
1

Synchronization

CprE 450/550x
Distributed Systems and Middleware

Yong Guan
3216 Coover

Tel: (515) 294-8378
Email: guan@ee.iastate.edu

April 6 & 8, 2004

2

Readings for Today’s Lecture

! References
! Chapter 5 of “Distributed Systems: Principles and Paradigms”
! Chapter 14 of Coulouris: “Distributed Systems”

3

Clock Synchronization
" In a centralized system, time is unambiguous
" In a distributed system, achieving agreement on time is

not trivial.
" Example: UNIX makefile

– A change to one source file only requires one file to be recompiled,
not all the files

" How make works?
– Examine the times at which all the source and object files were

last modified.
– In a distributed system in which there is no global agreement on

time, how?
" Is it possible to synchronize all the clocks in a

distributed system?

4

Clock Synchronization

When each machine has its own clock, an event that
occurred after another event may nevertheless be
assigned an earlier time.

5

Physical Clocks
" Almost all computers have a circuit for keeping track of

time.
" Computer Timer is a machined quartz crystal

– When kept under tension, quartz crystal oscillates at a well-
defined frequency, depending on the kind of crystal, how it is cut,
and the amount of tension.

– Two registers: a counter and a holding register
– Each oscillation decrements the counter by one, when it gets to 0,

an interrupt is generated and the counter is reset from the
holding register.

– Each interrupt is called a clock tick.
– When the system is booted initially, date and time are required to

be entered and deposited in CMOS RAM.
– Each clock tick increases the time stored in CMOS RAM by one

such that software clock can be maintained.

6

Physical Clocks
" It doesn’t matter if the clock is off by a small of amount

for a single computer with a single clock.
" For multiple CPUs with their own clocks, things change:

– Though the frequency at which a crystal oscillator runs is fairly
stable, it is impossible to guarantee the crystals on different
computers run at the same frequency.

– The crystals will run at slightly different rates, which result in the
clocks out-of-sync. The time value difference is called clock skew.

– Programs depending on the time associate with files, objects,
messages may fail due to these clock skew.

" How do we synchronize the clocks with real-world
clocks?

2

7

Physical Clocks

Computation of the mean solar day.

How time is actually
measured?

Time has been
measured
astronomacally.
•Transit of the sun

•Solar day (24h)

•Solar second
(1/86400 of a solar
day)

8

Physical Clocks
" With the invention of atomic clock in 1948, measuring

time becomes more accurately by counting transitions of
the cesium 133 atom.

" Physicists took over the job of timekeeping from
astronomers

" A second is defined as the time it takes the cesium 133
atom to make exactly 9, 192,631,770 transitions. This
number makes an atomic second equal to the mean solar
second.

" BIH averages the number of clock ticks from 50
laboratories in the world to produce International Atomic
Time (TAI).

" TAI=the mean number of ticks of the cesium 133 clocks
since midnight on Jan. 1, 1958 divided by 9, 192,631,770 .

9

Physical Clocks
" 86,400 TAI seconds is 3 msec less than a mean solar day.
" Over the years, noon would become earlier and earlier.
" BIH introduce leap seconds whenever the difference

between TAI and solar time grows to 800 msec.
" Universal Coordinated Time (UTC) (replaced Greenwich

Mean Time, which is astronomical time)

" NIST operates a shortwave radio station with call letters
WWV from Fort Colins, CO.

" WWV broadcasts a short pulse at the start of each UTC
second. +-1msec (+-10msce due to atmosphere
fluctuations).

" Similar services, UK’s MSF, GEOS (earth satellite), etc.

10

Physical Clocks

TAI seconds are of constant length, unlike solar
seconds. Leap seconds are introduced when
necessary to keep in phase with the sun.

11

Clock Synchronization Algorithms

" Each machine is assumed to have a timer that causes an
interrupt H time a second. When the timer goes off, the
interrupt handler adds one to a software clock.

– C: value of the clock
– Cp(t): The value of the clock at machine p at UTC time t.

" Ideally, Cp(t)=t for all p and t. i.e., dC/dt=1
" In practice, the relative error obtainable with modern

timer chips is 10-5.
" Maximum drift rate r, where 1-r <=dC/dt <=1+r.

12

Clock Synchronization Algorithms

The relation between clock time and UTC when clocks tick at different rates.

