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Abstract

Deploying wireless sensor networks has been recognized as
one of the effective and cost-efficient ways to defend remote bar-
rier regions such as international territorial borders. It has also
been demonstrated recently that, by introducing sensor mobility
into the wireless sensor network, the network coverage perfor-
mance can be greatly improved. In this paper, we employ a game
theoretic approach to study the problem of defending against bar-
rier intrusions with mobile sensors, and demonstrate the equilib-
riums between barrier intrusions and sensor movement strate-
gies in both non-obstructed and obstructed barriers. In partic-
ular, we derive the optimal sensor movement strategy to defend
non-obstructed barriers, and propose a Dijkstra-like algorithm
to generate a sensor movement strategy that performs well in de-
fending obstructed barriers. We verify the correctness of our the-
oretic analysis by conducting in-depth simulations under various
barrier intrusion and sensor movement scenarios.

1 Introduction

1.1 Motivation and Contributions

A major category of applications for sensor networks is border
surveillance and intrusion detection, which has recently attracted
substantial research interests. The common goal of these applica-
tions is to detect intruders as they cross the border or as they pen-
etrate into a protected area. In the meantime, sensors mounted on
mobile platforms (a.k.a. mobile sensors) have received increas-
ing attention, because mobile sensor networks could be extremely
valuable in certain working environments where traditional sen-
sor deployment schemes can not be employed, for example, re-
mote territorial borders or disaster areas.

In this paper, we investigate the problem of defending against
barrier intrusions with mobile sensor networks. A barrier intru-
sion is generally referred to as the motion of an intruder starting
from any point on the entrance side of the barrier to reach any
point on the destination side. We define the intrusion coverage
degree as the expected number of distinct sensors that each de-
tects the intruder before it crosses the barrier, and take a game
theoretic approach to study the best worst-case performance of a
mobile sensor network in terms of the intrusion coverage degree.
Note that the coverage performance of a mobile sensor network
depends on the initial network configuration as well as the move-
ment of mobile sensors. Specifically, the main contributions of
this work are:
• For barriers without obstacles, we demonstrate that there

exists an equilibrium between barrier intrusion and sen-
sor movement strategy, and derive the corresponding sensor
movement strategy that maximizes the minimum intrusion
coverage degree among all possible intrusions to the barrier;

• For barriers with obstacles, we first identify the unique ob-
stacle eclipse effect that can only be observed in obstructed
barriers, and then propose a Dijkstra-like algorithm to gen-
erate a sensor movement strategy that reaches an intru-
sion/defense equilibrium under a few simplifying assump-
tions. Simulation results show that the devised sensor move-
ment strategy performs well in defending obstructed barriers
under practical considerations.

1.2 Related Work

The coverage problem in static wireless sensor networks has
been studied intensively [6, 16, 18–20, 24]. In [18], the authors
studied three fundamental coverage metrics: area coverage, node
coverage, and detectability. The authors of [16, 24] investigated
asymptotic 1-coverage and k-coverage respectively in mostly-
sleeping wireless sensor networks. However, none of the above
work studied the sensor network coverage problem when targets
are mobile.

In [6, 19, 20], the authors studied the sensor network coverage
problems with regard to mobile targets and provided solutions
to finding minimum-exposure paths. Intrusion detection prob-
lems in static sensor network have been addressed in [5,7,10,15].
Cao et al [5] calculated the detection probability and average de-
tection delay of the intrusion. In [7], Dousse et al used the su-
percritical percolation model to analyze the detection delay for a
straight-moving target. In [10], metrics for quality of surveillance
were proposed for the network operations in both surveillance
and tracking states. In [15], the authors introduced the concept of
k-barrier coverage and derived both sufficient and necessary con-
ditions for asymptotic k-barrier coverage in a belt region. In [9],
the authors investigated the problem of optimizing the locations
of additional static sensors to improve coverage of the maximum
breach path to a protected object.

