
Domain-Based Administration of Identity-Based Cryptosystems
for Secure Email and IPSEC

D. K. Smetters and Glenn Durfee
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304

{smetters,gdurfee}@parc.com

Abstract

Effective widespread deployment of cryptographic tech-
nologies such as secure email and IPsec has been ham-
pered by the difficulties involved in establishing a large
scale public key infrastructure, or PKI. Identity-based
cryptography (IBC) can be used to ameliorate some of
this problem. However, current approaches to using IBC
for email or IPsec require a global, trusted key distribu-
tion center. In this paper, we present DNSIBC, a system
that captures many of the advantages of using IBC, with-
out requiring a global trust infrastructure. The resulting
system can be configured to require almost no user inter-
vention to secure both email and IP-based network traf-
fic. We have built a preliminary implementation of this
system in Linux.

1 Introduction

Standards for end-to-end encryption and authentication
of email messages and IP-based communication have
been in place for several years [8, 18]. Implementations
of those standards are provided by most mail clients and
network stacks. For the most part, however, we still
don’t use them. A large reason for this is the difficulty
of managing and distributing keys – of having an authen-
tic copy of your desired communication partner’s public
key when you need it.

Traditional approaches to key distribution in the public
key setting rely on a Public Key Infrastructure, or PKI,
to authenticate the public keys of users and devices rel-
ative to a hierarchical organization of trust. PKIs can be
complex and difficult to set up and manage. Even with a
PKI, you have solved only part of the problem – it only

allows you to determine the authenticity of a user’s cer-
tified public key once you actually have it. But, that user
first has to create a key pair and have it certified, and
you still have to obtain a copy of his certificate before
you can communicate securely with him.

1.1 Identity-Based Cryptography

Identity-Based Cryptography (IBC), originally intro-
duced by Shamir [26], was proposed as a means to
solve this problem. In an identity-based cryptographic
scheme, you don’t have to obtain your communication
partner’s public key or certificate from anywhere – you
already know it. In such a scheme, your public key
is an arbitrary string – e.g. “smetters@parc.com” or
“myhost.parc.com”. If that string is chosen to be some
identity that your communication partner knows, he can
encrypt a message to you using only that string and a
set of global system parameters. You decrypt that mes-
sage using the private key corresponding to your public
identity string. That private key is derived from your
public identity using the global system parameters and a
“master secret” – a global system secret held by a trusted
third party known as aPrivate Key Generator, or PKG.
Given the master secret, the PKG can derive a private
key corresponding to any desired public key or identity
string. As a result, such a system provides automatic key
escrow.

Although identity-based signature schemes have been
known for some time (e.g. [11, 12]), practical and secure
identity-based encryption (IBE) schemes have been de-
scribed only recently [2, 6]. One such IBE scheme, that
of Boneh and Franklin, is based on the Weil or Tate pair-
ing on supersingular elliptic curves [2]. This work has
been used as the basis of several identity-based signa-
ture schemes [3, 16, 23], as well as a number of identity-

based key agreement protocols [4, 5, 14, 25, 27]. Several
of these protocols allow a pair of communicating parties
to agree on a shared symmetric key with no interaction
whatsoever [14, 25].

IBC seems like an appealing way to solve the usability
problems inherent in traditional approaches to key distri-
bution. Not only do you automatically know the public
key of anyone or anything with which you might want
to communicate, without having to look it up anywhere,
but you can encrypt a message to them before that person
has even obtained their private key [2, 26]. If software
support makes it easy to do so, a user receiving an en-
crypted email message seems more likely to obtain the
private key necessary to read it than they might be to go
through the complex steps necessary to get a digital cer-
tificate and provide it to someone who wants to send en-
crypted email to them (see [28] for a prototype of such
a system). Similarly, the noninteractive key exchange
protocols available using IBC have been proposed as a
means to secure network traffic [1].

Unfortunately, systems that provide the full benefits of
traditional IBC – knowing any party’s public key with no
interaction whatsoever – suffer from tremendous scal-
ing and trust management problems. In order to use
your public key in an IBC system, I need to know not
only your identity, but also a set ofsystem parameters
– these include both basic cryptographic parameters like
the choice of an elliptic curve, but also includes the pub-
lic key of the PKG, derived from the PKG’s master se-
cret [2]. In an extreme case, using an IBC-based nonin-
teractive key exchange protocol requires not only that I
know the system parameters associated with your public
key, but that you and I share the same system parameters
– and hence we must both trust a single PKG in posses-
sion of the corresponding master secret.

In general, traditional approaches to IBC assume that
all users will share the same PKG. This means that ev-
eryone knows the global system parameters, and hence
can immediately derive anyone’s public key, but also
requires the establishment of a system of global trust,
where all users obtain their private keys from the same
PKG. The global PKG’s master secret can be distributed
among several centers using threshold cryptography [2]
– if everybody could agree on a set of entities to trust
with such a secret. However, the mere existence of such
a vulnerable global secret – and the resulting system of
global key escrow – is simply unacceptable for most ap-
plications. Additionally, a global private key generator
would be extremely difficult to make work in practice,
as it would have to authenticate the “correct” recipient
of each private key in a global system of identifiers.

To address the latter problem, recent work has pro-
posed mechanisms for constructing IBC systems using
a hierarchically-organized set of PKGs [14, 17]. Un-
fortunately, in some of these schemes, PKGs higher in
the tree can recover the private keys of PKGs lower in
the tree, resulting in a system that has a somewhat eas-
ier time of distributing keys, but still requires global
trust. Even in schemes without escrow, the tree must still
be constructed hierarchically – all the nodes in the tree
above yours must be in place before your keys can be
generated. The resulting system is even more difficult to
implement than a global, hierarchical public key infras-
tructure – something which so far has been notoriously
difficult to establish.

1.2 Our Approach

We would like to take advantage of the usability of IBC
without requiring everyone to participate in a global trust
model. Our goal is to design a system that balances se-
curity and usability in a manner resulting in much wider
deployment of secure email and IP security (IPsec). In
contrast to the approach of Appenzeller and Lynn [1], we
attempt to integrate our approach into existing standards
and software, so as to ease deployment. We design our
trust model to mirror the trust and management divisions
that exist in today’s deployed networks. We emphasize
autoconfiguration and automatic update as much as pos-
sible to minimize practical barriers to use.

Building an IBC system that allows us to manage trust
along appropriate boundaries is simple – we merely have
each such trust domain run their own Private Key Gen-
erator. This means that to communicate securely with a
given party, you must know not only that party’s iden-
tity, but you must obtain the system parameters of their
trust domain. While this isn’t as simple and seamless
as a traditional IBC system, it is considerably simpler
than a traditional PKI, as those system parameters are
shared by an entire trust domain. At worst, it’s equiva-
lent to having to obtain the certificate of the certification
authority (CA) serving a given trust domain, and having
that, being able to immediately derive the public key of
everyone else in that trust domain. It makes the distribu-
tion of private keys within a trust domain considerably
simpler, as the namespace of identifiers is local to the
trust domain, and a smaller population of key recipients
needs to be authenticated. Making such a system easy to
deploy in practice requires appropriate construction of
those trust domains, and the design of software to take
advantage of them.

