Quiz 1	—Design Process, Material Processing, Factor of Safety, Optimization
Name	e:
Problem 1: Material Processing	
There are 4 stress-strain curves shown below. Use these diagrams to answer the following questions. You must justify your answers in order to earn credit.	
a).	Which of the stress strain curves represents ductile materials?
b).	Which of the stress strain curves has the highest strength ?
c).	Which of the stress strain curves has the most fracture toughness ?
d).	Which of the stress strain curves would best represent a material that has been annealed ?

Problem 2: Factor of Safety

A hollow steel tube is loaded along its longitudinal axis with a tensile force of 1000 lbs. The ultimate tensile strength of this particular steel is 43 000 psi. A factor of safety of 2 is required. What wall thickness is necessary if the outside diameter of the tube is 1.0 inch?

Problem 1: Material Processing

There are 4 stress-strain curves shown below. Use these diagrams to answer the following questions. You must justify your answers in order to earn credit.

- a). Which of the stress strain curves represents ductile materials?
 - **Curves a and c** represent ductile materials; this is evidenced by the fact that the rupture strength is well beyond the yield strength
- b). Which of the stress strain curves has the **highest strength**?
 - **Curves c and d** represent materials with high strengths. This is evidenced by the highest value of σ on the σ ϵ curve.
- c). Which of the stress strain curves has the most **fracture toughness**?
 - **Curve c** exhibits the most fracture toughness; this is evidence by the amount of area under the σ ϵ curve.
- d). Which of the stress strain curves would best represent a material that has been **annealed**?
 - **Curve a** best represents a material that has been annealed; its strength is lower, but it is relatively ductile and has some fracture toughness.

Problem 2: Factor of Safety

A hollow steel tube is loaded along its longitudinal axis with a tensile force of 1000 lbs. The ultimate tensile strength of this particular steel is 43 000 psi. A factor of safety of 2 is required. What wall thickness is necessary if the outside diameter of the tube is 1.0 inch?

$$N = 2$$

$$\sigma = F/A$$

$$A = \frac{\mathbf{P}}{4} \left(d_o^2 - d_i^2 \right)$$

$$N = \frac{S_{ut}}{s} = \frac{43000 \frac{P}{4} (1^2 - d_i^2)}{1000} = 2$$

$$d_i = \sqrt{-\frac{(2)(4000)}{(43000)(\mathbf{p})} + 1}$$

$$d_i = .969937$$

$$2t = d_o - d_i = .03$$

$$t = 0.015$$