Researchers have recently started to study the coverage of mo-
bile sensor networks [2,12,22]. However, in most of the proposed
algorithms, sensor mobility was exploited essentially to obtain a
new static network configuration that improves coverage after the
sensors are re-positioned to their desired locations. In [17], the
authors studied the coverage of a mobile sensor network from
a different perspective by exploring the dynamic aspects of net-
work coverage that depends on the movement of sensors. They
proved that introduction of sensor mobility into a sensor network
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can greatly improve the network coverage performance, and de-
rived the optimal sensor movement strategy against a free-moving
target. In [3], the authors studies the problem of using mobile sen-
sors to catch stochastic events. Specifically, they devised optimal
algorithms to plan sensor movement when events occurred along
a known line or closed curve. For the 2-D case where events
could occur at arbitrary places on a plane, heuristic algorithms
were provided. The above two studies are different from the fo-
cus of this paper, which is to investigate optimal sensor movement
strategies to defend against barrier intrusions, where the ultimate
goal of an intruder is to cross the barrier (in contrast to free move-
ment) and it may follow any path in the barrier to achieve this
goal.

1.3 Organization

The rest of this paper is organized as follows. Section 2 de-
scribes the system models of barrier intrusions and mobile sen-
sors. Section 3 gives the problem statement and discusses two
important preliminaries. Section 4 presents the details of design-
ing optimal sensor movement strategies for both non-obstructed
and obstructed barriers. Section 5 confirms our theoretic analy-
sis with simulation results, and finally, Section 6 concludes the
paper.

2 System Models

2.1 Barrier Intrusions

We model the barrier as a long belt region with two parallel
sides: entrance side and destination side. A barrier may or may
not be obstructed. An intrusion is defined as the motion of an
intruder starting from an entry point on the entrance side to reach
any point on the destination side.

Let φt and ϕt denote the entry point and exit point of an intru-
sion, respectively. We divide the intrusion φt � ϕt into n small
intrusion segments, as shown in Fig. 1, and denote the i-th intru-
sion segment as xi → xi+1, where i = 0, . . . , n − 1. Hence, x0

is the entry point φt, and xn is the exit point ϕt. Furthermore, we
assume that
• xi → xi+1 can be approximated as a line segment with di-

rection θt,i and length dxi→xi+1 ;
• The intruder moves at a constant speed vt,i along xi → xi+1

in the direction of θt,i.
As the number of segments (n) goes to infinity, the series of seg-
ments φt → x1 → x2 → · · · → ϕt approximates closely the
intrusion φt � ϕt, and hence we can uniquely identify an in-
trusion with its starting point (φt), exit point (ϕt), point vector
{x1, · · · , xn−1} and speed vector v̄t = {vt,0, · · · , vt,n−1}.

There are two main factors that affect the coverage degree of
a barrier intrusion: (i) the length of the intruding path, and (ii)
the proximity of the intruding path to the obstacles (if obstacles
are present in the barrier). In general, a barrier intrusion with a
shorter intruding path and/or closer to obstacles may yield a lower
intrusion coverage degree. Hence, if an intruder is fully aware of

0t xφ =

t nxφ =

ix i+1x

Figure 1. The intruding path is divided into n segments from

the entrance side to the destination side.

the barrier environment, it may plan its intrusion carefully around
the obstacles to minimize the chance of being detected. Clearly,
the major intrusion threat to a sensor-covered barrier comes from
such smart intruders. In Section 3.2, we will discuss how the ob-
stacle eclipses created by obstacles help smart intruders conceal
themselves from being detected by sensors.

2.2 Sensing and Coverage Models

In this paper, for simplicity, we assume an ideal disc sens-
ing model to demonstrate how a well-designed sensor movement
strategy may help defend against barrier intrusions. Specifically,
we assume that each sensor has a sensing radius of Rs, and any
object within a disc of radius Rs centered at a sensor can be de-
tected by the sensor. The analysis on obstacle eclipses in Sec-
tion 3.2 and the proposed mechanisms in Section 4 to devise op-
timal sensor movement strategies can be extended to more real-
istic sensing models such as the general sensing model described
in [20].

Based on the disc sensing model, we define the intrusion cov-
erage degree to be the expected number of distinct sensors that
are able to detect the intruder as it moves along the intruding
path. This is different from the conventional coverage degree de-
fined for point coverage [16, 26] or barrier coverage [15] in static
sensor networks.