1.2.1 Bootstrapping IBC with Domain-Based Trust

Currently, user identities for email (email addresses),
and the identities of hosts (names or IP addresses) are
managed at the level of network domains, as described
by the Domain Name System, or DNS. DNS delegates
management of parts of the Internet name space to in-
dividual domains of control. We propose to divide the
responsibility for authenticating those email addresses
and host identities along exactly the same lines, by hav-
ing each DNS domain responsible for creating a set of
IBC system parameters and distributing private keys to
its own users. This is directly analogous to having a
given domain run its own Certification Authority and is-
sue certificates to its users and machines.

Recent security extensions to DNS, known as DNSSEC,
allow a DNS server to digitally sign the responses to
queries, so that they cannot be modified or spoofed [9].
Each DNS server providing DNSSEC services offers up
a KEY record for its domain containing its public key,
signed by the key of the name server above it in the
domain hierarchy. When fully deployed, the DNSSEC
hierarchy will terminate in a root key trusted by all
DNS clients and servers. In the meantime, parts of the
DNSSEC hierarchy can be authenticated using cross-
certification. As DNSSEC-capable name servers are
already capable of providing and authenticating cryp-
tographic data, they have been suggested as the most
practical distribution method for cryptographic keys and
certificates to be used by IPsec, TLS, secure email,
and other protocols [9, 10, 24]. FreeS/WAN, a stan-
dard Linux IPsec distribution, has attempted to use these
mechanisms to bootstrap an approach to “opportunisti-
cally” encrypt all network traffic, by combining distribu-
tion of host IPsec keys in DNS records with records that
indicate what machines can act as “security gateways”
(IPsec termination points) for machines that cannot ter-
minate IPsec themselves [13].

Using DNSSEC to store and distribute a set of authen-
ticated IBC parameters for a domain, retrievable under
the domain entry (e.g. “parc.com”) is a simple exten-
sion of these approaches. However, we suggest that the
resulting combination of IBC and DNSSEC-based pa-
rameter distribution has a number of advantages over a
traditional PKI, even one that uses the DNS as a key dis-
tribution mechanism.

First, it minimizes the amount of information stored in
and retrieved from the DNS. IBC parameter information
is global to the domain. It is generated once, and only re-
generated in the case of master secret compromise. Up-
dating of cryptographic information in the DNS is done

once for the domain, with intermittent additional updates
(e.g. we use a small amount of transient data, a “salt” to
provide revocation of keys through key expiration, see
Section 2.1). This can be done under administrator con-
trol, and doesn’t require either clients or a CA to be able
to publish information to the DNS, as would likely be
necessary if clients put their certificate or key informa-
tion into the DNS.

Second, as parameters (and salt) are global to the do-
main, clients wishing to communicate with multiple par-
ties in the domain (or the same party more than once)
must only pull one copy of the domain’s system param-
eters. These it can cache over time, reducing the load on
the DNS servers.

Third, individual domains can deploy such a system in-
crementally – if a domain does not provide parameter
information in its DNS entry, it obviously does not par-
ticipate. And though DNSSEC is some ways from being
completely deployed, it is designed to allow trust to be
constructed incrementally, subtree by subtree, until the
roots are in place. A system that bootstraps trust from
DNSSEC will grow naturally along with it.

Fourth, client configuration can be dramatically simpli-
fied and automated. Clients don’t have to obtain their
private key from the domain key distribution center un-
til they need it. In the case of email, this means that the
motivation is on the “right foot” – a user having received
encrypted email is interested in reading it, and will go
and get their private key, while a user who wants to send
encrypted email to someone else in a non-IBC system is
hard pressed to get that person to go and get themselves
a certificate [2]. In the case of IPsec, clients can be de-
signed to auto-configure themselves, and automatically
request their private key at installation time. We believe
the more setup steps that can proceed independently, the
simpler the system will be to deploy in practice.

And finally, the fact that we can simply and automati-
cally generate the public key of any party whose domain
participates in the system (and the lack of domain pa-
rameters in the DNS will tell us whether they participate)
means that we can use simpler cryptographic protocols,
and can attempt to automatically secure all of our email
and network traffic.

1.2.2 Overview

In the remainder of the paper, we will present a prac-
tical system for deploying identity-based cryptography
(shown in Figure 1). In Section 2.1, we begin with an

overview of the design issues important in embedding
IBC into existing protocols. In Sections 2.3, and 2.2, we
describe the components of our system. In Section 3,
we describe an email client that uses our approach to
secure mail, and in Section 4, we describe how to use
this system to secure IPsec traffic. Finally, we present
our (in-progress) Linux implementation of this system
in Section 5, and finish with related work and conclu-
sions.

2 System Design

We have designed a system for using domain-based trust
to implement identity-based cryptography. The overall
structure of this system can be seen in Figure 1. Such a
system consists of a number of components: first, a set
of system parameters and a domain master secret, cre-
ated by asetup procedure. Second, a private key genera-
tor, or PKG, that distributes private keys to authenticated
members of the domain. Third, a modified nameserver
capable of providing copies of the system parameters to
communicating peers. And finally, client software capa-
ble of using DNS-based IBC (DNSIBC) to secure com-
munications.

2.1 IBC Setup

The first step in enabling DNSIBC in a domain is the cre-
ation of the domain’s IBC system parameters (labeled
setup in Figure 1). In what follows, we focus on IBC
systems implemented using operations over supersingu-
lar elliptic curves [2], as there are a large number of en-
cryption, signature, and key exchange protocols than can
be used with a single private key pair derived for such a
scheme.1

To specify the domain’s system parameters, we first
specify a set of elliptic curve group parameters (“group-
params”). These consist of the choice of the curve it-
self, the field it is defined over, and a generator point,
referred to asP. These can be considered as analogous
to the group parameters used in standard Diffie-Hellman
systems, whether defined over an elliptic curve or over a
prime field (where the corresponding choice would be of
a prime,p, and a generator,g). Like the group parame-
ters used with Diffie-Hellman schemes, these parameters
can be shared by many domains, and sets of such param-
eters can be predefined by standards bodies for general

1Note that in the presentation here and in what follows, we use
notation common for the mathematics of elliptic curves –P is a point
on a curve,x is an integer drawn from the field over which the curve
is defined, and< xP,yP,xyP> is the elliptic curve equivalent of the
standard Diffie-Hellman tuple< gx,gy,gxy >.

use. This is done, for example, for Diffie-Hellman pa-
rameters for use in IPsec [15], allowing hosts that choose
to use the standard groups to simply transmit short iden-
tifiers in place of the group parameters.

Once thegroup-params have been selected, each do-
main creates its ownmaster-secret, sd, which is a ran-
dom value in a range specified by thegroup-params.
Thegroup-parameters and themaster-secret are used to
derive a corresponding publicdomain-public-key, sdP.
Themaster-secret is used later by the PKG to derive the
private-key corresponding to any identity string,id, by
first converting thatid to a pointQid on the curve using a
hash functionmapToPoint, Qid = mapToPoint(id), and
calculating theprivate-key asSid = sdQid .

The resultingdomain-params consist of:

domain-params := (group-params, domain-public-key)

Themaster-secret must be stored securely for use by the
PKG, while thedomain-params are published publicly
using the DNS, as shown in Figure 2.

