency (2)

inta,b,c,d, e, xvy; [* variables */

int *p, *q; [* pointers */

int f(int *p, int *q); /* function prototype */
a=Xx*x; [* a stored in register */
b=y*y; I* b as well */
c=a*a*a+b*bh+a*b; [* used later */
d=a*a*c; [* used later */

p = &a; /* p gets address of a */
g=2&b [* q gets address of b */
e=f(p, q) /* function call */

A program fragment in which some variables may be kept
in registers.

20

Weak Consistency (3)

P Wikla Wikl 5
P2 Rizla R{xlb 5
F3: Rixibh Rixa S

(@)
Pl Wixla Wb S
Pz 5 Rix)a

(k)

A valid sequence of events for weak consistency.
An invalid sequence for weak consistency.

10



21

Release Consistency (1)

P1. Acql) Wixla Wixib  ReliL)
P2 Aegil) Rixlb  Relll)
pa T

A valid event sequence for release consistency.

22

Release Consistency (2)

Rules:

Before a read or write operation on shared data is
performed, all previous acquires done by the
process must have completed successfully.

Before a release is allowed to be performed, all
previous reads and writes by the process must have
completed

Accesses to synchronization variables are FIFO
consistent (sequential consistency is not required).

11



Entry Consistency (1)

Conditions:

An acquire access of a synchronization variable is not allowed to
perform with respect to a process until all updates to the
guarded shared data have been performed with respect to that
process.

Before an exclusive mode access to a synchronization variable by
a process is allowed to perform with respect to that process, no
other process may hold the synchronization variable, not even in
nonexclusive mode.

After an exclusive mode access to a synchronization variable has
been performed, any other process's next nonexclusive mode
access to that synchronization variable may not be performed
until it has performed with respect to that variable®s owner.

23

Entry Consistency (2)

P1:
P2

Acgilx] Wikda Acgilyl Wivib Relilx) Relily)
Aoelx) Riga  RiyNIL
Acg(ly) Riyib

A valid event sequence for entry consistency.

24

12



25

Summary of Consistency Models

a) Consistency models not using synchronization operations.
b) Models with synchronization operations.

26

13



27

Client-Centric Consistency Models

Data-centric consistency models

- Multiple concurrent processes may simultaneously update
the data store

Today, we are focusing on a special class of

distributed data stores.

- There are no or very few simultaneous updates on the
data store.

- When such concurrent updates happen, they can be easily
resoved.

- Most operations are reading.

- We will introduce a very weak consistency model -
eventual consistency.

28

Client-Centric Consistency Models

Examples in which concurrency happens in a

restricted manner:

- Database systems: read-only

- DNS

- WWW

- They are in common that they can tolerate a relatively
high degree of inconsistency.

Eventual consistency: If no updates take place for a

long time, all replicas will gradually and eventually

become consistent.

14



Eventual Consistency: Issue

Will work fine if Tl o
client always o
access the same r

replica. =il

What about i PR
when different ot e

replicas are =

accessed? LA  Cmem e

The principle of a mobile user accessing different
replicas of a distributed database.

29

The previous problem can be alleviated

By Using Client-centric consistency:

Client-centric consistency provides guarantees for a
single client concerning the consistency of accesses to a
data store by that client

No guarantees are given concerning concurrent accesses
by different clients.

Originated from the work Bayou.

In this model, we assume there is only one process that
is permitted to update the data store.

30

15



31

Monotonic Reads

Condition:

IT a process reads the value of a data item x, any
successive read operations on x by that process will always
return that same value or a more recent value.

Tl T sty e
DR ey | e
Pl

-

¥ SR A I M
L] —_— i S OB
T
4 T
|

¥ ¥ —
- &

i et @ e e

e ol o mweahe
Frtiiss corg e

32

Monotonic Reads

L1 WS Rixg
L& WS Flixsd

L1 WSy R}
L2 W) Rixs) WS, ws
ib]

The read operations performed by a single process Pat two different
local copies of the same data store.

A monotonic-read consistent data store
A data store that does not provide monotonic reads.

16



Monotonic Writes

Condition:

A write operation by a process on a data item X is
completed before any successive write operation on x by
the same process.

Tl T sty e
DR ey | e
Pl

-

o
¥ SR A I M
L] Y i S OB
L T
X 4 T
e ] |
' L) =
—1 i
= |
A
4w

i et @ e e

e ol o mweahe
Frtiiss corg e

33

Monotonic Writes

L1 W)

L2 Wiy Wixg)
(&)

L1: Wy

L2 W= a)
(k)

The write operations performed by a single process Pat two different
local copies of the same data store

A monotonic-write consistent data store.
A data store that does not provide monotonic-write consistency.

34

17



35

Read your Writes

Condition:

The effect of a write operation by a process on a data
item x will always be seen by a successive read operation on
X by the same process.

