CprE 450/550x
Distributed Systems and Middleware

Distributed Object-based Systems
CORBA

Yong Guan
3216 Coover
Tel: (515) 294-8378
Email: guan@ee.iastate.edu
March 30, 2004

Readings for Today's Lecture

» References

» Chapter 9 of “Distributed Systems: Principles and Paradigms”

» http://www.corba.org/

» http://www.omg.org/gettingstarted/

» http://www.omg.org/gettingstarted/readingroom.htm

» “Understanding CORBA”

» “Examples of Writing CORBA Applications”,
http://www.cs.wustl.edu/~schmidt/PDF/corba-apps4.pdf

» “Introduction to Distributed Object Programming with CORBA ”,
http://www.cs.wustl.edu/~schmidt/PDF/corbad.pdf

Outline

Role of CORBA and need for object oriented
distributed computing

A simple CORBA architecture
CORBA client-server example
Coding with 1DL

Complete CORBA architecture and its various
components

Some CORBA products and vendors

CORBA and OMG

CORBA (Common Object Request Broker Architecture) is a
standard for distributed objects being developed by the
Object Management Group (OMG) that provides the
mechanisms by which objects transparently make requests
and receive responses

CORBA provides interoperability between applications built
in (possibly) different languages, running on (possibly)
different machines in heterogeneous distributed
environments

The OMG is a consortium of software vendors and end users

CORBA and Distributed Computing

Access distributed information and resources from within
popular desktop applications

Make existing business data and systems available as
network resources

CORBA's model of object oriented computing makes reuse of
software components and application development easier
CORBA enables applications in a heterogeneous distributed
environment to access and share each other’s objects

Middleware

Middleware is a type of distributed system software which
connects different kinds of applications and provides
distribution transparency to its connected applications

It is used to bridge heterogeneities that occurred in the
system

Middleware insulates applications from the lower-level
details and complexities of the software on which the
system depends

CORBA has been called a communications middleware

Simple CORBA Architecture

request response

ORB (Object Request Broker)

Uses Object Reference to identify and locate objects
Object Reference: A handle to an object that a client must
hold in order to access the object

Delivers request to objects
Returns output values back to client

Services necessary to accomplish the tasks are completely
transparent to the client

CORBA Application Development

Steps in developing a CORBA server and client

- Design your application interface and specify them in OMG
IDL (Interface Definition Language)

-~ Run the IDL specs through IDL compiler of language of your
choice, say C++, to generate client-side stub and server-
side skeleton

- Implement server side interfaces using C++ classes (called
servants)

- Implement the server program that instantiates the
servants

- Compile the server program along with the skeleton code
using a C++ compiler

- Implement the client program

- Compile the client program along with the stub code

A Sample Client Sxver Program

1oL
-— WABL. Dneeriace: cor
inlertace H'Hh:'{ minommically prostuces ihe s
_ vold say_hellol: el enowcs andd (kbgect adapoer
) Hielbo b -Helle. e -Helbs skel kb
EErest Slids Helbo shel opp -POA Hella cpp

=== Sprvanl: - Helle imgl h
Winclwde <Helbo kil h>
dass Hello_lmpl - pulblic PO&_Helo
pulilic: wirtual void sy _hallod);
E

- Sprveni; ithiz = amphy ihe chjec
dtarmiion =Halle ||||||| e

wWinclsde <CORBA B> . <Hello_impl b
wold Mello_ irpl: - =ay _hellodjd

eoutss CHeln World™ woendi;
)

10

Client Srver Program (Cont.)

fert iy B
GDH.BiE::EH.I- wair —
ort = CORBA - | nnn_,lnln, '._I:

it run (CORBA = ORE_Pir orny
—.oreabe references bo and Enitiallzes POA..
mmw servant. ..
l.l-mh-a-ﬂ#ﬂ [T :|.|.|-|r||w.

mﬂuf Tl = = Hillored™
—ooJuse D siream o madke Tile..
art = runil;

¥

Server include our 2Ervant and
OO AA packmges «Berver opg
Fewvannl declaraivon
Cremies and mibaloag arbs
Eium & peamer
East e orb

oot slring funciion
crosses o aring Sile (100} tha
rmajss e paad by the clsent o
find the server smplementatson

11

Client Srver Program (Cont.)