Revocation To add the ability to revoke identities in
this system, we add a form of key expiration [2]. In-
stead of using the identityid as the public key of a
user or host, we usesalt‖id, where salt is a random
string long enough to be unlikely to be chosen at ran-
dom again (say, ten bytes), and‖ indicates concatena-
tion. For instance, if yourid wassmetters@parc.com,
and the current salt forparc.com wasOVQpMJJPpgZn,
your public key for this time period would be
OVQpMJJPpgZnsmetters@parc.com. Thesalt is pub-
lished in the DNS along with thedomain-params. When
the domain’ssalt changes, keyholders in the domain
know to automatically contact the PKG to update their
private keys. By using lifetimes in the DNS (see sec-
tion 2.2) to control the interval at which we have mem-
bers of the domain and communicating peers check for
an updatedsalt value, we can control the revocation in-
terval for keys in this system. Because peers will au-
tomatically update their cached copy of this domain’s
system salt, we can easily revoke keys on any schedule
with much lower bandwidth requirements than, say, the
distribution of Certificate Revocation Lists (CRLs).

2.2 DNS

We extend the Domain Name Service [21, 22] to sup-
port publication of thedomain-params andsalt. We do
this by adding two resource record (RR) types to the

setup

DNS

client

peer

master-secret, KeyServer private-key

salt

domain-params, salt

domain-params, salt

IPsecencrypted
email

1.1.1.1.

2. 3.

N.

salt

Figure 1: The architecture of our DNSIBC system. The step labeled “N.” can take place any time after step “1.”
Encrypted email is sent normally: i.e., through a standard mail server, without direct interaction between sender and
recipient.

DNS. These arePARAMS, which encodes thedomain-
params, andPSALT, which encodes thesalt to be used
with these parameters. In this section, we discuss the
format and values of the RR fields associated with the
new RR types.

The NAME field of the PARAMS and PSALT RRs must
be the domain name for which these are thedomain-
params andsalt, respectively. The use of DNS abbrevi-
ated names is allowed (although care must be taken so
that this does not interact poorly with signing of RRs,
discussed below.)

TheTTL field of thePARAMSRR should be set to an inter-
val that adequately protects against compromise of the
master-secret. In particular, if an unauthorized party ob-
tains themaster-secret, she can compute theprivate-key
of any user or machine in the affected domain. If the
master-secret is compromised, use of the IBC system
should be immediately discontinued until a newmaster-
secret has been generated and correspondingdomain-
params have propagated to the DNS system. At this
point, all previousprivate-keys and the originalmaster-
key are now useless to the attacker. One way to guar-
antee this recovery happens quickly is to set theTTL
field of thePARAMS record to an interval short enough to
force frequent updates due toTTL expiration. However,
given the typical size of thePARAMS record (approxi-
mately 286 bytes with standardizedgroup-params and
690 bytes without), and the unlikelihood of themaster-
secret compromise (which is presumably on a closely-
monitored and well-protected machine accessible from
only inside the domain), one can set thePARAMS TTL to
a reasonably long period of time (e.g., on the order of

days).

The TTL field of thePSALT RR should be set to an in-
terval that protects against compromise of an individual
private-key. If a private-key has been compromised, use
of IBC on the compromised machine (or user’s email
account) must be discontinued until a newsalt has been
generated and propagated to the DNS system. Note that
other machines/users may safely continue using IBC-
protected IPsec/email. The use of a newsalt necessitates
(eventual) distribution of a newprivate-key to every ma-
chine/user enrolled in the system. This might place a
heavy load on the key server if the update is performed
all at once; however, an update could be performed in-
crementally, as machines discover they are using ex-
pired salts, or by having severalPSALT records avail-
able for a domain used by disjoint blocks of addresses2.
Since the compromise of an individualprivate-key is
more likely than compromise of themaster-secret, and
the PSALT RR is significantly shorter than thePARAMS
RR, it makes sense to use a much shorter time for the
TTL of the PSALT RR, perhaps on the order of several
hours. We note that even after theTTL of a PSALT or
PARAMS record runs out, it does not necessarily have to
be changed. For efficiency, we suggest keepingPARAMS
andPSALT records unchanged for long periods of time
or until replacement becomes necessary. For the case of
thePSALT, this would be until the occurrence of an ac-
tual key compromise, or several weeks have passed. The
PARAMS could be expected to remain unchanged unless

2For example, thePSALT record could be augmented with a field
indicating it is to be used for all email address starting with letters a–h.
For conciseness, we will not discuss the many interesting variants on
thePSALT field that might arise in such a system.

struct group_params {
big_int p, q;
point_Fp P;

};

struct domain_params {
struct group_params gp;
point_Fp domain_public_key;

};

struct DNS_PARAMS_RR {
unsigned char *NAME;
uint16 TYPE, CLASS;
uint32 TTL;
uint16 RDLENGTH;
uint16 flags; // RDATA start
uint8 protocol;
uint8 algorithm;
struct domain_params *domain_params;

};

Figure 2: Internal format of thePARAMS DNS resource
record and related types.

themaster-secret was compromised.

To simplify implementation, theRDATA (record type-
specific) portion of thePARAMS resource record uses
the same format as that of theKEY RR [9] (see Fig-
ure 4). This record contains fields for key usageflags,
a protocol and analgorithm (see Figure 2). We
suggest using only a subset of theflags possible for
the KEY record: bits 0 and 1 (prohibition of use of the
domain-params for authentication and confidentiality,
respectively), and bit 8 (allowing use ofdomain-params
for IPsec). Theprotocol field, which further specifies
how this key can be used, should allow an additional
value beyond those available in theKEY record: an index
for “IBC”. The algorithm field indicates which basic
IBC system is being used, in this case an index indicat-
ing the use of IBC based on supersingular elliptic curves.

One might notice that instead of creating a new RR
specifically to house thedomain-params, we could have
extended theKEY resource record type. However, we
feel this would be inappropriate for several reasons.
First, DNS servers are only required to handle twoKEY
RRs associated with a DNS name [9]; presumably one
is already used as the DNSSEC signing key for this do-
main, so spending the other on IBC unnecessarily lim-
its further use of theKEY RR type. Second, we wish
to use DNSSEC to verify the integrity of a signature on
the PARAMS record; this will be signed by the domain

parc.com. IN PSALT 0VQpMJJPpgZn
parc.com. IN PARAMS 256 1 1 MIICrgKBgC2c\

33lfS7BexMEzGkWGYcIBPrIH9l5TnE6c06Ifg\
fnZBK1cz/PGrF36Z7n1hrHGFHb0hmmHBZb17a\
YjEG2+MbxvN801DFE6sihKXw0RlLkk5DtuD...

Figure 3: Example zone file containingPSALT and
PARAMS DNS resource records.

KEY, and it would be improper to have oneKEY record
be used to sign aKEY record at the same level. Third, the
domain-params are not a public key, and should not be
treated as such (for the purposes of revocation, select-
ing a TTL, etc.) Placing them in aKEY record encour-
ages confusion in this regard, and is in any case depre-
cated [19].

TheRDATA field of thePSALTRR type consists of simply
the bytes that make up the salt.

2.2.1 DNSSEC Records for IBE

In order to bootstrap trust in a domain’s IBCdomain-
params there must be a way to verify the validity of the
PARAMS and PSALT RRs retrieved from the DNS. We
recommend using DNSSEC [9]. ASIG record should
be added for thePARAMS resource record owned by this
domain. If present, theSIG record must be verifiable us-
ing the domain’s (traditional) cryptographic public key,
which must be available as aKEY record.

