CprE 450/550x
Distributed Systems and Middleware

Distributed Object-based Systems
CORBA

Yong Guan
3216 Coover
Tel: (515) 294-8378

Email: guan@ee.iastate.edu
March 30, 2004

Readings for Today's Lecture

» References

» Chapter 9 of “Distributed Systems: Principles and Paradigms”

» http://www.corba.org/

» http://www.omg.org/gettingstarted/

» http://www.omg.org/gettingstarted/readingroom.htm

» “Understanding CORBA”

» “Examples of Writing CORBA Applications”,
http://www.cs.wustl.edu/~schmidt/PDF/corba-apps4.pdf

» “Introduction to Distributed Object Programming with CORBA ”,
http://www.cs.wustl.edu/~schmidt/PDF/corba4.pdf

Outline

Role of CORBA and need for object oriented
distributed computing

A simple CORBA architecture
CORBA client-server example
Coding with IDL

Complete CORBA architecture and its various
components

Some CORBA products and vendors

CORBA and OMG

CORBA (Common Object Request Broker Architecture) is a
standard for distributed objects being developed by the
Object Management Group (OMG) that provides the
mechanisms by which objects transparently make requests
and receive responses

CORBA provides interoperability between applications built
in (possibly) different languages, running on (possibly)
different machines in heterogeneous distributed
environments

The OMG is a consortium of software vendors and end users

CORBA and Distributed Computing

Access distributed information and resources from within
popular desktop applications

Make existing business data and systems available as
network resources

CORBA's model of object oriented computing makes reuse of
software components and application development easier
CORBA enables applications in a heterogeneous distributed
environment to access and share each other’s objects

Middleware

Middleware is a type of distributed system software which
connects different kinds of applications and provides
distribution transparency to its connected applications

It is used to bridge heterogeneities that occurred in the
system

Middleware insulates applications from the lower-level
details and complexities of the software on which the
system depends

CORBA has been called a communications middleware

Simple CORBA Architecture

ORB (Object Request Broker)

Uses Object Reference to identify and locate objects

Object Reference: A handle to an object that a client must
hold in order to access the object

Delivers request to objects
Returns output values back to client

Services necessary to accomplish the tasks are completely
transparent to the client

CORBA Application Development

Steps in developing a CORBA server and client

— Design your application interface and specify them in OMG
IDL (Interface Definition Language)

~ Run the IDL specs through IDL compiler of language of your

choice, say C++, to generate client-side stub and server-

side skeleton

Implement server side interfaces using C++ classes (called

servants)

Implement the server program that instantiates the

servants

Compile the server program along with the skeleton code

using a C++ compiler

Implement the client program

~ Compile the client program along with the stub code

A Sample Client-Server Program

B]

e e i w
st vl el . e i
T ey

L e e e
g e

Client-Server Program (Cont.)

SRR el b
=r—ﬂllll + P [S
- i L
= Ho - R -—
ks = mar iy S ——

S E

Client-Server Program (Cont.)

- o - A e A L [T LRy

ke b i wwl i O
I

ol i oD CE_PE ek
A O AT S T B
o) T M
AR s e sl men

L R
e ity L Wil bl e ==
s Bby_ L |
.

Interface definition Language (1DL)

Separates object implementation from interface
Basically a declarative language, similar in appearance to C++

A means by which the object implementation tells clients what
operations are available and how to invoke them.
Mapped to a particular programming language (C , C++, Java)
IDL compilation produces stubs/skeletons
stub - local function call for the client
skeleton - server side of the object implementation
Client - Server communication is facilitated by stubs & Skeletons

IDL Specs ["Sll IDL Compiler

~

Coding with 1DL

COR

Interface
Repository

OMG IDL Compiler

+ v v
CORP_cstub.c CORP.h CORP_sskel.c
Client Stub Header file Server Skeleton

l

I Client Application] I Server Application]

Coding with IDL (cont.)