Tl T sty e
i Hamgw ey | rrm
Fw e
=
L]

= B e
1 e -‘\-"ITM' 3 l- !
& ¥ L

= F—

e o

i S

36
Read Your Writes
LY. Wixg
L2 WS, X Rixs)
(a)

LT Wixy
Lz WS R(aah

by

A data store that provides read-your-writes consistency.
A data store that does not.

18



Writes Follow Reads

Condition:
A write operation by a process on a data item x following a
previous read operation on x by the same process, is
guaranteed to take place on the same or a more recent

value of x that was read.

*
= Lol ki el il ol

Srmi e o b e ar

37

Writes Follow Reads

L1: Wexy) R(xy)

L2 WS(qxg) Wika)
ia)

LT WSin) Rixy)

L2 W) Wika)

A writes-follow-reads consistent data store
A data store that does not provide writes-follow-reads
consistency

38

19



39

Implementations Issues

Relatively straightforward without considering
performance issues

Each write operation is assigned a globally unique
identifier.

40

Distributed Protocols

Replica Placement
Update Propagation
Epidemic Protocols

20



41

Replica Placement

- Secver-milabed rephcation

4 & & b CHeni-Hnitiated repication
et Farmranang
replicas =

Savermtmied repicas

Client-inihated replicas

Lhems

The logical organization of different kinds of copies
of a data store into three concentric rings.

42

Server-Initiated Replicas

Ca
Saenver without »
Gopy of ile F
-
Bi
1 , : Server with
Cliend )
m: « 4 .D_j. copy of F
c,l % - > Oy
1 _ File F

Server O counts sccess from Cy and
Ly as I they wauld corme fiam P

Counting access requests from different clients.

21



Client-Initiated Replicas

Client cache
Placement of client cache

43

Update Propagaation

State versus operations
Pull versus pull protocols
Unicast versus multicast

44

22



45

Pull versus Push Protocols

Issue Push-based Pull-based
State of server List of client replicas and caches None
Messages sent Update (and possibly fetch update later) Poll and update

Response time at

client Immediate (or fetch-update time) Fetch-update time

A comparison between push-based and pull-based protocols in
the case of multiple client, single server systems.

46

Epidemic Protocols

EP does not solve update conflicts. Propagate updates
to all replicas in as few messages as possible.

Update Propagation Models

- Infective if it holds an update that it is willing to spread
to other servers

- Susceptible if a server has not been updated yet.

- Removed if an updated server that is not willing to or
able to spread its update

Anti-entropy model:
- Server P chooses Q randomly and then exchanges updates
with Q:
» P pushes its own update to Q
» P pulls in new updates from Q
» P and Q send updates to each other.

23



Epidemic Protocols

Variant: Rumor Spreading/gossiping

47

48

24



49

Consistency Protocols

We have studied various consistency models.

Today, we will focus on issues of implementation of
consistency models:

- Whether or not there is a primary copy of the data to which all
write operations should be forwarded.

- When no such primary copy exists, a write operation can be
initiated at any replica.

Primary-based protocols
Replicated-write protocols
Cache-coherence protocols

50

Primary-based protocols

Each date item x has an associated primary for coordinating write
operations on X.

Depend on whether primary is fixed or movable.

Remote-write protocols
- No replication

- All read and write operations are carried out at a (remote) single
server.

Local-write protocols

- Fully-migrating approaches: keeping track of data item
- Primary-based approaches




51

Remote-Write Protocols (1)

Clmm
Hirtg b fafai
i foriem

Lkl b
¥l L -
r___‘ W2 e _:]_- Rz

|
e, e

WAL Wi ren et

W2 Fodwisd i sl 10 s ar A0 =
WG Acangdecge watks mompieied
WL AcRnowaedge witie completed

R1

Ll

A BacEiip e

R4

Limim =ore

K1 Hewss request

R2 Forwsd g uis! I S et 1o 5
K Hetum respormes

R4, REtum resporss

Primary-based remote-write protocol with a fixed server to
which all read and write operations are forwarded.

52

Remote-Write Protocols (2)

Chert
Primany serer
Tk for Bam s
W | | WS
¥ = 1 ’
-
k] - AT
W2

Wi

W Wi reuest

W2, Forwand request to primary
W3 Tell backuaps 1 updata

W Acknowledge updale

WS Ackneelecga with complated

Cli=nt

& BaGhuip seroer

Ri| |R2

I8
~

¥
* Data shone
e

R1. Read reguesst
A2 Response ho read

The principle of primary-

backup protocol.

26



Local-Write Protocols (1)

Client
Current servar Wy st
far item x i tor itmm x
1 a
4 = Ll .I'--
S e il S — —
I ) _-_I - 1 J]

1. Raad ai 78 rediass]

2. Forssgnd reqquest bo cunmesnt saraar Sor x

3. Mawe dem x to cli=nt's seresr

4. Retan sl of operation on clents servar

Primary-based local-write protocol in which a single copy is migrated
between processes.

