
1

Processes: Thread, Code Migration,
and Software Agents

CprE 450/550x
Distributed Systems and Middleware

Yong Guan
3216 Coover

Tel: (515) 294-8378
Email: guan@ee.iastate.edu

March 4, 2004

2

Announcements

! The second project will be announced next Tuesday

! Mid-term Exam: Closed-form
– When: Thursday, March 4, 2004
– Time: 3:40-5pm

3

Readings for Today’s Lecture

! References
! Chapter 3 of “Distributed Systems: Principles and Paradigms”

4

Outline
" Threads

" Code Migration
o What is code migration?
o Approaches to code migration
o Local resources
o Code migration in heterogeneous systems
o Implementation issues

" Software Agents
o What is software agents?
o Agent Technology

5

Threads
! Finer granularity in the form of multiple threads of control per process
! Process: a program in execution

! Program -> virtual processor -> process table (CPU register values, memory maps, opened files, etc)
! OS ensures independent processes cannot maliciously affect the correctness of each other’s behavior –separation
! Independent address space for each process
! Switching CPU between processes
! Swap processes between main memory and disk

! Thread: can also be thought as a (part of a) program in execution on a virtual
processor
! Performance gain, concurrency

! When a blocking system call is executed, the process as a whole is blocked.
! Increase parallelism when executing the program on multiprocessor systems

! Threads are not protected against each other like processes. So it needs propoer design

! Implementation:
! Construct a thread library that is executed entirely in user mode

! Cheap to create and destroy threads
! User-level threads can be switched in a few instructions (CPU register values need be stored)
! Invocation of a blocking system call will immediately block the entire process to which the thread belongs

and all other threads in that process
! Have the kernel be aware of threads and schedule them
! Lightweight Process (LWP): A hybrid form of user-level and kernel-level threads

6

Code Migration

! Communication in distributed systems
o Passing data
o Passing program

Code
Process

2

7

Reasons for Migrating Code
! Performance

o Process migration: An entire process is moved from one machine to another
Costly and intricate
Overall system performance can be improved if processes on heavily-loaded machine

are moved to lightly-loaded machine.
o Migrating part of the client/server to the server/client

Database operations involve large quantities of data (C->S)
Interactive data applications: form processing (S->C)

o Support for code migration can help improve performance by exploiting
parallelism
Web searching: Having several small mobile programs move from site to site ->Linear

speedup
! Flexibility

o Traditional approach to building distributed applications is to partition the
application into different parts during the design phase.

o Code Migration makes it possible to dynamically configure distributed systems
at run-time.
Dynamic downloading client software

! Security?

8

Reasons for Migrating Code (cont.)

The principle of dynamically configuring a client to communicate to a server. The client
first fetches the necessary software, and then invokes the server.

9

" Code migration deals with moving program (process)
between machines
o Execution status of a program
o Pending signals
o Other parts of the environements

" Process
o Code segment
o Resource segment
o Execution segment

" Weak Mobility and Strong Mobility
" Initiated party: sender or receiver

Models for Code Migration
10

Models for Code Migration (cont.)

Alternatives for code migration.

11

" Resource segment cannot always be simply
transferred along with the other segments without
being changed.
o Socket binding to a specific TCP port
o Open file descriptors

" Process-to-resource bindings
o Binding by identifier
o Binding by value
o Binding by type

" Resource-to-machine bindings
o Unattached
o Fastened
o Fixed

Migration and Local Resources
12

Migration and Local Resources (cont.)

Actions to be taken with respect to the references to local
resources when migrating code to another machine.

GR

GR

RB (or GR)

GR (or MV)

GR (or CP)

RB (or GR, CP)

MV (or GR)

CP (or MV, GR)

RB (or GR, CP)

By identifier

By value

By type

FixedFastenedUnattached

Resource-to machine binding

Process-to-
resource

binding

3

13

" Migrated code can be easily executed at the target
machine when dealing with homogeneous systems

" However, for heterogeneous systems,
o Each has its own OS and machine architecture
o Migration requires platform-level support

Migration in Heterogeneous Systems

14

" Recompile the program at target machine
" Generate different code segments for each potential

target platform
" Restrict to specific points in the execution of a

program, e.g., next subroutine call.
– Migration stack

" Virtual Machine: Machine-independent intermediate
code: Java

Migration in Heterogeneous Systems (cont.)