3

13

Cristian's Algorithm

Getting the current time from a time server.

14

The Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values
b) The machines answer
c) The time daemon tells everyone how to adjust their clock

15

Averaging algorithm
" Dividing time into fixed-length re-sync intervals.
" At the beginning, each machine broadcasts its own time.
" After a machine broadcasts its time, it starts a local timer

to collect all other broadcasts that arrive during some
time interval S.

" Then,
– Average the values from all the other machines
– Discard the m highest and m lowest values, and average the

remaining ones.
– NTP (Network Time Protocol)
– Can be further improved

16

Multiple External Time Sources
" WWV, GEOS receivers

17

Use of Synchronized Clocks
" At-most-once message dilivery

– Message seq number, what about system crashes and
reboots?

– ConnID+timestamp

18

4

19

Synchronization: Introduction

" A scary scenario:

Synchronization: temporal ordering of sets of events
produced by concurrent processes in time.
! Synchronization between senders and receivers of messages.

! Control of joint activity.

! Serialization of concurrent access to shared objects/resources.

Why not Semaphores ?!
! centralized systems: shared memory, central clock

! distributed system: message passing, no global clock

Events cannot be totally ordered!

client Obj1 Obj2
deposit

confirm

withdraw

20

A Partial Event Ordering for Distributed
Systems (Lamport 1978)

• Absence of central time means: no notion of happened-when (no total
ordering of events)

• But can generate a happened-before notion (partial ordering of events)

• Happened-Before relation:

1. Pi a b
Event a happened-before Event b. (a -> b)

2. Pi a

Event a happened-before Event b. (a -> b)

Pj b

3. Pi a

Event a happened-before Event c. (a -> c) (transitivity)

Pj b c

21

happened-before Relation
• What when no happened-before relation exists between two

events?

Pi

a

Events x and y are concurrent.

Pj

b c

dx

y

?

Problem:

!only approximate knowledge of state of other processes

Need global time:

!common clock

! synchronized clocks

22

Clock ConditionClock Condition

Logical Clocks
" Absolute time?
" Is chronological ordering necessary?
" Logical clock: assigns a number to each local event.

∀ → Events : if , then () < ()a b a b C a C b,

Clock Condition

• In Other Words:
a b

c

Ci (a) < Ci(b) Ci (b) < Cj(c)

Pi

Pj

23

Total Ordering with Logical Clocks
" Rules:

– Rule 1: increment Ci after every local
event.

– Rule 2: timestamp outgoing messages
with current local clock

– Rule 3: Upon receiving message with
timestamp TS, Pj updates local clock
Cj to be
Cj = max (Cj, TS+1)

• Total ordering of events: assuming that clocks satisfy Clock Condition, define
following relation:

for events a on Pi and b on Pj.

a b

C a C b

C a C b i j

i j

i j

⇒ ⇔
<

= <

() ()

() ()

or

 and

aCi Ci+1

aCi Ci+1

TS = Ci

Cj Cj = max(Cj,TS+1)
TS

24

Lamport Timestamps

a) Three processes, each with its own clock. The clocks run at
different rates.

b) Lamport's algorithm corrects the clocks.

5

25

Example: Distributed Checkpointing
" “At 5pm everybody writes its state to stable storage!”
" Centralized System:

• Distributed System:

rriiing!

rriiing!

rriiing!

26

Distributed Checkpointing and Logical Clocks

“At logical-clock time 5000 write state
to stable storage!”

4999 5000 5001

4890 4891 4892

5001

msg(4891) msg(5001)

5002
+

5002

27

Another Example: Totally-Ordered Multicasting

Updating a replicated database and leaving it in an inconsistent state.

28

Vector Timestamps
" Lamport timestamps: Can we say sth if C(a)<C(b)?
" Example: BBS message A and B, if totally ordered multicast is

used, no way to say whether A is a reaction to B, or A and B are
completely independent.
– The problem of Lamport timestamps does not capture causality.

" Causality can be captured by Vector Timestamps
– VT(a): A vector timestamp assigned to event a.
– If VT(a)<VT(b), then event a is known to causally precede event b.
– Vector timestamp are contructed by letting each process Pi

maintain a vector Vi with the following properties:
1. Vi[i] is the number of events happened so far at Pi
2. If Vi[j]=k, then Pi knows that k events have occurred at Pj.