Sliget Sicde

Einclude <CORBA.Fe. . <Hellohe>
int masin (i

wiEnilar b serer aide,,,

jl‘.‘ﬂh o initinlize and destroy KD,

-— 1

ink rum (CORBA :: OFB_PE orb)l
const char refFile = “Hello.rel”;
CORBA::Objeet_var abj = ol -=
abring_to_objech]);

0w Can call fuscticn e normal...

. ohj say_Fhello|); PPE—

Clieni imsclude CORBA packages
=Clsgni cpp

Faead 10O and creste object
refimene:

The Nescion cam o by callgd ms
modimal even f i ok on sstber

WSline oF in orrher process

12

13

Interface definition Language (I1DL)

Separates object implementation from interface
Basically a declarative language, similar in appearance to C++

A means by which the object implementation tells clients what
operations are available and how to invoke them.

Mapped to a particular programming language (C, C++, Java)
IDL compilation produces stubs/skeletons
stub - local function call for the client
skeleton - server side of the object implementation
Client - Server communication is facilitated by stubs & Skeletons

IDL Specs [SEIDL Compiler
=

14

Coding with 1DL
|CORP.IDL|

Interface
Repository

' '

[omG 1DL compiler |

¥ | ¥
CORP_cstub.c CORP.h CORP_sskel.c
Client Stub Header file Server Skeleton

L

I Client Application I I Server Application I

15

Coding with IDL (cont.)

//File CORP.IDL

Module CORP

{
typedef long BadgeNum;

typedef long DeptNum;
enum DismissalCode {DISMISS_FIRED, DISMISS_QUIT}

Interface Employee

{
void promote(in char newjobclass);
void dismiss(in DismissalCode reason,
in string description);
}

16

Coding with IDL (cont.)

//File CORP.IDL ---- Defining an object attribute in ODL

Module CORP
{
typedef long BadgeNum;
typedef long DeptNum;
enum DismissalCode {DISMISS_FIRED, DISMISS_QUIT}

struct Deptinfo

{
DeptNum id;
string name;
}
Interface Department
{
atttribute DeptlInfo DeptlD;
}

17

Coding with IDL (cont.)

//File CORP.IDL ---- Defining an read-only object attribute in ODL
Module CORP
{

Interface Employee;

struct Deptinfo

{
DeptNum id;
string name;
}
Interface Department
{
atttribute Deptinfo DeptID;
readonly attribute Employee manager_obj;
}
Interface Employee
{
attribute EmpData personal_data;
readonly attribute Department department_obj;
}

18

Coding with IDL (cont.)

//File CORP.IDL ---- Defining inheritance in ODL: single inheritance
Module CORP

struct PersonalData {
string lastname;
string firstname;
string phone;

typedef PersonalData EmpPersonalData;
struct EmpData {
BadgeNum id;
char job_class;
float hourly_rate;

Interface Employee
{
attribute EmpData personal_data;
readonly attribute Department department_obj;
void promote(in char new_job_class);
void dismiss(......);
void transfer(....);

Interface Manager: Employee

void approve_transfer(.....);

19

Coding with IDL (cont.)

//File CORP.IDL ---- Defining inheritance in ODL: multiple inheritance

Module CORP
{

Interface Employee

{
}
Interface Manager: Employee
{
}

Interface Peronnel: Employee

{
Interface PeronellManager: Personnel, Employee

20

Coding with IDL (cont.)

//File CORP.IDL ---- Defining inheritance in ODL: inheritance across modules
Module CORP
{
Interface PeronellManager: Personnel, Employee
{
}
}
Module ENGINEERING
{
Interface EmployeeLocator
{
void FindEngineer(in CORP::BadgeNum id,
out CORP::PersonalData info);
}
Interface PersonnelManager: CORP::PersonnelManger
{
}
}

10

Coding with IDL (cont.)

