
1

Introduction

CprE 450/550x
Distributed Systems and Middleware

Yong Guan
3216 Coover

Tel: (515) 294-8378
Email: guan@ee.iastate.edu

January 15, 2004

Definition of a Distributed System

A distributed system is:

A collection of independent computers that
appears to its users as a single coherent

system.

2

Questions?

• Why we need distributed systems?

• What properties should a distributed
systems have?

• What problems/issues should be
addressed?

Why we need distributed systems?

• Centralized System
• Network Operating Systems
• Distributed Operating Systems
• Middleware

• Computer Networks

3

Definition of a Distributed System

• Requirements:
– Provide user with convenient virtual computer.

– Hide distribution of resources.

– Mechanisms for protecting resources.

– Secure communication.

• Definition

• Distributed system looks to user like ordinary centralized OS,
but runs on multiple, independent CPUs.
– Use of multiple processors is invisible.

– User views system as virtual uniprocessor.

The insider’s view of a Centralized OS

• The insider’s view of a centralized OS.
• (Roughly patterned after XINU [Comer 1984])

hardware

process coordinator
process manager
memory manager

real-time clock manager
device manager and device drivers
file system
user programs

1

2

3

1

2

3

remote files

+ remote device access

+ remote process management

4

Distributed vs. Centralized Systems

• Advantages of Distributed Systems:
– Reliability.
– Sharing of resources.
– Aggregate computing power.
– Openness/Scalability

• Disadvantages of distributed systems:
– Security.
– Physical distribution of resources vs. demand.
– Computing power per node is limited.

Distributed vs. Networked OS

Transparency:
– How aware are users of the fact that multiple

computers are being used?

• Network OS:
– Users are aware where resources are located
– Network OS is built on top of centralized OS.
– Handles interfacing and coordination between local

OSs.

• Distributed OS:
– Designed to control and optimize operations and

resources in distributed system.

5

• Definition:
– A network OS is a collection of OSs of computers

connected through a network incorporating modules
to provide access to remote resources.

• Characteristics:
– Each computer has private OS.
– User works on his own machine and remotely logs in

to other computers.
– Users are aware of location of files.
– Limited fault tolerance.

Network Operating Systems

local machine

remote machine

A Vanilla Network OS
(Remote Access System [Goscinsky ‘83])

local OS local OS

RAS client lib

RAS server

file
mgmt

rsh lpr ...

client
(user process)

local
requests

remote
requests

Issues:
• Performance! (local and remote)
• Where is the state?
• Serialization of operations.
• Blocking operations

remote resource

remote machine

6

Network Operating System (1)

1-19

General structure of a network operating system.

Network Operating System (2)

Two clients and a server in a network operating system.

1-20

7

Network Operating System (3)

Different clients may mount the servers in different places.

1.21

Positioning Middleware

General structure of a distributed system as middleware.

1-22

8

Middleware and Openness

In an open middleware-based distributed system, the
protocols used by each middleware layer should be the
same, as well as the interfaces they offer to applications.

1.23

A comparison between multiprocessor operating systems,
multicomputer operating systems, network operating systems, and
middleware based distributed systems.

OpenOpenClosedClosedOpenness

VariesYesModeratelyNoScalability

Per nodePer nodeGlobal,
distributed

Global,
centralResource management

Model specificFilesMessagesShared
memoryBasis for communication

NNN1Number of copies of OS

NoNoYesYesSame OS on all nodes

HighLowHighVery HighDegree of transparency

Multicomp.Multiproc.

Middleware-
based OS

Network
OS

Distributed OS
Item

Comparison between Systems

9

Research and Design Issues

• Communication model
• Paradigms for process interaction
• Transparency
• Heterogeneity
• Autonomy and/or interdependence
• Reliable distributed computing
• Replication

Communication Model

• ISO/OSI Model
– Physical
– Datalink

– Network
– Transport
– Session

– Presentation
– Application

• An alternative, e.g. Functional, Model
– Physical

• same as ISO/OSI

– Datagram
• connectionless service between source

and destination process
• location of services

– Transport
• reliable transport between client and

server

• “transaction level”
– Binding

• location of resources within the server

• logical connection between client and
server

– User
• request semantics

10

Process Interaction: Client/Server

• Server: A subsystem that provides a particular type of service to a
priori unknown clients.

• Control functionally distributed among the various servers in the
system.

• Control of individual resources is centralized in a server.
(localized?)

• Problems:

– Reliability/Availability
– Scalability

– Replication?

Process Interaction: Pipe Model

• Pipe: Communication facility to transfer data between processes in
FIFO order. Can be used for synchronization purposes.

• Named/unnamed pipes

• Pipes for secure IPC

• Pipes across network?

• Multicast pipes?

11

Transparency in a Distributed System

Hide whether a (software) resource is in memory or on diskPersistence

Hide the failure and recovery of a resourceFailure

Hide that a resource may be shared by several competitive
usersConcurrency

Hide that a resource may be shared by several competitive
usersReplication

Hide that a resource may be moved to another location while in
useRelocation

Hide that a resource may move to another locationMigration

Hide where a resource is locatedLocation

Hide differences in data representation and how a resource is
accessedAccess

DescriptionTransparency

Different forms of transparency in a distributed system.

Autonomy and Interdependence

• Disadvantage generated by interdependence:
– cannot work stand-alone
– globally controlled
– difficult to identify source of authority and

responsability
– what about mutual suspicion?

• Reasons for autonomy:
– policy freedom
– robustness
– cooperation between mutually suspicious users

12

Scalability Problems

Examples of scalability limitations.

Doing routing based on complete informationCentralized algorithms

A single on-line telephone bookCentralized data

A single server for all usersCentralized services

ExampleConcept

Scaling Techniques (1)

1.4

The difference between letting:

a) a server or

b) a client check forms as they are being filled

13

Scaling Techniques (2)

1.5

An example of dividing the DNS name space into zones.

Any Questions?

