Analytical Profile Design for an in-line, translating roller follower, cam.

The pressure angle for an in-line, translating roller-follower cam is given by the following formula:

$$d = \tan^{-1} \left[\left(\frac{s'}{w} \left(\frac{r_f + r_b + s}{(r_f + r_b + s)^2} \right) \right] \right]$$

$$r_f = radius of roller$$

$$r_b = base circle radius$$

$$s = trace point displacement$$

$$w = cam's angular velocity$$

$$s'' = velocity of trace point$$

The x and y co-ordinates of the cam profile are given by:

 $\begin{aligned} \mathbf{Rx} &= -[\mathbf{r}_{f} + \mathbf{r}_{b} + \mathbf{s}] \mathbf{sin}(\mathbf{q}) + \mathbf{r}_{f} \mathbf{sin}(\theta - \delta) \\ \mathbf{Ry} &= [\mathbf{r}_{f} + \mathbf{r}_{b} + \mathbf{s}] \mathbf{cos}(\mathbf{q}) - \mathbf{r}_{f} \mathbf{cos}(\theta - \delta) \end{aligned}$

Draw the cam profile and find the minimum radius of curvature for the given cam schedule.

Stage 1:	Follower rises 1.5 inches I 1.5 sec using SHM.
Stage 2:	Follower dwells for 2.0 sec.
Stage 3:	Follower returns in 1.5 sec using cycloidal motion
Stage 4:	Follower dwells for 2.0 sec

The roller radius is 0.5 inches.

The base circle of the cam has a radius of 3.5 inches.

Step 1:

Compute angular velocity of cam

Total time = 1.5 + 2.0 + 1.5 + 2.0 = 7.0 sec.

Step 2:

Determine analytical expressions for displacements, velocities and accelerations

$\beta_1 = \omega \Delta t_1$	=	(0.143 rev/s)*(1.5 s) = 0.214 rev = 77.2°
$\beta_2 = \omega \Delta t_2$	=	(0.143 rev/s)*(2.0 s) = 0.286 rev = 102.8°
$\beta_3 = \omega \Delta t_3$	=	(0.143 rev/s)*(1.5 s) = 0.214 rev = 77.2 $^{\circ}$
$\beta_4 = \omega \Delta t_4$	=	(0.143 rev/s)*(1.5 s) = 0.286 rev = 102.8°

ω = .143 rev/s	Motion	h	S。	β	θ ₀	S	s'	S"
1	SHM	1.5	0	77. 2°	0	$\frac{1}{2}h\left(1-\cos\left(\frac{pq}{b}\right)\right)$	$\frac{wph}{2b}\left(\sin\left(\frac{pq}{b}\right)\right)$	$\frac{pw^2h}{2b^2}\cos\left(\frac{pq}{b}\right)$
2	Dwell	0	1.5	10 2.8 ∘	77.2 °	s = 1.5	s' = 0	s" = 0
3	Cycloidal	-1.5	1.5	77. 2°	180.0°	$s_o + h \left[\frac{\boldsymbol{q} - \boldsymbol{q}_o}{\boldsymbol{b}} - \frac{1}{2\boldsymbol{p}} \sin\left(\frac{2\boldsymbol{p}(\boldsymbol{q} - \boldsymbol{q}_o)}{\boldsymbol{b}}\right) \right]$	$\frac{h\mathbf{w}}{\mathbf{b}} \left[1 - \cos\left(\frac{2\mathbf{p}(\mathbf{q} - \mathbf{q}_o)}{\mathbf{b}}\right) \right]$	$\frac{2\boldsymbol{p}h\boldsymbol{w}^2}{\boldsymbol{b}^2}\left[\sin\left(\frac{2\boldsymbol{p}(\boldsymbol{q}-\boldsymbol{q}_o)}{\boldsymbol{b}}\right)\right]$
4	Dwell	0	0	10 2.8 ∘	257.2 °	s = 0.0	s' = 0	s" = 0