
Polynomial Cams 
 
It is possible to design a cam profile that will give us precisely the features we desire in kinematic 
behavior at the start and end of a cycle of cam rotation using polynomial cams (there are trade-
offs too, however). 
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This particular polynomial requires the engineer to specify 6 different boundary conditions. 
 

1. At θ = 0, s   = 0 
2. At θ = 0, s'  =  0 
3. At θ = 0, s''  =  0 

4. At 





β
θ

=1, s = h 

5. At 





β
θ

=1,s'=0 

6. At 





β
θ

=1,s''=0 

 
How would you go about finding the polynomial coefficients?  We need 6 equations.  The 6 boundary 
conditions required, will yield the 6 equations needed. 
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The position equation at θ = 0° and 




β
θ

=1, s=h, gives us two equations. 
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The velocity equation at θ = 0° and 




β
θ

=1, s'=0, gives us two more equations. 

 

The acceleration equation at θ = 0° and 




β
θ

=1, s'''=0, gives us the remaining two equations. 

 



Putting in the first set of boundary conditions gives a0, a1, and a2 = 0.  The second set of 
conditions, s = h at θ/β = 1; s'=0 at θ/β = 1 and s'' = 0 at θ/β = 1 gives the following 3 equations to 
solve for a3, a4, and a5. 
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Writing these three equations in matrix form, gives: 
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Solving for ao, a1, and a2 gives: 
 
a0 = 10h 
a1 = -15h 
a3 = 6h 
 
The final polynomial equation for follower displacement is: 
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