15

Migration in Heterogeneous Systems (cont.)

The principle of maintaining a migration stack to support migration of an
execution segment in a heterogeneous environment

3-15

16

Overview of Code Migration in D'Agents (1)

A simple example of a Tel agent in D'Agents submitting a
script to a remote machine (adapted from [gray.r95])

proc factorial n {
if ($n ≤ 1) { return 1; } # fac(1) = 1
expr $n * [factorial [expr $n – 1]] # fac(n) = n * fac(n – 1)

}

set number … # tells which factorial to compute

set machine … # identify the target machine

agent_submit $machine –procs factorial –vars number –script {factorial $number }

agent_receive … # receive the results (left unspecified for simplicity)

17

Overview of Code Migration in D'Agents (2)

An example of a Tel agent in D'Agents migrating to different machines where
it executes the UNIX who command (adapted from [gray.r95])

all_users $machines

proc all_users machines {
set list "" # Create an initially empty list
foreach m $machines { # Consider all hosts in the set of given machines

agent_jump $m # Jump to each host
set users [exec who] # Execute the who command
append list $users # Append the results to the list

}
return $list # Return the complete list when done

}

set machines … # Initialize the set of machines to jump to
set this_machine # Set to the host that starts the agent

Create a migrating agent by submitting the script to this machine, from where
it will jump to all the others in $machines.

agent_submit $this_machine –procs all_users
-vars machines
-script { all_users $machines }

agent_receive … #receive the results (left unspecified for simplicity)

18

Implementation Issues (1)

The architecture of the D'Agents system.

4

19

Implementation Issues (2)

The parts comprising the state of an agent in D'Agents.

Stack of activation records, one for each running commandStack of call frames

Stack of commands currently being executedStack of commands

Definitions of scripts to be executed by an agentProcedure definitions

User-defined global variables in a programGlobal program variables

Return codes, error codes, error strings, etc.Global system variables

Variables needed by the interpreter of an agentGlobal interpreter variables

DescriptionStatus

20

Software Agents
" Software agents: autonomous units capable of

performing a task in collaboration with other remote
agents.
o Reacting to/initiating changes in its environment
o Collaborating with users and other agents

" Mobile agents
" Interface agents
" Information agents

21

Software Agents in Distributed Systems

Some important properties by which different types of agents
can be distinguished.

Capable of learningNoAdaptive

Can migrate from one site to anotherNoMobile

Has a relatively long lifespanNoContinuous

Can exchange information with users and other agentsYesCommunicative

Initiates actions that affects its environmentYesProactive

Responds timely to changes in its environmentYesReactive

Can act on its ownYesAutonomous

DescriptionCommon to all
agents?Property

22

Agent Technology

The general model of an agent platform (adapted from [fipa98-mgt]).

23

Agent Communication Languages (1)

Examples of different message types in the FIPA ACL [fipa98-acl], giving the purpose
of a message, along with the description of the actual message content.

Reference to sourceSubscribe to an information sourceSUBSCRIBE

Action specificationRequest that an action be performedREQUEST

Proposal IDTell that a given proposal is rejectedREJECT-PROPOSAL

Proposal IDTell that a given proposal is acceptedACCEPT-PROPOSAL

ProposalProvide a proposalPROPOSE

Proposal specificsAsk for a proposalCFP

ExpressionQuery for a give objectQUERY-REF

PropositionQuery whether a given proposition is trueQUERY-IF

PropositionInform that a given proposition is trueINFORM

Message ContentDescriptionMessage purpose

24

Agent Communication Languages (2)

A simple example of a FIPA ACL message sent between two agents using
Prolog to express genealogy information.

female(beatrix),parent(beatrix,juliana,bernhard)Content

genealogyOntology

PrologLanguage

elke@iiop://royalty-watcher.uk:5623Receiver

max@http://fanclub-beatrix.royalty-spotters.nl:7239Sender

INFORMPurpose

ValueField

5

25

Any Questions?

See you next time.