29 30

Global State (1)
" Knowing the global state in distributed systems is

useful on many occasions.
" The global state consists of the local state of each

process, together with the messages-in-transit.
" Distributed Snapshot (Chandy and Lamport’85)

6

31

Global State (2)

a) A consistent cut
b) An inconsistent cut

32

Global State (3)

a) Organization of a process and channels for a distributed snapshot

33

Global State (4)

b) Process Q receives a marker for the first time and records its local
state

c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes recording

the state of the incoming channel

34

35

Election Algorithms
" Many distributed algorithms requires one process in

the system acts as a leader (coordinator, initiator).
" It does not matter which process it is, but one of

them has to do it.

" The goal of election algorithm is to ensure that when
an election starts, it concludes with all processes
agreeing on who the new coordinator is to be.

36

The Bully Algorithm (1)

The bully election algorithm
a) Process 4 holds an election
b) Process 5 and 6 respond, telling 4 to stop
c) Now 5 and 6 each hold an election

7

37

The Bully Algorithm (2)

d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone

38

A Ring Algorithm

Election algorithm using a ring.

39 40

Mutual Exclusion: A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical region.
Permission is granted

b) Process 2 then asks permission to enter the same critical region. The
coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator, when
then replies to 2

41

A Distributed Algorithm

a) Two processes want to enter the same critical region at the same
moment.

b) Process 0 has the lowest timestamp, so it wins.
c) When process 0 is done, it sends an OK also, so 2 can now enter

the critical region.

42

A Toke Ring Algorithm

a) An unordered group of processes on a network.
b) A logical ring constructed in software.

8

43

Comparison

A comparison of three mutual exclusion algorithms.

Lost token, process
crash

0 to n – 11 to ∞Token ring

Crash of any process2 (n – 1)2 (n – 1)Distributed

Coordinator crash23Centralized

ProblemsDelay before entry (in
message times)

Messages per
entry/exit

Algorithm

44

45

The Transaction Model (1)

Updating a master tape is fault tolerant.

46

The Transaction Model (2)

Examples of primitives for transactions.

Write data to a file, a table, or otherwiseWRITE

Read data from a file, a table, or otherwiseREAD

Kill the transaction and restore the old valuesABORT_TRANSACTION

Terminate the transaction and try to commitEND_TRANSACTION

Make the start of a transactionBEGIN_TRANSACTION

DescriptionPrimitive

47

The Transaction Model (3)

a) Transaction to reserve three flights commits
b) Transaction aborts when third flight is unavailable

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION
(b)

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi;

END_TRANSACTION
(a)

48

Distributed Transactions

a) A nested transaction
b) A distributed transaction

9

49

Private Workspace

a) The file index and disk blocks for a three-block file
b) The situation after a transaction has modified block 0 and

appended block 3
c) After committing

50

Writeahead Log

a) A transaction
b) – d) The log before each statement is executed

Log

[x = 0 / 1]
[y = 0/2]

[x = 1/4]

(d)

Log

[x = 0 / 1]
[y = 0/2]

(c)

Log

[x = 0 / 1]

(b)

x = 0;
y = 0;

BEGIN_TRANSACTION;

x = x + 1;
y = y + 2

x = y * y;

END_TRANSACTION;
(a)

51

Concurrency Control (1)

" General organization of managers for handling transactions.

52

Concurrency Control (2)

" General organization of
managers for handling
distributed transactions.

53 54

Atomic Transactions
" Example: online bank transaction:

withdraw(amount, account1)

deposit(amount, account2)

" What if network fails before deposit?
" Solution: Group operations in an atomic transaction.

" Volatile storage vs. stable storage.

" Primitives:
– BEGIN_TRANSACTION

– END_TRANSACTION

– ABORT_TRANSACTION

– READ

– WRITE

10

55

ACID Properties

A atomic: transactions happen indivisibly
C consistent: no violation of system invariants
I isolated: no interference between concurrent

transactions
D durable: after transaction commits, changes are

permanent

56

Serializability

a) – c) Three transactions T1, T2, and T3
d) Possible schedules

BEGIN_TRANSACTION
x = 0;
x = x + 3;

END_TRANSACTION

(c)

BEGIN_TRANSACTION
x = 0;
x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION
x = 0;
x = x + 1;

END_TRANSACTION

(a)

Illegalx = 0; x = 0; x = x + 1; x = 0; x = x + 2; x = x + 3;Schedule 3

Legalx = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3;Schedule 2

Legalx = 0; x = x + 1; x = 0; x = x + 2; x = 0; x = x + 3Schedule 1

(d)

Schedule is serial if the steps of each transaction occur consecutively.
Schedule is serializable if its effect is “equivalent” to some serial schedule.

