
1

Distributed Object-based Systems
CORBA

CprE 450/550x
Distributed Systems and Middleware

Yong Guan
3216 Coover

Tel: (515) 294-8378
Email: guan@ee.iastate.edu

March 30, 2004

2

Readings for Today’s Lecture

! References
! Chapter 9 of “Distributed Systems: Principles and Paradigms”
! http://www.corba.org/
! http://www.omg.org/gettingstarted/
! http://www.omg.org/gettingstarted/readingroom.htm
! “Understanding CORBA”
! “Examples of Writing CORBA Applications”, 

http://www.cs.wustl.edu/~schmidt/PDF/corba-apps4.pdf
! “Introduction to Distributed Object Programming with CORBA ”, 

http://www.cs.wustl.edu/~schmidt/PDF/corba4.pdf

3

Outline

" Role of CORBA and need for object oriented 
distributed computing

" A simple CORBA architecture
" CORBA client-server example
" Coding with IDL
" Complete CORBA architecture and its various 

components
" Some CORBA products and vendors

4

CORBA and OMG

" CORBA (Common Object Request Broker Architecture) is a 
standard for distributed objects being developed by the 
Object Management Group (OMG) that provides the 
mechanisms by which objects transparently make requests 
and receive responses 

" CORBA provides interoperability between applications built 
in (possibly) different languages, running on (possibly) 
different machines in heterogeneous distributed 
environments 

" The OMG is a consortium of software vendors and end users

5

CORBA and Distributed Computing

" Access distributed information and resources from within 
popular desktop applications

" Make existing business data and systems available as 
network resources

" CORBA’s model of object oriented computing makes reuse of 
software components and application development easier

" CORBA enables applications in a heterogeneous distributed 
environment to access and share each other’s objects

6

Middleware

" Middleware is a type of distributed system software which 
connects different kinds of applications and provides 
distribution transparency to its connected applications

" It is used to bridge heterogeneities that occurred in the 
system

" Middleware insulates applications from the lower-level 
details and complexities of the software on which the 
system depends

CORBA has been called a communications middleware



2

7

Client Servant

ORB ORB

Internet Inter-ORB Protocol (IIO)

TCP/IP stack

method 
response

Method 
request

Simple CORBA Architecture

8

ORB (Object Request Broker)

" Uses Object Reference to identify and locate objects
– Object Reference: A handle to an object that a client must 

hold in order to access the object
" Delivers request to objects
" Returns output values back to client
" Services necessary to accomplish the tasks are completely 

transparent to the client

9

CORBA Application Development

" Steps in developing a CORBA server and client
– Design your application interface and specify them in OMG 

IDL (Interface Definition Language)
– Run the IDL specs through IDL compiler of language of your 

choice, say C++, to generate client-side stub and server-
side skeleton

– Implement server side interfaces using C++ classes (called 
servants)

– Implement the server program that instantiates the 
servants

– Compile the server program along with the skeleton code 
using a C++ compiler

– Implement the client program
– Compile the client program along with the stub code

10

A Sample Client-Server Program

11

Client-Server Program (Cont.)

12

Client-Server Program (Cont.)



3

13

Interface definition Language (IDL)

" Separates object implementation from interface
" Basically a declarative language, similar in appearance to C++
" A means by which the object implementation tells clients what 

operations are available and how to invoke them.
" Mapped to a particular programming language (C , C++, Java)
" IDL compilation produces stubs/skeletons

– stub - local function call for the client
– skeleton - server side of the object implementation

" Client - Server communication is facilitated by stubs & Skeletons

IDL Specs IDL Compiler

Stub

Skeleton

14

Coding with IDL

CORP.IDL

Interface 
Repository

OMG IDL Compiler

CORP_cstub.c
Client Stub

CORP.h
Header file

CORP_sskel.c
Server Skeleton

Client Application Server Application

15

Coding with IDL (cont.)
//File CORP.IDL

Module CORP
{

typedef long BadgeNum;
typedef long DeptNum;
enum DismissalCode {DISMISS_FIRED, DISMISS_QUIT}

Interface Employee
{

void promote(in char newjobclass);
void dismiss(in DismissalCode reason,

in string description);
}

……
}

16

Coding with IDL (cont.)
//File CORP.IDL    ---- Defining an object attribute in ODL

Module CORP
{

typedef long BadgeNum;
typedef long DeptNum;
enum DismissalCode {DISMISS_FIRED, DISMISS_QUIT}

struct DeptInfo
{

DeptNum id;
string name;