Module CORP
{
typedef long BadgeNum;
typedef long DeptNum;
enum DismissalCode {DISMISS_FIRED, DISMISS_QUIT}

Interface Employee

{
void promote(in char newjobclass);
void dismiss(in DismissalCode reason,
in string description);
}

16

Coding with IDL (cont.)

//File CORP.IDL ---- Defining an object attribute in ODL

Module CORP
{
typedef long BadgeNum;
typedef long DeptNum;
enum DismissalCode {DISMISS_FIRED, DISMISS_QUIT}

struct Deptinfo

{
DeptNum id;
string name;
}
Interface Department
{
atttribute Deptinfo DeptID;
}

Coding with IDL (cont.)

//File CORP.IDL ---- Defining an read-only object attribute in ODL
Module CORP
Interface Employee;
struct Deptinfo
DeptNum id;
string name;
}

Interface Department.
{

atttribute Deptinfo DeptiD;
readonly attribute Employee manager_obj;

Interface Employee

attribute EmpData personal_data;
readonly attribute Department department_obj;

Coding with IDL (cont.)

//File CORP.ADL -~ Defining inheritance in ODL: single inheritance
Module CORP

struct PersonalData {
string lastname;
string firstname;
string phone;

i
typedef PersonalData EmpPersonalData;
struct EmpData {
BadgeNum id;
char job_class;
float hourly_rate;

}
Interface Employee
attribute EmpData personal_data;
readonly attribute Department department_obj;
void promote(in char new_job_class);
void dismissy(....):
void transfer(....);
i
Interface Manager: Employee

void approve_transfer(....);

Coding with IDL (cont.)

//File CORP.IDL ---- Defining inheritance in ODL: multiple inheritance
Module CORP

Interface Employee
{

}

Interface Manager: Employee

}
Interface Peronnel: Employee
{
}

Interface PeronellManager: Personnel, Employee

Coding with IDL (cont.)

//File CORP.IDL ---- Defining inheritance in ODL: inheritance across modules
Module CORP

Interface PeronellManager: Personnel, Employee

{

}
}
Module ENGINEERING
{

Interface Employeel ocator

{

void FindEngineer(in CORP::BadgeNum id,
out CORP::PersonalData info);

Interface PersonnelManager: CORP::PersonnelManger

}

20

Coding with IDL (cont.)

//File CORP.IDL ---- Defining User-defined Exceptions

Module CORP
{
enum DenyApprovalReasons {REASON, CODES};
exception DENY_APPROVAL
{
DenyApprovalReasons reason;
}
Interface Manager: Employee
{
void approval_transfer (in Employee employee_obj,
in Department current_department,
in Department new_department)
raises (DENY_APPROVAL);

21

The Object Management Architecture

. [== [ry—
= ey — e
e [——amaan

23

22
//File CORP.IDL ---- Defining context objects
Module CORP
{
Interface Manager: Employee
{
void approval_transfer (in Employee employee_obj,
in Department current_department,
in Department new_department)
raises (DENY_APPROVAL)
context(“division”);
}
}
24

CORBA Components

{ IDL Compiler } ['"‘ple"'e'!“ﬁ"" J
Repository

. sl

icelet D!
hitiil -
Interface Object Adapter

ORB core

Static and Dynamic Invocation Interface

Static Invocation Interface (S11)
Client knows interface operations in advance
Client is compiled with the relevant stub
During invocation, the proxy object understands the
parameters in an operation and marshals them into the
request

Dynamic Invocation Interface (DI1)
A client may not always have the stub available at compile
time

Bridges, Proxy servers

Allows clients to discover operations parameters using
Interface Repository and create requests dynamically
More flexible but less efficient. Also, more complicated and
less typesafe

Interface Repository (IFR)

A service that provides persistent objects that represent
the IDL information in a form available at runtime

Provides type information necessary to issue requests using
the DI

Also stores additional information like debugging info ,
libraries of stubs or skeletons etc

26

Static and Dynamic Skeleton Interface

Static Skeleton Interface (SSI)
Similar to S11, but on server side
Knows the operation types at compile time
Performs request demarshaling and dispatching