57

Testing for Serializability: Serialization Graphs

" Input: Schedule S for set of transactions T1, T2, …, Tk.

" Output: Determination whether S is serializable.

" Method:

– Create serialization graph G:

» Nodes: correspond to transactions

» Arcs: G has an arc from Ti to Tj if there is a Ti:UNLOCK(Am) operation
followed by a Tj:LOCK(Am) operation in the schedule.

– Perform topological sorting of the graph.

» If graph has cycles, then S is not serializable.

» If graph has no cycles, then topological order is a serial order for
transactions.

" Theorem: This algorithm correctly determines if a schedule
is serializable.

58

Implementation

" How to maintain information from not-yet committed
transactions: “Prepare for aborts”
– private workspace
– writeahead log / intention lists with rollback

" Commit protocol
– 2-phase commit protocol.

" Concurrency control:
– pessimistic -> lock-based: 2-phase locking
– optimistic -> timestamp-based with rollback

59

Two-Phase Locking

Two-phase locking.

60

Serializability through Two-Phase Locking

" read locks vs. write locks
" lock granularity
" arbitrary locking:

– non-serializable schedules
– deadlocks!

" Two-Phase Commit:

– modify data items only after lock point
– all schedules are serializable

lock point

acquire phase release phase

11

61

Two-Phase Locking (cont)

" Theorem: If S is any schedule of two-phase transactions,
then S is serializable.

62

Two-Phase Locking (cont)

" Theorem: If S is any schedule of two-phase transactions,
then S is serializable.

" Proof:
Suppose not. Then the serialization graph G for S has a
cycle,

Ti1 -> Ti2 -> … -> Tip -> Ti1

Therefore, a lock by Ti1 follows an unlock by Ti1,
contradicting the assumption that Ti1 is two-phase.

63

Strict Two-Phase Locking

" Strict two-phase locking:
– A transaction cannot write into the database until it has reached

its commit point.
– A transaction cannot release any locks until it has finished writing

into the database; therefore locks are not released until after the
commit point.

" pros:
– transaction read only values of committed transactions
– no cascaded aborts

" cons:
– limited concurrency
– deadlocks

" Models/protocols can be
extended for READ/WRITE locks.

64

Optimistic Concurrency Control

“Forgiveness is easier to get than permission”

" Basic idea:
– Process transaction without attention to serializability.
– Keep track of accessed data items.
– At commit point, check for conflicts with other

transactions.
– Abort if conflicts occurred.

" Problem:
– would have to keep track of conflict graph and only allow

additional access to take place if it does not cause a cycle in
the graph.

65

Timestamp-based Pessimistic Concurrency Control

" Data items are tagged with read-time and write-time.

" 1. Transaction cannot read value of item if that value has
not been written until after the transaction executed.

Transaction with T.S. t1 cannot read item with write-time t2 if t2 > t1.

(abort and try with new timestamp)

" 2. Transaction cannot write item if item has value read at
later time.

Transaction with T.S. t1 cannot write item with read-time t2 if t2 > t1.

(abort and try with new timestamp)

" Other possible conflicts:

– Two transactions can read the same item at different times.

– What about transaction with T.S. t1 that wants to write to item with
write-time t2 and t2>t1?

66

Timestamp-Based Conc. Control (cont)

Rules for preserving serial order using timestamps:

a) Perform the operation X if X=READ and t>=tw or if X=WRITE, t
>= tr, and t >= tw.

X=READ: set read-time to t if t > tr.
X=WRITE: set write-time to t if t > tw.

b) Do nothing if X=WRITE and tr <= t < tw.

c) Abort transaction if X=READ and t < tw or X=WRITE
and t < tr.

12

67

Pessimistic Timestamp Ordering

Concurrency control using timestamps.

68

Any Questions?

See you next time.