}

Interface Department
{

atttribute DeptInfo DeptID;
}

……
}

17

Coding with IDL (cont.)
//File CORP.IDL    ---- Defining an read-only object attribute in ODL

Module CORP
{
Interface Employee;

struct DeptInfo
{

DeptNum id;
string name;

}

Interface Department
{

atttribute DeptInfo DeptID;
readonly attribute Employee manager_obj;

}
Interface Employee
{

attribute EmpData personal_data;
readonly attribute Department department_obj;

}
……

}

18

Coding with IDL (cont.)
//File CORP.IDL    ---- Defining inheritance in ODL: single inheritance

Module CORP
{

struct PersonalData {
string lastname;
string firstname;
string phone;

}
typedef PersonalData EmpPersonalData;
struct EmpData {

BadgeNum id;
char job_class;
float hourly_rate;

}
Interface Employee
{

attribute EmpData personal_data;
readonly attribute Department department_obj;
void promote(in char new_job_class);
void dismiss(……);
void transfer(……);

}
Interface Manager: Employee
{

void approve_transfer(……);
}
……

}



4

19

Coding with IDL (cont.)
//File CORP.IDL    ---- Defining inheritance in ODL: multiple inheritance

Module CORP
{

Interface Employee
{

……
}
Interface Manager: Employee
{

……
}
Interface Peronnel: Employee
{

……
}

Interface PeronellManager: Personnel, Employee
{

……
}
……

}

20

Coding with IDL (cont.)
//File CORP.IDL    ---- Defining inheritance in ODL: inheritance across modules

Module CORP
{

Interface PeronellManager: Personnel, Employee
{

……
}
……

}

Module ENGINEERING
{

Interface EmployeeLocator
{

void FindEngineer(in CORP::BadgeNum id,
out CORP::PersonalData info);

}
Interface PersonnelManager: CORP::PersonnelManger
{
}

}

21

Coding with IDL (cont.)
//File CORP.IDL    ---- Defining User-defined Exceptions

Module CORP
{

enum DenyApprovalReasons {REASON, CODES};
exception DENY_APPROVAL

{
DenyApprovalReasons reason;

}
Interface Manager: Employee
{

void approval_transfer (in Employee employee_obj,
in Department current_department,
in Department new_department)
raises (DENY_APPROVAL);

}
……

}

22

Coding with IDL (cont.)
//File CORP.IDL    ---- Defining context objects

Module CORP
{

Interface Manager: Employee
{

void approval_transfer (in Employee employee_obj,
in Department current_department,
in Department new_department)
raises (DENY_APPROVAL)
context(“division”);

}
……

}

23

The Object Management Architecture
24

CORBA Components

Interface 
Repository

IDL Compiler
Implementation 

Repository

Client

ORB core

Stub DII ORB
Interface

Servant

DSISkeleton

Object Adapter

ORB
Interface

ORB core



5

25

Static and Dynamic Invocation Interface

" Static Invocation Interface (SII)
– Client knows interface operations in advance 
– Client is compiled with the relevant stub 
– During invocation, the proxy object understands the 

parameters in an operation and marshals them into the 
request

" Dynamic Invocation Interface (DII)
– A client may not always have the stub available at compile 

time
» Bridges, Proxy servers

– Allows clients to discover operations parameters using 
Interface Repository and create requests dynamically

– More flexible but less efficient. Also, more complicated and 
less typesafe

26

Interface Repository (IFR) 

" A service that provides persistent objects that represent 
the IDL information in a form available at runtime

" Provides type information necessary to issue requests using 
the DII

" Also stores additional information like debugging info , 
libraries of stubs or skeletons etc

27

Static and Dynamic Skeleton Interface

" Static Skeleton Interface (SSI)
– Similar to SII, but on server side
– Knows the operation types at compile time
– Performs request demarshaling and dispatching

" Dynamic Skeleton Interface (DSI)
– Similar to DII, but on server side
– Generic skeleton interface for all objects 

28

Object Adaptor (OA)

" Implementations must be registered with the OA
" When a client requests a service from an object, the OA 

maps the request to the appropriate implementation
" Activate and deactivate objects
" Objects can be implemented as C++ classes or C functions
" Allowing varied methods of implementation facilitates 

integration of legacy applications 
" Two types – BOA (basic) and POA (portable)

29

Interoperability

" GIOP (General Interoperability Protocol) 
– Abstract protocol for communication between different ORB 

products
– Specifies message types

» Request, Reply, LocateRequest, LocateReply, 
CancelRequest, CloseConnection, MessageError