Dynamic Skeleton Interface (DSI)
Similar to DI, but on server side
Generic skeleton interface for all objects

Object Adaptor (OA)

Implementations must be registered with the OA

When a client requests a service from an object, the OA
maps the request to the appropriate implementation
Activate and deactivate objects

Objects can be implemented as C++ classes or C functions
Allowing varied methods of implementation facilitates
integration of legacy applications

Two types - BOA (basic) and POA (portable)

28

Interoperability

GIOP (General Interoperability Protocol)
Abstract protocol for communication between different ORB
products
Specifies message types
Request, Reply, LocateRequest, LocateReply,
CancelRequest, CloseConnection, MessageError
Specifies data format
CDR (common data representation)
110P (Internet Inter-ORB Protocol)
Mapping of GIOP over TCP/IP
110P - IOR contains a host name and port number as
endpoint info

29

CORBA Vendors and Applications

CORBA vendors Applications of CORBA technology
WUSTL TAO Te'ei;’m o - cround
. lotorola - Ground station
10NA Orbix control for IRIDIUM Global

Cellular Network built on Orbix
Ericsson - TMN-based Cellular
Management Operations Systems
(CMOS) built using CORBA
Healthcare
Artemis - software system for
sharing and managing distributed
patient records. Orbix as
underlying middieware
Finance
Charles Schwab - SchwabLink
Web - online trading and
research service uses
CORBA/I10P standards

Inprise Visibroker
BEA ObjectBroker
Expersoft CORBAplus
Peerlogic DAIS

OIS ORBexpress
AT&T OmniORB

Any Questions?

See you next time.

Overview of CORBA

Object Model

- N -

ST e— uy Ty =]
I L wrdame - il
iy - Liam
ol T Lo [¥
e
The general organization of a CORBA system.
35
Object Invocation Models
Request type Failure semantics Description
Synchronous At-most-once Caller blocks until a response is
returned or an exception is raised
One-way Best effort delivery Caller continues immediately without
waiting for any response from the
server
Deferred At-most-once Caller continues immediately and can
synchronous later block until response is delivered

Invocation models supported in CORBA.

B s el Ahd [
SIEH farices gt
[il Sy W
k ik s
Loyt Fiimparal B
Service Description
Collection Facilities for grouping objects into lists, queue, sets, etc.
Query Facilities for querying collections of objects in a declarative manner
Concurrency Facilities to allow concurrent access to shared objects
Transaction Flat and nested transactions on method calls over multiple objects
Event Facilities for asynchronous communication through events.
Notification Advanced facilities for event-based asynchronous communication
Externalization Facilities for marshaling and unmarshaling of objects
Life cycle Facilities for creation, deletion, copying, and moving of objects
Licensing Facilities for attaching a license to an object
Naming Facilities for systemwide name of objects
Property Facilities for associating (attribute, value) pairs with objects
Trading Facilities to publish and find the services on object has to offer
Persistence Facilities for persistently storing objects.
Relationship Facilities for expressing relationships between objects
Security Mechanisms for secure channels, authorization, and auditing
Time Provides the current time within specified error margins
Overview of CORBA services.
36
Fiin fuff] 17 Oorss s
& T Ryl
* il
=Bl Chaias] : | gl
1 Feppdey

The logical organization of suppliers and consumers of
events, following the push-style model.

Event and Notification Services (2)

Bk 5 W ENE O B SaE]

" Sy
CossaraH s 4 Tt
o = Enprd oTaiapd E Suppied
COEEams |

B Soppied

The pull-style model for event delivery in CORBA.

Messaging (1)

Clieni speiceion

1. Sl by b

SRR Ltk |
Clenri Calimmck: | 4 Call by the 2RI
Py T i T
LE 3 Reszcrss fiomssrve
Chari I3
[= .
i

2 Fsguani icaarver

CORBA's callback model for asynchronous method invocation.