//File CORP.IDL ---- Defining User-defined Exceptions

Module CORP

{
enum DenyApprovalReasons {REASON, CODES};

exception DENY_APPROVAL

{
DenyApprovalReasons reason;
}
Interface Manager: Employee
{
void approval_transfer (in Employee employee_obj,
in Department current_department,
in Department new_department)
raises (DENY_APPROVAL);
}

21

Coding with IDL (cont.)

//File CORP.IDL ---- Defining context objects
Module CORP
{
Interface Manager: Employee
{
void approval_transfer (in Employee employee_obj,
in Department current_department,
in Department new_department)
raises (DENY_APPROVAL)
context(“division”);
}

22

11

The Object Management Architecture

CORBA Components

IDL Compiler

| o] | Servan]
— N
) =

Interface| terfac Object Adapter

25

Static and Dynamic Invocation Interface

Static Invocation Interface (SII)
Client knows interface operations in advance
Client is compiled with the relevant stub

During invocation, the proxy object understands the
parameters in an operation and marshals them into the
request

Dynamic Invocation Interface (DII)
A client may not always have the stub available at compile
time
Bridges, Proxy servers
Allows clients to discover operations parameters using
Interface Repository and create requests dynamically

More flexible but less efficient. Also, more complicated and
less typesafe

26

Interface Repository (IFR)

A service that provides persistent objects that represent
the IDL information in a form available at runtime

Provides type information necessary to issue requests using
the DI1

Also stores additional information like debugging info ,
libraries of stubs or skeletons etc

13

Static and Dynamic Skeleton Interface

Static Skeleton Interface (SSI)
Similar to S11, but on server side
Knows the operation types at compile time

Performs request demarshaling and dispatching

Dynamic Skeleton Interface (DSI)
Similar to D11, but on server side
Generic skeleton interface for all objects

27

Object Adaptor (OA)

Implementations must be registered with the OA

When a client requests a service from an object, the OA
maps the request to the appropriate implementation
Activate and deactivate objects

Objects can be implemented as C++ classes or C functions

Allowing varied methods of implementation facilitates
integration of legacy applications
Two types - BOA (basic) and POA (portable)

samnr e @maL ¥

M‘—!'—._. r:'h-- |..-

28

14

29

Interoperability

GIOP (General Interoperability Protocol)
Abstract protocol for communication between different ORB
products
Specifies message types
Request, Reply, LocateRequest, LocateReply,
CancelRequest, CloseConnection, MessageError
Specifies data format
CDR (common data representation)
11OP (Internet Inter-ORB Protocol)
Mapping of GIOP over TCP/IP
I1OP - IOR contains a host name and port number as
endpoint info

30

CORBA Vendors and Applications

CORBA vendors Applications of CORBA technology

WUSTL TAO Te'ech;’m o~ round stati
. otorola - Ground station
1ONA Orbix control for IRIDIUM Global

Cellular Network built on Orbix

Inprise Visibroker
Ericsson - TMN-based Cellular

BEA ObjectBroker Management Operations Systems
Expersoft CORBAplus (CMOS) built using CORBA
Peerlogic DAIS Healthcare

Artemis - software system for
OIS ORBexpress sharing and managing distributed

patient records. Orbix as
underlying middleware

Finance
Charles Schwab - SchwabLink
Web - online trading and
research service uses
CORBA/110P standards

AT&T OmniORB

15

31

Any Questions?

See you next time.

32
Overview of CORBA
Application | Vartical Herizontal Commion
abpcis facdihes tecibiies E!’!jr&d
[dimain specific) {peneral purposs) | Sary s
¥ ¥ ¥ ¥

Object Request Broloer

The global architecture of CORBA.