2.3 Sensor Deployment and Configuration

We consider a wireless sensor network consisting of a large
number of mobile sensors in a barrier. Sensors are aware of the
barrier environment, for example, the locations, sizes and shapes
of the obstacles in the case of an obstructed barrier.

Due to lack of control for deterministic sensor deploy-
ment [28], we assume that all the sensors are deployed according
to a Poisson point process, i.e., sensor locations are modeled by a
two-dimensional Poisson point process [11,16]. Let λ denote the
density of such Poisson point process, then the number of sen-
sors deployed in a region A, denoted as N(A), conforms to the
following Poisson distribution:

P (N(A) = k) =
e−λ||A||(λ||A||)k

k!
, (1)

where ||A|| represents the area of A. Moreover, we assume that
each deployed sensor is able to measure [4, 8, 14, 25] or esti-
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mate [13, 21, 23] its geographical location, and then plans its
movement accordingly.

2.4 Sensor Mobility Model

As pointed out in [17], by introducing sensor mobility into a
wireless sensor network, more areas can be covered and hence the
detection time of an object (static or mobile) may be shortened.
In general, the movement of a sensor can be characterized by its
speed and direction. We assume that each sensor moves at the
fixed speed (preferably at the maximum allowed speed, in order to
shorten the detection time [17]), and we assume that sensors move
independently of each other. Therefore, the movement of a sensor
can be characterized by a probability density function fΘs(θs) of
its moving direction θs. Moveover, we enforce an important
zero-expected-displacement constraint on the sensor movement:

Z 2π

0
fΘs (θs) cos θs dθs =

Z 2π

0
fΘs (θs) sin θs dθs = 0, (2)

which is a necessary condition in order to keep all deployed sen-
sors within the boundary of the barrier over time.

3 Problem Statement and Prelimaries

3.1 Problem Statement

In this paper, we take a game theoretic approach to study
the best worst-case scenarios in defending against intrusions in
both non-obstructed and obstructed barriers with mobile sensors.
Specifically, our goals are, for a given barrier of interest, to an-
alyze the best intrusion to cross the barrier with minimum intru-
sion coverage degree, and to design a sensor movement strategy
to maximize the minimum intrusion coverage degree among all
possible intrusions to the barrier.

Next, before delving into the details on how to design sensors’
movement strategies, we first discuss the unique obstacle eclipse
effect in obstructed barriers and calculation details of the intru-
sion coverage degree.

3.2 Definition of “Obstacle Eclipse”

Obstacle eclipse is a unique phenomenon that can only be ob-
served when there are obstacles in the sensing field. To study
the sensor network coverage in obstructed barriers, it is critical to
have a good understanding of the formulation and characteristics
of obstacle eclipses. Formally, the obstacle eclipse of an object is
defined as follows.

Definition 1 The obstacle eclipse of an object is such a region
that the distance between the object and any point inside the re-
gion is less than the sensing radius, but the line of sight between
them is obstructed by the obstacles.

In other words, any sensor deployed inside the obstacle eclipse
(if possible) is not able to sense the object; however, if the ob-
stacles are removed from the sensing field, this sensor shall be

able to sense the object because the object is within its sensing
radius. Obstacles themselves are considered part of the obsta-
cle eclipse. The obstacle eclipse varies with the position of the
object and the locations/sizes/shapes of the obstacles, as well as
the sensing radius. As shown in Fig. 2(a), sensor B is inside the
object’s obstacle eclipse (shown as the shaded region) and hence
cannot sense the object even though the distance between them is
less than the sensing radius. In contrast, sensor A is outside the
obstacle eclipse and can sense the object. The obstacle eclipse ef-
fectively reduces the number of sensors that can sense the object.
Hence, it could be beneficial for an intruder to plan its intrusion
around the obstacles because such an intrusion may yield a lower
coverage degree due to the obstacle eclipse effect.
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Figure 2. Illustration of obstacle eclipses. The object is shown

as the small triangle point at (0,0), and obstacle eclipses are

shown as the shaded regions.

The above definition of the obstacle eclipse is based on the as-
sumption of Boolean disc sensing model and line-of-sight sens-
ing operations. With more realistic sensing models, the obstacle
eclipse can be defined similarly, which is not discussed in this
paper due to space limitation.