39
Messaging (2)
Charl mye eHas
1 Cadgy e & Oy e
dspicalim — ey _' o e
Cham Pl)
Py L ol]
i | T R ks (e Raes
Clasri -
CFE _: ol
& FEsjerm ia RFEF
CORBA'S polling model for asynchronous
method invocation.
41

Clients

[r
-y] FEOCETTE LA
ey il e, e

TR

taman el g
midm A

LxniCd

T To paree

Logical placement of interceptors in CORBA.

40

Message type Originator Description
Request Client Contains an invocation request
Reply Server Contains the response to an invocation
LocateRequest Client Contains a request on the exact location of an object
LocateReply Server Contains location information on an object
CancelRequest Client Indicates client no longer expects a reply
CloseConnection Both Indication that connection will be closed
MessageError Both Contains information on an error
Fragment Both Part (fragment) of a larger message

GI1OP message types.

42
i i gy | I e D
4 P
1 B
- e =t
3 -~ (R
S - il 2 i
o £l
AN e
i P
—

Mapping of CORBA object identifiers to servants.
The POA supports multiple servants.
The POA supports a single servant.

43

Portable Object Adaptor (2)

1/ Declare a reference to a C++ object
/I Declare a CORBA identifier

/I Create a new C++ object

My_servant *my_object;
CORBA::Objectid_var oid;

my_object = new MyServant;
oid = poa ->activate_object (my_object);
1l Register C++ object as CORBA OBJECT

Changing a C++ object into a CORBA object.

45

Object References (1)

Do rd = e
T A S LGyl el B
i
P | P =
el it Ty
nr
3 el i 1] Iom Wy Lorporai
v
(o= =i LR

eEmw sere e el

The organization of an 10R with specific information for 110P.

a7

Caching and Replication

Cacked |Cacked | Coched | Ceched vl
sy | oyl | checl | chedd
T
CABCADE ATS Dpgct ol PR
L o)
corind
Saiervem 50 ¥ N
oo
nigeT
IR
[EEE o
HALEE

Lo L2

The (simplified) organization of a DCS.

a4

Agents

Fimg e
EE ! EE k EE k
Ah-k KRR (AN-|R
B gl gl
e A A bt bamal? T S
i bk 4 ik e
-

e hard T EELE eiertacy

CORBA's overall model of agents, agent systems, and regions.

46

Object References (2)

FOA wfern o maiemeninion sacaiony

Chadi | 2 ACow ETeaCEnos
- L
Py
i, 4 Fedees reEsgs
L
3 Az phypss
3 .ub;. & Agrvmisivar objec]

1. Fawi rwocabon
e
i by g el R T

Indirect binding in CORBA.

48

Object Groups

rwrien CeEr [ons Derewn

[FeSrTa — e i
——— [= —

e — e N
- |]| T o | e P g

A possible organization of an I0GR for an object group
having a primary and backups.

49

An Example Architecture

Ot sy
L -]
Reckcwon (= L3
e i e
Py
s
e
[t]
L ey 2 Rapizuicr
T Tl e

T e
Erams - ary "

i

An example architecture of a fault-tolerant CORBA system.

Security (1)

Security (2)

{ Tins apriew e ﬂ-—---.----:l-m
a
{ ek
l'f_"'“"'u Arrens A "::'
[=asinal [T e
dawi Vol
LT “adl il aEFn
[— T TR T Gt an
|r|.l.:u| sl ML T By L1 ==
[—— e cre e
| '
(3]] Lo O
i |
e P
vl

The role of security interceptors in CORBA.

(=2 g F e] e mrETEETE
Sl
vard g e
b iy ey poicy otam- [= i
L] vl e =
St el =
Flodery g el Dors
Eorrdy sy L B et
P s Lo e
-
Tl OB Bt mr Bmeem CE
e = sl S B
Lmaid O 'E:‘:" Lnosd O
L
Hitrid s
maadim

The general organization for secure object invocation in CORBA.

50

Any Questions?

See you next time.