2.3 Private Key Generator

In our system, the Private Key Generator (PKG) is a
service that computes an entity’sprivate-key using the
groups-params, themaster-secret, and the client’siden-
tity (which could be an email address or a hostname),
and the currentsalt. The PKG obtains thegroup-params
andmaster-secret from the output of thesetup proce-
dure (see Section 2.1). Thissetup procedure could be
run automatically as part of (PKG) initialization. The
PKG then waits for key retrieval requests from clients.

Initial Client Key Retrieval Perhaps the most diffi-
cult problem in designing a system to easily deploy IBC
is enabling clients to automatically retrieve their keys
with sufficient security. It is very easy to have clients au-
tomatically retrieve their private keys – when a machine
or piece of client software (such as an email program)

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| flags | protocol | algorithm |
+-+
| |
/ domain parameters /
/ /
+-+

Figure 4: The wire format ofRDATA for thePARAMS DNS resource record.

first realizes that it doesn’t have a necessary private key,
e.g. the first time an IPsec-enabled host boots, or the
first time a mail client receives IBC-encrypted mail for
a particular user, it attempts to retrieve that key from the
domain’s PKG. While it would be very easy to create a
system to allow a user to securely retrieve that key, for
example through a password-protected web site linked
to the domain’s user database, we would like to enable
automated key retrieval.

A host wishing to automatically retrieve itsprivate-key
must first find the domain PKG. This can be done, for
example, through the use of a standard configuration file
general to the domain, or by using a designated record
similar to anMX record in the domain’s internal DNS
to indicate the host acting as the PKG. Then, the client
must create an encrypted and preferably authenticated
connection to the PKG – encrypted to protect itsprivate-
key from eavesdroppers, and authenticated to make sure
that an intermediary is not attempting to hijack its keyen
route. Interestingly, a rogue host attempting to pretend
to be the PKG is no more than an nuisance, as the client
can verify the authenticity of theprivate-key it receives
simply by encrypting and decrypting a message to itself.

In practice, we simply use SSL/TLS to secure communi-
cation between the client and the PKG. The PKG can use
a traditional server certificate authenticated through any
number of standard means –e.g. traditional DNSSEC
mechanisms for distributing keys, certificates, or CA
keys; an internal domain PKI; an external trusted CA;
a modified IBC-based version of SSL, or it could even
use a self-signed certificate if the internal infrastructure
is deemed sufficiently resistant to spoofing attacks.

More importantly, the PKG must be able to authenticate
that the client requesting the key for a certainid is ac-
tually the client that should have thatid. There are a
number of ways of accomplishing that. At one extreme,
clients could be equipped with private keys and certifi-
cates, which they use to authenticate themselves to the

PKG. Clients can also be identified using any secrets
they already share with the domain (e.g.user passwords,
or machine domain credentials). It would also be very
simple to design mechanisms that use temporary client
passwords or “cookies” provided to clients through user
registration or administrator action, that they can use to
authenticate themselves to the PKG. More practically,
simple mechanisms that seem inherently insecure when
used globally may be more than sufficient when used
inside a trust domain, especially when combined with
the ability to verify over time that the correct client re-
ceived the correct key. In the case of email, this could
mean using the ability of a user to receive mail at a par-
ticular address to be an indicator that they really are the
valid “owner” of that address. Similarly, if the PKG is
only allowed to communicate with hosts within a trusted
domain (say, behind a firewall on a trusted piece of the
network) that in and of itself may be sufficient to authen-
ticate host identity.

Client Key Update Clients must receive newprivate-
keys when thesalt (and rarely, thedomain-params) are
updated (see Section 2.1). Clients can useDNS TTL val-
ues to automatically determine the intervals at which
they ought to check for newsalt or domain-params val-
ues (see Section 2.2). While client key updates can obvi-
ously be performed in the same manner as initial client
key retrieval, some optimization is possible when only
thesalt has changed. In such a situation, a client whose
old private-key has not been compromised can be sent
its newprivate-key encrypted under its oldid, which it
can use its oldprivate-key to decrypt. The security of
the system is maintained as long as the initialprivate-
key exchange was secure.

We note that clients will want to keep a list of several
previousprivate-keys and associatedsalts. This is nec-
essary to to decrypt email which was sent before, but not
read until after, the domain underwent adomain-params
or salt change.

3 Secure Email Client

In this section, we describe our approach to provid-
ing secure email using domain-based administration of
identity-based cryptography. Suppose a sender Al-
ice wishes to send email to a recipient, say Bob with
email address “bob@parc.com”. Alice’s email client
first retrieves from the DNS thePARAMS and PSALT
resource records forparc.com. These decode into a
domain-params and salt, respectively. Alice then
uses identity-based encryption [2] with thedomain-
params and “salt‖bob@parc.com” as the public key to
encrypt a symmetric cipher key. This is in turn used
to encrypt (and MAC) the email. Alice sends the en-
crypted email, along with thesalt and a digest of the
domain-params used to Bob’s mail server (which was
presumably learned from aMX record in the same DNS
query.) Note that Bob is not involved in this process.
Indeed, up until the encrypted email is sent, Alice has
no need to communicate with any machine inparc.com;
the DNS will cache all appropriate parameters until their
TTLs run out.

Bob’s email client then pulls the encrypted email into his
mailbox, checks that the digest of thedomain-params
matches its current knowledge of thedomain-params,
and pulls from a private store theprivate-key corre-
sponding to thesalt encoded in the message. If either
thedomain-params digest fails to match, or no entry ex-
ists for thesalt used in the message, the client asks the
DNS for the latestdomain-params and salt to see if it
needs an updatedprivate-key. If so, it contacts the PKG
for a newprivate-key (using SSL with encryption and
mutual authentication); otherwise, it rejects the email as
invalid. It then decrypts the message and presents it to
Bob.

4 IPsec Client

We would like to use identity-based cryptography to se-
cure IP-based network traffic. Previous work has sug-
gested the use of non-interactive identity-based key ex-
change protocols to secure traffic between hosts in the
same IBC trust domain [1], but did so by inventing a
new set of protocols. We’d prefer to use IBC in a way
that works easily with existing standards and software,
and supports hosts using different sets of IBC parame-
ters.3 This means using IBC to secure IPsec [18].

3We are primarily interested in hosts using domain-based parame-
ters, but the details of how we incorporate IBC into IPsec should be
generic across almost any IBC trust distribution mechanism.

IPsec is an IETF standard protocol providing mecha-
nisms for encrypting and authenticating IP packets. This
protection is provided using algorithms and symmetric
keys negotiated using the Internet Key Exchange proto-
col, or IKE [15, 20, 24].4 Clients using IPsec generally
implement IKE in a user-space daemon, which negoti-
ates security associations (SAs) and keys with the corre-
sponding IKE daemon on the hosts with which it wishes
to communicate securely. The negotiated SAs and keys
are then provided to the IPsec implementation in the net-
work stack, which uses them to secure IP packets.

Using IBC to secure IPsec traffic means describing IBC-
based key exchange protocols to be used as part of IKE,
and implementing them in the IKE daemon. It does not
require modification to the network stack components in
the kernel. Luckily, it turns out that IBC can be eas-
ily accommodated in the existing IKE protocol, with no
change to packet structure or protocol flows.