3.3 Calculation of Intrusion Coverage Degree

Recall that we divide an intrusion φt � ϕt into n small in-
trusion segments, and as n goes to infinity, the series of segments
φt → x1 → x2 → · · · → ϕt approximates closely the intrusion
φt � ϕt. Furthermore, as n goes to infinity, it is reasonable to
assume that the obstacle eclipse of the i-th segment, denoted as
E(xi → xi+1), can be approximated as the obstacle eclipse of
any point on the segment; for example, E(xi → xi+1) = E(xi).

In [17], the authors analyzed the expected detection time T of
a mobile object in a sensor network within which (i) there are no
obstacles; (ii) the locations of the sensors follow a Poisson point
process; and (iii) sensors and object are moving with constant
speeds of vs and vt, respectively. The authors concluded that T
follows an exponential distribution with parameter 2λRsv̄e, so
that:

P (T > t) = e−2λRsv̄et, (3)

where λ is the density of the Poisson point process, Rs is the
sensing radius, and v̄e is a function of vs and vt which represents
the relative speed of nearby sensors to the object. In other words,
for any given time interval t, the number of sensors that are able
to detect the object during t follows a Poisson distribution with
density 2λRsv̄et. Hence, the expected intrusion coverage degree
of the i-th segment of an intrusion to a non-obstructed barrier is

115



Cxi→xi+1 = 2λRsv̄e,i

dxi→xi+1

vt,i

. (4)

On the other hand, in an obstructed barrier, due to the obstacle
eclipse effect, the expected intrusion coverage degree of the i-th
segment of an intrusion can be approximated as

Cxi→xi+1 ≈ 2λRsv̄e,i

dxi→xi+1

vt,i

· πR2
s − ||E(xi)||

πR2
s

. (5)

The coverage degree of an intrusion φt � ϕt is simply the sum
of expected coverage degrees of all its segments:

Cφt�ϕt =

n−1
X

i=0

Cxi→xi+1 . (6)

It is interesting to see that a longer intruding path does not nec-
essarily yield a higher intrusion coverage degree, especially when
there are obstacles in the barrier. This is because, in addition to
the path length (reflected by dxi→xi+1), the intrusion coverage
degree is also affected by the relative speed of nearby sensors to
the intrusion (reflected by v̄e,i), and the obstacle eclipses along
the path (reflected by ||E(xi)||).

4 Sensor Movement Strategies

We investigate the sensor movement strategies in both non-
obstructed and obstructed barriers. In Section 4.1, we study the
barriers without obstacles and derive the corresponding optimal
sensor movement strategy. In Section 4.2, we study the barriers
with obstacles and present a Dijkstra-like algorithm to generate
a sensor movement strategy that performs well in defending ob-
structed barriers.

4.1 Non-Obstructed Barriers

Lemma 1 Given a sensor movement strategy, an intrusion at the
maximum intruding speed (v̄max

t ) always yields a lower intrusion
coverage degree, in both non-obstructed and obstructed barri-
ers, than any other intrusion along the same path but with lower
speeds, i.e.,

∀fΘs , φt, θ̄t, v̄t, C(fΘs , φt, θ̄t, v̄
max
t ) � C(fΘs , φt, θ̄t, v̄t). (7)

where v̄max
t = (vmax

t , · · · , vmax
t ).

Proof of Lemma 1 is omitted due to space limitation.

Theorem 1 Consider an intrusion with a perpendicular intrud-
ing path (θ̄⊥t ) and the maximum intruding speed (v̄max

t ) in a non-
obstructed barrier. An optimal sensor movement strategy to max-
imize the coverage degree of such an intrusion is that each sensor
moves in parallel to the barrier sides according to

f
=
Θs

(θs) =



1/2, θs = 0 or π,
0, else.