16

Object Model

Lo -2 T

Barsar raching

Clian| Bppdicatan Ot implarmanialion
Gtalic | Dynamic | ORES CObiecl | Skelion | Dynamie || ORS
oL Ireacalion | inlefdass aclapler Seslslon | inlerlaos
oKy Emieface imertace |
Chent ORE Sancer ORE
Local 3% Local 08
Matanrk

The general organization of a CORBA system.

34

Corba Services

Service
Collection
Query
Concurrency
Transaction
Event
Notification
Externalization
Life cycle
Licensing
Naming
Property
Trading
Persistence
Relationship
Security

Time

Description

Facilities for grouping objects into lists, queue, sets, etc.

Facilities for querying collections of objects in a declarative manner
Facilities to allow concurrent access to shared objects

Flat and nested transactions on method calls over multiple objects
Facilities for asynchronous communication through events
Advanced facilities for event-based asynchronous communication
Facilities for marshaling and unmarshaling of objects

Facilities for creation, deletion, copying, and moving of objects
Facilities for attaching a license to an object

Facilities for systemwide name of objects

Facilities for associating (attribute, value) pairs with objects
Facilities to publish and find the services on object has to offer
Facilities for persistently storing objects

Facilities for expressing relationships between objects
Mechanisms for secure channels, authorization, and auditing

Provides the current time within specified error margins

Overview of CORBA services.

17

Object Invocation Models

Request type Failure semantics Description

Synchronous At-most-once Caller blocks until a response is
returned or an exception is raised

One-way Best effort delivery Caller continues immediately without
waiting for any response from the
server

Deferred At-most-once Caller continues immediately and can

synchronous later block until response is delivered

Invocation models supported in CORBA.

35

Event and Notification Services (1)

Fush event to consumers

: =1 Supper .
Consumer (4—__ & - Ll A :
= : | Ewent channal | Supplier
[Consumer [N— i
| Supphier |

The logical organization of suppliers and consumers of
events, following the push-style model.

36

18

37

Event and Notification Services (2)

Ask suppleers for new event

[Consumer |— -~ 1l_-_..---'""1_5'U|='F3'h=r_|
|C|:|r15ur'ner i- e _h! Ewent channel ST H_E_Ul:lphar_l
ez ek | "}-_é_upphe:r |

The pull-style model for event delivery in CORBA.

38

Messaging (1)

Clent applcaton
1.L‘allb5-'t_he .;'If |
application —F—
Client | Callback | 4 Call by the ORE
prowy interface g
i _'-{"""' " 3 Response from sarver

Cliant |

ORE = I"‘—E

P

2 Request to server

CORBA'"s callback model for asynchronous method invocation.

19

39

Messaging (2)

Client applicaton

1. Call by the s o 4. Call by the
| Client | Polling
proxy interface
I 1 : 3. Response from server
| Glient s
| ORB —p—
D —rqg ™

2. Reguest to sarver

CORBA'"S polling model for asynchronous
method invocation.

40

Interoperability

Message type Originator Description

Request Client Contains an invocation request

Reply Server Contains the response to an invocation
LocateRequest Client Contains a request on the exact location of an object
LocateReply Server Contains location information on an object
CancelRequest Client Indicates client no longer expects a reply
CloseConnection Both Indication that connection will be closed
MessageError Both Contains information on an error

Fragment Both Part (fragment) of a larger message

GIOP message types.

20

41

Clients

Chart application

Clisnt
proy - + Invocation reguest
[Reguest-level o
Inercaptar
Client
CRB
Masaaps-level o
it rceghar
Local D5

¥ Toserver

Logical placement of interceptors in CORBA.

42

Portable Object Adaptor (1)

Actve Chiect Map Setvan Active Ohject Map
X k] - vt
o : 13
_EIIL'lI' CHEA -
L [m]| nie i 4
|oice) i il oipa- ~ ST
G ¥ Cariant Qi ik e
QIDSt DS - i
[ioE| | [DiDa:
£ * Sersant
Saleani

(1] 1o
Mapping of CORBA object identifiers to servants.
The POA supports multiple servants.
The POA supports a single servant.