4.1 Structure of IKE

IKE is defined as a particular instantiation of the Inter-
net Security Association and Key Management Protocol
(ISAKMP [20]). This is a very complex family of proto-
cols, designed to provide negotiability of algorithms and
parameters, optional identity protection for the partici-
pating parties, and a number of authentication options.

IKE is divided into two phases.Phase 1is used by two
peers to establish a secure, authenticated channel over
which to communicate; this is referred to the ISAKMP
Security Association (SA). DuringPhase 2, those peers
go on to negotiate Security Associations to be used by
IPsec or other services. Phase 2 traffic is secured us-
ing the symmetric keys agreed on as part of the SA ne-
gotiated in Phase 1, and therefore is unchanged in our
scheme. As part of authenticating each other during
Phase 1, the two parties exchange their “identities”, in
one of several forms, e.g. fully-qualified (DNS) domain
names (FQDN), or IP addresses.

Phase 1can be accomplished in two ways, described as
“modes”. Main modeprovides identity protection for
the communicating parties by protecting the identifying
information they send to each other under either a key
derived from an ephemeral Diffie-Hellman exchange, or
a public key that they have previously exchanged.Ag-
gressive modeis designed to be more efficient, and in

4At this writing, IKEv2 is currently under development. In order
to experiment with our approach using current software, we have fo-
cused our efforts on IKE. Similar modifications should be possible
with IKEv2.

Initiator Responder

xiP −→
←− xrP

Ki = ê(Si , xrP)ê(Qr , xisrdP)
Kr = ê(Sr , xiP)ê(Qi , xrsidP)
K = Ki = Kr = ê(xrSi + xiSr , P)
Kpsk= hash(K, xixrP)

Symbols are defined as follows:

P,q subgroup generator and subgroup, part of domain’sgroup-params
xi initiator’s ephemeral elliptic curve Diffie-Hellman private value,xi ∈R Zq

xiP initiator’s ephemeral elliptic curve Diffie-Hellman public value
xr ,xrP analogous values for responder

sid ,Pid = sidP initiator’s domain’smaster-secret anddomain-public-key
srd ,Prd = srdP responder’s domain’smaster-secret anddomain-public-key

Qi ,Qr mapToPoint of the initiator and responder’s identities, i.e.,Qi = H(ID i),Qr = H(IDr)
Si ,Sr initiator and responder’s private keys,Si = sidQi ,Sr = srdQr

ê an admissible pairing function, ê(point1, point2)
Ki ,Kr method used by initiator and responder, respectively to compute the shared key

K resulting shared key computed by both parties
Kpsk final shared session key without key escrow

Figure 5: Identity-based key exchange algorithm using differentdomain-public-keys but the samegroup-params [5].

general does not provide identity protection – partici-
pants’ identities are sent in the clear as part of their first
exchanges.5

Finally, Phase 1 (both main and aggressive modes) can
be authenticated using one of four protocols: signature-
based authentication, two forms of authentication using
public key encryption (both of which do provide identity
protection in aggressive mode), and authentication using
a pre-shared key.

All components of IKE are designed to support a variety
of cryptographic algorithms, key lengths, and parame-
ters. Acceptable choices for these variables are listed by
the initiator inproposalpayloads, as part of the first se-
curity association (SA) negotiation message it sends to
the responder; the responder replies with the single pro-
posal of its choice. This extensibility allows us to incor-
porate IBC seamlessly into Phase 1, simply by identity-
based algorithms as alternatives in these proposal pay-
loads, as long as they can fit into the flows used by IKE’s

5IKE uses two other “modes” –quick modeis what is used to per-
form Phase 2 key exchanges, andnew group modecan be used after a
Phase 1 exchange to change the cryptographic group used by the par-
ticipants. As cryptographic groups can be negotiated during Phase 1,
we present our discussion of group management in that context, and
do not discuss either of these modes further.

three authentication protocol types. In the next section,
we show how to map domain-based IBC onto each of
these authentication protocols.

4.2 IBC-Based IKE

Using IBC in the signature and public-key based authen-
tication modes for IKE Phase 1 is extremely straightfor-
ward. It will work even if the participants come from dif-
ferent domains, using unrelateddomain-params to issue
private keys. All that is required is to select an identity-
based signature algorithm (e.g. [3, 16, 23]), and/or an
identity-based encryption algorithm (e.g. Boneh and
Franklin’s IBE algorithm [2]). Given the selection of
appropriate algorithm identifiers and a fixed format in
which to exchange the resulting encryptions and signa-
tures, these can be dropped directly into the standard
protocol flows provided by IKE [15].

When using identity-based cryptography, the authentic-
ity of a peer’s public key is given merely because they
prove possession of the private key corresponding to
a given identity (sent by the peer as part of IKE, or
known a priori), relative to the public system parame-
ters of the domain that they claim to be a part of. As a
result, the optional IKE messages provided for the ex-

change of certificates can be omitted. Additionally, all
of IKE’s key exchange protocols can provide perfect for-
ward secrecy (PFS) by generating session keys not from
long-term cryptographic secrets (e.g. IBC private keys),
but instead using an optional ephemeral Diffie-Hellman
key exchange authenticated by those long-term secrets.
Combining perfect forward secrecy with IBC automati-
cally avoids the key escrow facilities present in identity-
based systems.

4.2.1 IBC and Pre-shared Keys

If the domain-params of the two parties are related, we
have another option. At the limit, if the two parties be-
long to the same domain (i.e. have the samedomain-
params – the samegroup-params and domain-public-
key), and they know each others’ identitiesa priori, they
can use noninteractive IBC-based key exchange proto-
cols to establish a shared secret key without sending any
messages at all [14, 25]. This approach is appealing
(e.g. [1]), but only applicable to members of the same
security domain, and results in a key that is subject to
escrow. In practice, hosts using IKE to establish secu-
rity associations already have to exchange a number of
preliminary messages,e.g.nonces for freshness, propos-
als for choices of algorithms, or keying information for
PFS. Therefore, they may not be able to take best ad-
vantage of the noninteractive nature of these protocols.
Additionally, the hosts involved, the responder in par-
ticular, may not know the other’s identitya priori un-
less it is available as the IP address in current use, or
a hostname available through reverse DNS. While these
noninteractive protocols can be slightly more computa-
tionally efficient than other approaches to using IBC, the
narrow set of circumstances in which they can be used,
and the potential difficulty in determining whether those
circumstances actually apply, make them less appealing.

If the group-params of the two parties are the same, re-
gardless of whether theirdomain-public-keys are differ-
ent, then they can use a key exchange protocol similar to
(but slightly less efficient than) the noninteractive proto-
cols described above [4, 5]. This would happen if they
belonged to different domains, and those domains used
the same choice from among the standard sets ofgroup-
params. This protocol is illustrated in Figure 5. The
resulting protocol avoids the shortcomings of the nonin-
teractive protocols – it is applicable to hosts from differ-
ent domains, and does not suffer from key escrow. The
resulting protocol is effectively a pre-shared key proto-
col that uses additional elliptic curve Diffie-Hellman in-
formation in the computation of the session key. These
additional Diffie-Hellman values are directly analogous

to the Diffie-Hellman values used in IKE to provide PFS
(and in fact do act here to provide PFS), and can be ex-
changed in the same key exchange (KE) message that
standard Diffie-Hellman values would be. The resulting
protocol fits neatly into IKE’s pre-shared key authenti-
cation method, and is illustrated in Figure 6.