– Specifies data format
» CDR (common data representation)

" IIOP (Internet Inter-ORB Protocol) 
– Mapping of GIOP over TCP/IP
– IIOP - IOR contains a host name and port number as 

endpoint info

30

CORBA Vendors and Applications

" CORBA vendors
– WUSTL TAO
– IONA Orbix
– Inprise Visibroker
– BEA ObjectBroker
– Expersoft CORBAplus
– Peerlogic DAIS
– OIS ORBexpress
– AT&T OmniORB

" Applications of CORBA technology
– Telecom

» Motorola - Ground station 
control for IRIDIUM Global 
Cellular Network built on Orbix

» Ericsson - TMN-based Cellular 
Management Operations Systems 
(CMOS) built using CORBA

– Healthcare
» Artemis - software system for 

sharing and managing distributed 
patient records. Orbix as 
underlying middleware

– Finance
» Charles Schwab - SchwabLink

Web - online trading and 
research service uses 
CORBA/IIOP standards



6

31

Any Questions?

See you next time.

32

Overview of CORBA

The global architecture of CORBA.

33

Object Model

The general organization of a CORBA system.

34

Corba Services

Overview of CORBA services.
Provides the current time within specified error marginsTime

Mechanisms for secure channels, authorization, and auditingSecurity

Facilities for expressing relationships between objectsRelationship

Facilities for persistently storing objectsPersistence

Facilities to publish and find the services on object has to offerTrading

Facilities for associating (attribute, value) pairs with objectsProperty

Facilities for systemwide name of objectsNaming

Facilities for attaching a license to an objectLicensing

Facilities for creation, deletion, copying, and moving of objectsLife cycle

Facilities for marshaling and unmarshaling of objectsExternalization

Advanced facilities for event-based asynchronous communicationNotification

Facilities for asynchronous communication through eventsEvent

Flat and nested transactions on method calls over multiple objectsTransaction

Facilities to allow concurrent access to shared objectsConcurrency

Facilities for querying collections of objects in a declarative mannerQuery

Facilities for grouping objects into lists, queue, sets, etc.Collection

DescriptionService

35

Object Invocation Models

Invocation models supported in CORBA.

Caller continues immediately and can 
later block until response is delivered

At-most-onceDeferred 
synchronous

Caller continues immediately without 
waiting for any response from the 
server

Best effort deliveryOne-way

Caller blocks until a response is 
returned or an exception is raised

At-most-onceSynchronous

DescriptionFailure semanticsRequest type

36

Event and Notification Services (1)

The logical organization of suppliers and consumers of 
events, following the push-style model.



7

37

Event and Notification Services (2)

The pull-style model for event delivery in CORBA.

38

Messaging (1)

CORBA's callback model for asynchronous method invocation.

39

Messaging (2)

CORBA'S polling model for asynchronous 
method invocation.

40

Interoperability

GIOP message types.

Part (fragment) of a larger messageBothFragment

Contains information on an errorBothMessageError

Indication that connection will be closedBothCloseConnection

Indicates client no longer expects a replyClientCancelRequest

Contains location information on an objectServerLocateReply

Contains a request on the exact location of an objectClientLocateRequest

Contains the response to an invocationServerReply

Contains an invocation requestClientRequest

DescriptionOriginatorMessage type

41

Clients

Logical placement of interceptors in CORBA.

42

Portable Object Adaptor (1)

Mapping of CORBA object identifiers to servants.
a) The POA supports multiple servants.
b) The POA supports a single servant.



8

43

Portable Object Adaptor (2)

Changing a C++ object into a CORBA object.

My_servant *my_object; // Declare a reference to a C++ object
CORBA::Objectid_var oid; // Declare a CORBA identifier

my_object = new MyServant; // Create a new C++ object
oid = poa ->activate_object (my_object);

// Register C++ object as CORBA OBJECT

44

Agents

CORBA's overall model of agents, agent systems, and regions.

45

Object References (1)

The organization of an IOR with specific information for IIOP.

46

Object References (2)

Indirect binding in CORBA.

47

Caching and Replication

The (simplified) organization of a DCS.

48

Object Groups

A possible organization of an IOGR for an object group 
having a primary and backups.



9

49

An Example Architecture

An example architecture of a fault-tolerant CORBA system.

50

Security (1)

The general organization for secure object invocation in CORBA.

51

Security (2)

The role of security interceptors in CORBA.

52

Any Questions?

See you next time.


