
Finite Element Analysis 
 
Finite Element Analysis (FEA) is a numerical procedure that mechanical engineers use for many kinds of 
analysis:  stress and strain analysis, heat transfer analysis, vibrations analysis, etc.  In our class, we will 
use a package called COSMOS and we will perform stress and strain analysis.  First, however, a brief 
introduction to FEA will help you understand what COSMOS actually does. 
 
Every part has some amount of "springiness"--even parts made of materials like steel, aluminum, and other 
metals.  This "springiness" depends on what kinds of material the part is made of, how big the part is, and 
how resistant to loading the part is.   
 
For example, consider a cantilevered, steel beam of length L, with a rectangular cross-sectional area, A. 
 
 
 
 
 
 
 
You will recall from your strength of materials class that the beam's deflection for this case is given as: 
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We could use this formula to predict the deflection of the beam at any point along the beam, however we 
are going to solve this problem in a slightly different way and compare our results to the solution for 
deflection given above. 
 
Let's begin by dividing the beam into two pieces and assuming that the free body diagram for each piece 
looks like the picture below. 
 
 
 
 
 
 
 
 
 

• Each piece of the beam is called an element and each element possesses two nodes.  Element 1 
has nodes 1 and 2, Element 2 has nodes 3 and 4. 

 
• Each element has a cross section, Ai, length, Li, and modulus of elasticity, Ei (i indicates the 

element number) 
 

• Each node "sees" a force, Fj, a moment, Mj, a slope, θ j, and a displacement, uj, (j indicates the 
node number) 

 
• Nodes 2 and 3 have the same force, same moment, same slope, and same displacement. 

F2  =  F3 
M2  =  M3 
θ2  =  θ3 
u2  =  u3 
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We will use the method of superposition to determine the values of displacement, and slope of each 
node.  We are going to treat each element as if it were a spring and use the formula, Kδ = f.  In Matrix form: 
 





































=



















2

2

1

1

44434241

34333231

24232221

14131211

2

2

1

1

θ

θ
u

u

kkkk
kkkk
kkkk
kkkk

M
f
M
f

 

 
First we will give the left most node, node 1, 1 unit of displacement, and hold all other displacements at 0.0 
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Here's what we have done, from a physical perspective: 
 
 
 
 
 
 
 
 
 
What this picture says is that we can look at the influence of the force, F1 on the slope and displacement, 
and the influence of the moment on the slope and displacement, add the results together, to get the total 
effect--superposition. 
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Now solve these two equations for F1, and M1 
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Now we can finish Element 1 by using the equations of equilibrium: 
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The next column of values in the stiffness matrix can be determined by setting the slope at node 1 equal 
to one unit, and forcing everything else to remain fixed. 
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Now, solve for F2 and M2 using equations of equilibrium 
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Now the stiffness matrix looks like the following: 
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You should finish this problem using superposition and show that column 3 can be determined by setting 
u1, θ1, and θ2 to zero and setting u2 to 1.  Column 4 can be determined by setting θ2 to 1 and all other nodal 
displacements to 0.0.  The final matrix will look like this: 
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This takes care of element 1.  How about element 2?  It turns out the stiffness matrix will look exactly the 
same, but L1 becomes L2, E1 becomes E2 and nodal forces and displacements also assume their new 
indicies (2 and 3). 
 
 
Finite Element software completes this step for each element in the model.  Then the elemental stiffness 
matrices are formed into a single matrix called the Global Stiffness Matrix in a process called assembly. 
 
Once the global stiffness matrix is determined, and nodal loadings applied, the stiffness matrix is "inverted" 
and slopes and deflections are determined.  Following this stage of analysis, a process called "post 
processing" is executed; post-processing uses deflection information to determine stresses. 
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You will recall that this particular problem is described by the following differential equation: 
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E is the beam's modulus of elasticity and I is the second moment of area.  The objective in solving this 
differential equation is to find a function, u(x), that will enable us to find the deflection at any point along the 
beam.   
 
To begin solution of this problem, let's look at the shear and moment diagrams for the cantilevered beam. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At x = 0, or at the left side of the beam, we notice that the shear force is + F, the moment is -FL (Mo), and 
although we did not draw the slope diagram, we know that the slope at the wall is 0.0 .  It is also clear that 
the moment varies along the distance of the beam, unitl it becomes 0.0 at L.   
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V* x is the moment function as it varies from 0 à  L. 
 
Mathematically, we would express the boundary conditions on this problem like this: 
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Moment at the wall is -FL, Mo 
Slope at the wall is 0.0 
Deflection at the wall is 0.0. 
 
We can use this information to solve the differential equation. 
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Knowing that, ( ) 0| 0 ==xxu , then we can show that C2 is 0.0 

And, knowing that 0| 0 ==xdx
duEI , we can show that C1 is 0.0. 

 
So, the solution for u(x) is 
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So we have shown where the solution for deflection of a cantilevered beam comes from--what does this 
have to do with FEA? 
 
The FEA software, regardless of what software it is, does not know what kind of problem you are solving.  
The only thing the software can do is solve differential equations (or minimize functionals).  So, how does it 
work? 