The only limitation of the IKE pre-shared key protocol
in general is that the two peers do need to know each
other’s identities – whether they are using IBC (so they
can compute the key) or share a traditional static key (so
they know which key to use). That means that either
they must use aggressive mode so that the identities are
exchanged in the first set of messages, or the initiator
must know the identity of the responder, eithera priori
or because the responder’s identity is either its IP address
or a hostname available through reverse DNS lookup.

To use IBC in PSK mode, both peers must know that
they are using the same IBCgroup-params. To achieve
this, they exchange information about thegroup-params
in the proposal payloads they use during SA negotiation
to suggest the use of PSK. IKE provides standard mech-
anisms for exchanging group information in the pro-
posal payloads, which were designed originally to iden-
tify the Diffie-Hellman groups used for achieving PFS.
The same approach can be used to identify IBCgroup-
params, and supports both the description of arbitrary
group-params and the use of short identifiers that indi-
cate the use of commonly used standard sets ofgroup-
params. Such standardized sets of parameters are used
by most hosts for Diffie-Hellman exchanges in IKE, and
we anticipate that such standardgroup-params would be
used by most domains in DNSIBC.

5 Implementation

We have built a preliminary version of this system un-
der Linux. Our implementation takes advantage of ex-
tensive DNSSEC support present in both the standard
implementation ofbind, the Unix DNS server program,
and inpluto, the IKE daemon used by Free S/WAN, the
most common IPSEC implementation for Linux.

5.1 IBC Libraries

For our initial implementation we wrote a 100%-Java
implementation of the low-level field, elliptic curve, and
Tate pairing operations necessary to perform identity-
based cryptography. This work is based on the C imple-
mentation of identity-based encryption available at [28].
Our Java library is used by our PKG server and email

Initiator Responder

HDR, SA,xiP, Ni , ID ii −→
←− HDR, SA, xrP, Nr , ID ir , HASHR

HDR*, HASHI −→

Keys and authentication values used in protocol are computed as follows:

SKEYID = prf(Kpsk, Ni || Nr)
HASHI = prf(SKEYID, xiP || xrP || CKY-I || CKY-R || SAi || ID ii)
HASHR = prf(SKEYID, xrP || xiP || CKY-R || CKY-I || SAi || ID ir)

Symbols are as in Figure 5, with additional symbols defined as follows:

HDR ISAKMP header
nxiP,xrP as in Figure 5, sent in an ISAKMP KE payload

HDR* ISAKMP header, payload encrypted underxixrP (also used in computation ofKpsk)
SA SA negotiation payload with one or more proposals from initiator, one choice from responder

Ni ,Nr initiator and responder nonces
HASHI ,HASHR initiator and responder hashes

prf(key,msg) keyed pseudorandom function
CKY-I ,CKY-R initiator and responder cookies, respectively

SAi the body of the entire SA payload sent by the initiator

Figure 6: Identity-based version of IKE’s pre-shared key authentication protocol. Aggressive mode is illustrated here,
main mode is similar.

client. We are working to complete a C port of our li-
brary for use in our IKE implementation.

5.2 DNS Support

We have modified a DNSSEC-compliant version of the
Unix name server program, BIND, to support the distri-
bution of signed parameter and salt records, as shown in
Figure 4. These parameters are initially inserted in the
DNS during thesetup phase of the PKG, and are updated
as necessary.

The PARAMS resource record type is implemented as a
modifiedKEY record, with RR type 44. ThePSALT re-
source record type is implemented as a modified text
(TXT) record type, with RR type 45.

5.3 Private Key Generation Service

In a fully deployed system, there are many ways to im-
plement a PKG that provide different amounts of auto-
configuration and different levels of protection on the
domain master secret. In our implementation, we have
chosen to maximize ease of use and simplicity of setup,
in order to encourage deployment.

Our PKG is a standalone program written in Java. On

first configuration of a domain (or re-keying of an ex-
isting domain), the PKG runs asetup sub-program that
allows an administrator to select one of the standard sets
of domain parameters (see Section 2.1) or to generate
her own. The administrator also indicates how the mini-
mum interval permissible before compromised keys can
be revoked; this is controlled by the salt lifetime (see
Sections 2.1,2.2). Thesetup program then creates a mas-
ter secret and initial salt, and stores both these and the
system parameters in two files: one appropriate for use
by the PKG service, and another suitable for incorporat-
ing into a DNS zone file. This latter step could also be
implemented using DNS dynamic update.

The PKG service then starts on a machine inside the do-
main network. It listens for connections on a known
port (5599), and secures them using SSL/TLS, using a
self-signed certificate (obtained from Java’skeytool)
that was previously distributed to clients. Clients con-
nect to the service to obtain their keys either on first
initialization, or on change of salt. Authentication of
clients is done using the simple “in-vs-out” determina-
tion described in Section 2.3, based on the desired iden-
tity (email address or FQDN) provided by the client. Pri-
vate keys, parameters, and the current salt are returned
to clients as XML-encoded data protected by the SSL
tunnel. Clients then store their new private keys in the
location and manner appropriate to them.

To supportsalt updating, the currentsalt is passed either
on the command line or in a configuration file. Updating
the PKG to issueprivate-keys derived from the new salt
is a simple matter of restarting the PKG.

5.4 Email Client

As a preliminary proof of concept, we have implemented
a standalone mail client in Java that can send and re-
ceive email encrypted with IBE using domain parame-
ters pulled from a DNS server modified as above.

To send encrypted email, our client uses thednsjava
package [29], which we modified to accept and parse
the newPARAMS andPSALT DNS resource records. Our
client encrypts the message using our Java IBC libraries,
encodes it as an XML string, and sends it to the recipi-
ent’s mail server using thejavax.mail package.

Upon receiving the first encrypted email message, our
client pulls the currentsalt and its ownprivate-key from
the PKG and stores them in a keystore in the local
filesystem. On subsequent encrypted email messages
received, the client queries the PKG for the latest salt
if the currentsalt’s TTL has expired; if thesalt changes,
it requests a newprivate-key. In our implementation,
the domain-params are included in theprivate-key, so
there is no need to perform a separate check for changed
domain-params.

We note that decryption of email is completely transpar-
ent to the user: no interaction whatsoever is required pull
keys and decrypt messages.

In future work, we would like to incorporate support
for domain-based IBC parameters into the existing IBE-
based plugins for Outlook and Eudora [28].

5.5 IKE Client

The basis of our initial implementation of an IBC-
enabled IKE daemon is a modified version ofpluto,
the IKE daemon provided as part of FreeS/WAN [13].
This implementation was chosen because FreeS/WAN
is widely used under Linux, and already provides exten-
sive support for retrieving public keys from DNSSEC.
As pluto does not provide complete support for
use of public-key encryption to authenticate IKE ex-
changes, we are concentrating on implementing the
IBC signature-based and preshared-key based modes de-
scribed in Section 4. Again, our modifiedpluto is de-
signed for autoconfiguration, requesting its private keys

as necessary from the PKG the first time it runs, and up-
dating them on expiration of the domain’ssalt.