Portable Object Adaptor (2)

My_servant *my_object;

/] Declare a reference to a C++ object
CORBA::Objectid_var oid;

/I Declare a CORBA identifier

my_object = new MyServant; /I Create a new C++ object
oid = poa ->activate_object (my_object);

Changing a C++ object into a CORBA object.

/I Register C++ object as CORBA OBJECT

43

44
Agents
Region

EE E= ElE| |E E|E E
& e B AR & & =)
oL | of oL of oL oL of | o oL

. -1|:'_.,ﬂr.'. & [a.émrn. . g n.-.:-mnr

FeEiem & sysiem B sysham & Coemmumication

F 11 i 1 I e e

Y ‘L 4 ‘ “ e with ageni sysiems

in ather regions
v
Sandard CORBA mtarfaca

CORBA's overall model of agents, agent systems, and regions.

22

Object References (1)

Tagged Profie
¥ Intaraparable Obect Raleence [I0R)
Reposiony | .F'r-:lhlnu- = -
| identifier | | 1D Frafile ;
[woe | Host [Por .'S-tlircl:ie;. Compansnts |
FErmon
POA | Objex | Ctherserver

iderifier danbfer | spesfc imformation

The organization of an 10R with specific information for 110P.

45

Object References (2)

IOR refers to implementation repositary

Cliont 5. Actual invocation
> ™ Ohject
T BETVET
|_|'§R_| 4 Redirect mesaage
S v N

3. Ack object = E'IU"'i' 2 Activatelsiart object

1. First invocation ™. |

of binding request | Implementation

repository

Indirect binding in CORBA.

46

23

47

Caching and Replication

| Cached | Cached | Cached | Cached |

Invacatian
object | abject | objec | obec |
[¥
CASCADE RTS Dbject 4! Method
imweacation |
conbrol
Sarvar CRE v i
Policy | 1
okt |
Interceptors —
Irezcation
reguest
Local OS5

The (simplified) organization of a DCS.

Object Groups

. e e e
idamtfier i Profie-1 " ohie-Fs
Ty) o =t ; | - 3 ,
! Hosi-1 | Part-1 -.h,l 1 Companants 1 Horsb-M | Pori-M kiy-H Comnponanis
TAG Cither gronip- TS Cifhes group-
PRIMERY | speohc mformataon RACKLIP | specic imommabom

Repostory. | Profile

48

mesoperable Ohpect Sroup Bsference (K265

Prohie

A possible organization of an 10GR for an object group
having a primary and backups.

24

An Example Architecture

Cibject group

manager Dibjet

Faphcatan
managar
Propety
manager
LRE
. . interceptor
Lagging &
Recovery Gk PN
F'_j_;_.' Riehiable mubcashng

—

An example architecture of a fault-tolerant CORBA system.

49

Chanl ai
hijact sapser

To other repglicas
-

Security (1)

50

Lol SN Cbject wrplemantation
Sl of F Y
:) clienl-spesific] e :
| Securily Palicy policy ohjecis Falicy | Security
Binicbvniei lobject] 4 ohjec| SArioe
: : et ot a8 M 5 1
1 | |Pahicy| obyecl-spacific Polcd! 1o 1
| Security | | aolcy objecis < Sezurily |
servies [} 120EC LA shject service |
o, |
Client ORE - Zed af relsvarnd Sarear OB
T) | ORB secusty Syt |
Local 05 s ol Local 05
Fi
et
|Irvocation

The general organization for secure object invocation in CORBA.

51

Security (2)

Client applicatan Ghiject implementation
& '3
1 1
Accees (Fotasa e Acoese
canhm | abjests ra—— contred
TR CEgTiGT oy e’ s msarcepios
Waull Wault
| abgact Walt abject chject |
Secure N G- ¥ Secure
imocatian | |Security) | SECUry content |Security| irnocalon
e CEioy cankaxt | | ontext _mrg@lm.:f |
Lol DS Local 0=
+
Mabapek:
(et ey

The role of security interceptors in CORBA.

52

Any Questions?

See you next time.

26