53

54

Local-Write Protocols (2)

Cheni O

Lild premary My pramary
i Yor Rem K o iemy g

Rl | B2 | e

Tl sinin

B e sl F1. R seuest
BL Mrep Aem o ey pimany 12 Bespomee nooead
WE f-n:n.-uwln-cnr Wil Dok

M. Bl bechups o upcals

WEL Arknpvlecge updaie

Primary-backup protocol in which the primary migrates to
the process wanting to perform an update.

27



55

Replicated-write protocols

Write operations can be carried out at multiple replicas instead of
only one.

Active replications
An operation is forwarded to all replicas
Consistency protocols based on majority voting

56

Active Replication (1)

CAent replicatas
e et o Pedjues]

Ohbject receves
the same invocahion

¥ B thres fimes
b | [ 4
| oA > @2 » | C
1 | ] .

i

&l replicas cee B3
the same ireocaEtion i

FY

Rapicated chject

The problem of replicated invocations.

28



Active Replication (2)

Casnmdknalai

of chjsct B
Sl 1epl &
| replcates i Reaul
riefiiRlnhn dpd s
. B .
- i
1 = b
| ¥
4 M| B2 A
e [
[ Lo
-

[a)

57

Coh dinatod
of atge

Forwarding an invocation request from a replicated object.

Returning a reply to a replicated object.

Quorum-Based Protocols (1)

58

The basic idea is to require clients to request and
acquire the permission of multiple servers before
either reading or writing a replicated data item.

Gifford's scheme:
Nr: read quorum
Nw: write quorum

Two conditions:
Nr+Nw > N
Nw > N/2




59

Quorum-Based Protocols (2)

Riaad Gasninsm
& £
A1 B C D i, B [ ] L B C ]
E F (] H E F & H E F i =
I Jd [ 1 d #® | I d K L
* of B
r|q=3_ I'-."=1l.'l Hn='|" Nw=.-| “'.I“= hlw=1.'-!
Wkl quam
]| L] (el

Three examples of the voting algorithm:
A correct choice of read and write set
A choice that may lead to write-write conflicts
A correct choice, known as ROWA (read one, write all)

60

Cache-Coherence Protocols

Cache: A special form of replication
Controlled by clients, not servers
Three approaches:

Coherence detection strategy
Optimistic approach

Verify whether the cached data were up to date only when the
transaction committed.

Coherence enforcement strategy

Write-through caches: allow clients to directly modify the cached
data and forward the update to the servers.

Write-back cache: Delay the propagation of updates by allowing
multiple writes to take place before informing the servers.

30



Orca

OBJECT IMPLEMENTATION stack;
top: integer;
stack: ARRAY/[integer 0..N-1] OF integer

OPERATION push (item: integer)
BEGIN
GUARD top <N DO
stack [top] := item;

top :=top + 1;
OD;
END;
OPERATION pop():integer;
BEGIN
GUARD top >0 DO
top:=top—-1;
RETURN stack [top];
OD;
END;
BEGIN
top :=0;

END;

# variable indicating the top
# storage for the stack

# function returning nothing

# push item onto the stack
# increment the stack pointer

# function returning an integer
# suspend if the stack is empty

# decrement the stack pointer
# return the top item

# initialization

A simplified stack object in Orca, with internal

data and two operations.

61

Management of Shared Objects in Orca

Single copy, local
Pl O

[a)

Replicated, read

P 8] [

i

Sngle copy. remale

62

P o
Fs
] I )
(4=
Replicated, wrmie

Frs=Q 9] o
[ & i

I L |

Four cases of a process P performing an operation on an
object Oin Orca.

31



63

Casually-Consistent Lazy Replication

Clisnts

! I I Write queus
Rand guays 1%
- >
Perding -
et § : Lacal sana
3 i A A

e e =

Llistriautad data shara

The general organization of a distributed data store. Clients are
assumed to also handle consistency-related communication.

64

Processing Read Operations

Z DEFIR] = WALL

1. DERR) .= LOCALIC) Read quawe
b | L]
Chant | r I
¥ L i
e m .
-
- ¥
k- I | :

4. LOCALIC) = mas{LOHS ALT], VAL =
3 Data & vaLgy  Feplical

Performing a read operation at a local copy.

32



Processing Write Operations

2 WWORKN i ] = WORKE[ ]+ T 5. DEPOA = WAL
s § ] = WORKL ]

1 DERW] = LOCALIC) WL = DERA | |
; . ¥
Client wﬂ. - b = ;
Y . ) |
L | *

+ [ Wi quaue i
3, B = _.l

dq, LOCAL{CE = masdlOCALNSS, bl =

Ramboa i

Performing a write operation at a local copy.

65

Any Questions?

See you next time.

66

33