We use the fully-qualified domain name FQDN to iden-
tify IPsec hosts, because it allows us to easily support
IBC-based IPsec to hosts that use DHCP to obtain their
addresses, even if those hosts are currently roaming out-
side their home domains (a “road warrior” configura-
tion). For those modes of IKE where the responder does
not send the initiator their identity before it is needed to
derive their public key (e.g. both modes authenticated
with public key encryption, and main mode authenti-
cated with pre-shared keys), the initiator must already
know the responder’s identity, or be able to use reverse
DNS on their IP address to determine their identity. This
is not an extreme limitation, as you frequently know with
whom you are initiating a communication with. If it is
an unacceptable limitation, an IP address can be used as
a host’sid without change to any of the above protocols.

6 Related Work

While the value of identity-based encryption for secur-
ing email has been recognized for some time [2], only
recently have other uses for IBE, and IBC in general,
begun to be explored. Much of this work has been at the
level of cryptographic primitives, focusing on identity-
based signature schemes ([3, 16, 23]) and key exchange
protocols ([5, 25, 27]). While much of the work on
identity-based cryptography has focused on the model
where there is one global trust infrastructure, and one
trusted IBC key generator, more recent work has begun
to describe primitives that work with less restrictive trust
models. This began with work on hierarchical organiza-
tions of IBC trust centers [14, 17], and has continued
with the design of protocols which work between users
in different trust domains that share some of their math-
ematical parameters [4, 5]. We have been able to make
use of this latter work in our own (see section 4.2.1).

Appenzeller and Lynn [1] have suggested using the non-
interactive identity-based key exchange protocols sug-
gested by Sakai et al. and others [14, 25] to secure net-
work traffic. While their work is very much in the spirit
of ours, it suffers from a number of critical limitations.
First, it will only support communication between hosts
in the same IBC trust domain. As we note in the intro-
duction, a global IBC trust system is not a realistic de-
ployment scenario. Second, it is a non-standard, special-
purpose protocol. As such, it has not been analyzed in
any detail, and has no deployment support. In contrast,
our approach is to support communicating peers who do

not belong to the same trust domain, and to enable IPsec
to use IBC to secure network traffic. While IPsec it-
self is not a perfect protocol, it is extremely widely de-
ployed, studied and supported, and is subject continuing
improvement. Therefore, the general approach to IBC-
enabled IPsec presented here seems the most effective
way to leverage IBC’s deployment advantages to secure
network traffic.

7 Advantages Over Alternative
Approaches

We believe that our approach offers a number of ad-
vantages over existing methods for key distribution to
secure email and network traffic. In particular, we be-
lieve that our scheme, with its emphasis on autoconfigu-
ration, makes it simple enough to deploy these technolo-
gies that they could begin to see much more widespread
use. In this section, we compare DNSIBC to alternative
approaches.

7.1 Distribution of Trust

An important feature of DNSIBC is the idea of domain-
based trust. This is in contrast to standard IBC ap-
proaches requiring the establishment of a global trust
system [2, 1], which engenders a tremendous manage-
ment problem – who gets to manage such a system, even
if it is distributed, and how do they authenticate requests
for private keys – and results in a facility for global key
escrow and key compromise.

Our approach is based on a hierarchical distribution of
trust, similar to that used by traditional PKIs and hierar-
chical IBC schemes [14, 17].6 In contrast to traditional
PKIs, however, our approach links its hierarchical orga-
nization directly to that of the DNS, rather than having
organizations create PKI nodes as a function of their in-
ternal organizational structure. Using a domain-based
approach, whether for IBC or even a traditional PKI, has
the advantage that the things we are intending to authen-
ticate are email senders and network hosts, whose iden-
tities derive directly from domains as structured in the
DNS. This approach also dramatically simplifies the task
faced by someone outside of a given domain who wishes
to communicate securely with someone inside that do-
main, by making it easy for them to find out whether or
not there is a cryptographic trust system in place (e.g.
IBC system or PKI) in that domain, and to know where
to look for credentials in that trust system.

6See Section 1.1 for discussion of the shortcomings of current hi-
erarchical IBC schemes.

A domain-based approach also eases autoconfiguration
and system setup, both for the system administrator, and
the end user. If basic credentials for securing email and
network traffic are organized according to the domain,
a simple default implementation of a system to cre-
ate and manage such credentials can be provided along
with the other tools used to manage a domain, much as
DNSSEC tools now come along with the name server,
bind. Domains with more sophisticated security needs
and resources can replace these simple implementations
with something more complex, but they may be good
enough for many domains that currently find themselves
unable to set up and manage a PKI from “scratch”. A
domain-based system which uses DNSSEC to root its
trust has the added advantage that it removes yet another
energy barrier to deployment. Although it is rolling out
slowly, there are very good practical reasons for full de-
ployment of DNSSEC. Trust infrastructures that inherit
from DNSSEC (e.g. by using your domain or zone’s
DNSSEC keys to sign and hence authenticate your do-
main IBC parameters) can take advantage of this mo-
mentum, and are therefore much easier to deploy in prac-
tice than setting up yet another trust hierarchy whose or-
ganization mirrors that of the DNS.

7.2 Use of Identity-Based Cryptography

We have argued strongly above for the practical advan-
tages of domain-based, standardized trust systems. Why,
then should we implement such a system with IBC,
rather than say, having each domain directly certify the
keys [9] or digital certificates [10] of end-entities with
DNSSEC, and distribute them through the DNS? Or per-
haps have an LDAP server running which maintains a
list To see the advantages of IBC in these situations, it is
illustrative to focus on the clients – IBC has its strongest
advantages there.

7.2.1 Versus Storing Certificates in DNS

Why use IBC, rather than distributing keys or certifi-
cates via the DNS? Distribution of a domain root cer-
tificate via the DNS would give us a domain trust model
similar to DNSIBC, and would make it easy for clients
from different domains to find the trust root for their
desired communication partner. We could even, in the
extreme, automate a domain’s certification authority so
that clients (email users and network hosts) could au-
tomatically request certificates when they needed them.
Such a system is actually currently implemented in
Microsoft Windows 2000TMActive Directory-based do-
mains that run a Microsoft Certification Authority [7].

Machines belonging to the domain can be configured to
automatically request an IPsec certificate when they first
join the domain, and that certificate is stored in Active
Directory, which also can be used to store and distribute
user email certificates. That particular approach is lim-
ited to a particular vendor’s client and server software,
and limits access to the stored certificates to members of
the domain, but it could obviously be generalized.

We suggest a number of reasons why IBC might be a
better approach. First of all, it minimizes the number of
interacting parties in the system, and in particular, the
number of parties that need to update the DNS zone in-
formation. Using IBC, domain parameters need to be
made available by the DNS, but no per-client informa-
tion needs to be there. In a certificate-based approach,
each client needs to place their certificate information
into the DNS. An IBC approach also dramatically re-
duces the bandwidth required to access peers’ credential
information. To communicate with any number of peers
in a given domain, I only need to obtain that domain’s
parameters once per revocation interval. I can then com-
municate securely with any email user in the domain, or
any domain host, for which I know an address. I can also
cache that information and make it available to a pop-
ulation of querying hosts using standard DNS caching
software.

Another advantage of this approach is that using it, I can
communicate securely with any host or email user whose
address I know – but only those whose addresses I know.
If every user in a domain has their email address directly
represented in the DNS in the form of their digital cer-
tificate, “fishing expeditions” to find user identities or
the distribution of hosts become much easier.

And finally, this approach preserves the appealing use
model of IBC. I can send encrypted email to a user that
has not yet bothered to get the private key necessary
to decrypt it, or even perhaps to install the software or
plug-in necessary to support IBC. Having received such
an encrypted email, that user is then considerably more
motivated to perform the necessary steps to decrypt it,
after which he will continue to seamlessly participate in
the system. Similarly, it becomes possible to support
both autoconfiguration of IPsec hosts who can retrieve
their own keys as part of their setup process, and seam-
less IPsec termination by trusted proxies provided by the
domain for devices not capable of terminating IPsec on
their own.

7.2.2 Versus Dynamic Certificate Generation

Lastly, we might consider using instead a system with
dynamic or “lazy” certificate generation. An LDAP cer-
tificate server could be set up which, if a user or host
already has a certificate, returns it. If not, it generates
a key pair, makes the certificate available to the outside
world, and keeps the private key to be later transmitted
to the user or host.

Our IBE-based approach has several advantages over a
system such as this. First, in IBE, the process of generat-
ing a user’s private key is decoupled from the generation
of their public key (which is, of course, just their iden-
tity.) This allows us to introduce an “air gap” in between
the private key generator and the outside world: the pri-
vate key generator need only be accessible by users or
machines within the domain. In contrast, our hypothet-
ical LDAP certificate server, which is on the outside of
a domain’s firewall, must maintain connectivity with the
private key generator at all times, introducing a possible
path for an attacker to the private key repository.

Furthermore, this LDAP certificate server must either
validate requests or generate key pairs for every request
that is made. For instance, the LDAP server either main-
tains an up-to-date list of email addresses, which an at-
tacker could then quickly probe; or, it generates key
pairs for every requested email address, which opens up
vulnerability to denial-of-service by flooding the server
with bogus requests. In our IBE-based approach, no
such attacks are possible.

Lastly, a major strength of integrating identity-based en-
cryption parameters into the Domain Name Service is
the propagation and redundancy the DNS provides via
caching. In our hypothetical LDAP system, a single
service must be contacted in order to send encrypted
email to a user in a domain. In our scheme, the identity-
based encryption parameters for that domain propagate
through the DNS and can be cached locally.

8 Conclusions

We have presented an approach to protecting email and
network traffic using identity-based cryptography and
domain-based trust. We think that this system provides
a simple and easy way to establish widespread support
for secured communication, through its thorough sup-
port for autoconfiguration, and identity-based cryptog-

raphy’s novel solution to the key distribution problem.
We have built an initial implementation of this system
in Linux as a proof of concept of its effectiveness and
usability.

Acknowledgments

The authors would like to thank the referees for their
many helpful comments.

References

[1] G. Appenzeller and B. Lynn. Minimal overhead IP se-
curity using identity-based encryption. Submitted for
publication,http://rooster.stanford.edu/~ben/
pubs/ipibe.pdf.

[2] D. Boneh and M. Franklin. Identity-based encryption
from the Weil pairing. InProc. CRYPTO 01, pages 213–
229. Springer-Verlag, 2001. LNCS 2139.

[3] J. Cha and J. Cheon. An identity-based signature from
gap diffie-hellman groups. http://eprint.iacr.

org/2002/018.
[4] L. Chen, K. Harrison, N. P. Smart, and D. Soldera. Ap-

plications of multiple trust authorities in pairing based
cryptosystems. InProceedings of Infrastructure Secu-
rity: InfraSec 2002, pages 260–275. Springer-Verlag,
2002. LNCS 2437.

[5] L. Chen and C. Kudla. Identity based authenticated key
agreement from pairings.http://eprint.iacr.org/
2002/184.

[6] C. Cocks. An identity based encryption scheme based on
quadratic residues. InCryptography and Coding, pages
360–363. Springer-Verlag, 2001. LNCS 2260.

[7] J. de Clercq. PKI comes of age.Windows & .NET Mag-
azine, pages 47–53, May 2002.

[8] S. Dusse, P. Hoffman, B. Ramsdell, L. Lundblade, and
L. Repka. S/MIME Version 2 Message Specification.
IETF - Network Working Group, The Internet Society,
March 1998. RFC 2311.

[9] D. Eastlake.Domain Name System Security Extensions.
IETF - Network Working Group, The Internet Society,
March 1999. RFC 2535.

[10] D. Eastlake and O. Gudmundsson.Storing Certificates
in the Domain Name System (DNS). IETF - Network
Working Group, The Internet Society, March 1999. RFC
2538.

[11] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs
of identity. Journal of Cryptology, 1(2):77–94, 1988.

[12] A. Fiat and A. Shamir. How to prove yourself: practi-
cal solutions to identification and signature problems. In
A. M. Odlyzko, editor,Proc. CRYPTO 86, pages 186–
194. Springer, 1987. Lecture Notes in Computer Science
No. 263.

[13] Free S/WAN Project. Free S/WAN.http://www.
freeswan.org.

[14] C. Gentry and A. Silverberg. Hierarchical ID-based
cryptography. InAdvances in Cryptology - Asiacrypt
2002. Springer-Verlag, 2002.

[15] D. Harkins and D. Carrel.The Internet Key Exchange
(IKE). IETF - Network Working Group, The Internet
Society, November 1998. RFC 2409.

[16] F. Hess. Exponent group signature schemes and effi-
cient identity based signature schemes based on pairings.
http://eprint.iacr.org/2002/012.

[17] J. Horwitz and B. Lynn. Toward hierarchical identity-
based encryption. InProc. EUROCRYPT 02, pages 466–
481. Springer-Verlag, 2002. LNCS 2332.

[18] S. Kent and R. Atkinson.Security Architecture for the
Internet Protocol. IETF - Network Working Group, The
Internet Society, November 1998. RFC 2401.

[19] D. Massey and S. Rose.Limiting the Scope of the KEY
Resource Record. IETF - Network Working Group, The
Internet Society, December 2002. RFC 3445.

[20] D. Maughan, M. Schertler, M. Schneider, and J. Turner.
Internet Security Association and Key Management Pro-
tocol (ISAKMP). IETF - Network Working Group, The
Internet Society, November 1998. RFC 2408.

[21] P. Mockapetris.Domain Names – Concepts and Facili-
ties. IETF - Network Working Group, The Internet So-
ciety, November 1987. RFC 1034.

[22] P. Mockapetris.Domain Names – Implementation and
Specification. IETF - Network Working Group, The In-
ternet Society, November 1987. RFC 1035.

[23] K. Paterson. ID-based signatures from pairings on ellip-
tic curves.http://eprint.iacr.org/2002/004.

[24] D. Piper.The Internet IP Security Domain of Interpreta-
tion for ISAKMP. IETF - Network Working Group, The
Internet Society, November 1998. RFC 2407.

[25] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosys-
tems based on pairing. InProceedings of the Symposium
on Cryptography and Information Security (SCIS 2000),
Okinawa, Japan, January 2000.

[26] A. Shamir. Identity-based cryptosystems and signature
schemes. In G. R. Blakley and D. C. Chaum, editors,
Proc. CRYPTO 84, pages 47–53. Springer, 1985. Lecture
Notes in Computer Science No. 196.

[27] N. Smart. An identity based authenticated key agreement
protocol based on the weil pairing.Electronics Letters,
38:630–632, 2002.

[28] Stanford Applied Cryptography Group. IBE secure e-
mail. http://crypto.stanford.edu/ibe.

[29] B. Wellington. dnsjava: An implementation of DNS in
Java.http://www.xbill.org/dnsjava/.