(8)

Proof: Recall that the direction of the i-th intrusion seg-
ment is θt,i. Hence, a perpendicular intruding path implies that
(θt,0, · · · , θt,n−1) = (π

2 , · · · , π
2 ) ≡ θ̄⊥t . The problem of find-

ing an optimal sensor movement strategy to maximize the cover-
age degree of such an intrusion can be depicted as the following

entrance  side

destination side

sv,t i
πθ
2

=

( )sv θ

sθ

max
,t i tv v=

Figure 3. Illustration of the relative sensors-to-intruder speed.

optimization problem subject to the zero-expected-displacement
constraint:

Given: (θt,0, . . . , θt,n−1) =

„

π

2
, · · · ,

π

2

«

≡ θ̄⊥
t and

(vt,0, . . . , vt,n−1) =
`

v
max
t , · · · , v

max
t

´ ≡ v̄
max
t

max
fΘs

C(fΘs , φt, θ̄
⊥
t , v̄

max
t ) ≡ max

fΘs

n−1
X

i=0

 

2λRs v̄e,i

dxi→xi+1

vt,i

!

subject to EfΘs
[cos(θs)] = EfΘs

[sin(θs)] = 0.

(9)

Note that Rs is the sensing radius, dxi→xi+1 = dφt�ϕt

n regardless
of the entrance point φt, and vt,i = vmax

t . It is easy to verify that,
for any i from 0 to n − 1,

max
fΘs

v̄e,i =⇒ max
fΘs

n−1
X

i=0

v̄e,i =⇒ max
fΘs

C(fΘs , φt, θ̄⊥
t , v̄max

t ). (10)

Hence, we know that a solution to the following optimization
problem must be a solution to (9):

Given θt,i =
π

2
, vt,i = v

max
t , ∀i = 0, · · · , n − 1,

max
fΘs

Vi ≡ max
fΘs

v̄e,i

subject to EfΘs
[cos(θs)] = EfΘs

[sin(θs)] = 0.

(11)

As shown in Fig. 3, the relative speed of nearby sensors to the
intruder at the i-th intrusion segment, v̄e,i, can be calculated as:

v̄e,i =

Z 2π

0

q

v2
s + v2

t,i − 2vsvt,i cos(θs − θt,i)f
i
Θs

(θs)dθs

= E
fi
Θs

»

q

v2
s + (vmax

t )2 − 2vsvmax
t sin(θs)

–

,

(12)

where f i
Θs

(θs) = 1
m

∑m
k=1 f

ui,k

Θs
(θs) and ui,1, . . . , ui,m are the

nearby sensors to the i-th segment, i.e., the sensors that are within
Rs distance to the segment.

Consider another set of optimization problems:

∀i = 0, · · · , n − 1,

max
fΘs

V̂i ≡ max
fΘs

E
fi
Θs

»

q

v2
s + (vmax

t )2 − 2vsvmax
t sin(θs)

–

subject to EfΘs
[sin(θs)] = 0.

(13)

Because (13) has fewer constraints than (11), we have
maxfΘs

Vi � maxfΘs
V̂i. Now let z = sin(θs), (13) becomes

∀i = 0, · · · , n − 1,

max
fΘs

V̂i ≡ max
fΘs

E
fi
Θs

»

q

v2
s + (vmax

t )2 − 2vsvmax
t z

–

subject to EfΘs
[z] = 0.

(14)

Since g(z) =
√

v2
s + (vmax

t )2 − 2vsvmax
t z is a concave function

of z (i.e., g′′(z) < 0), by Jensen’s inequality, we have

E
fi
Θs

[g(z)] � g

„

E
fi
Θs

[z]

«

= g(0) =
q

v2
s + (vmax

t )2, (15)
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where equality holds with probability 1 when z = Efi
Θs

[z] = 0,

or equivalently, when θs ∈ {0, π}.
Since f=

Θs
given in (8) satisfies the constraints of (11) with

the corresponding objective functions of ∀i,Vi = v̄e,i =√
v2

s + (vmax
t )2, and we know that ∀i, maxfΘs

Vi �
maxfΘs

V̂i =
√

v2
s + (vmax

t )2, hence f=
Θs

must be a solution to

(11) and ∀i, maxfΘs
Vi =

√
v2

s + (vmax
t )2. Subsequently, f=

Θs

is also a solution to the original optimization problem (9). �
Corollary 1 The sensor movement strategy, f=

Θs
, described in

(8) maximizes the minimum intrusion coverage degree among all
possible intrusions to a non-obstructed barrier.

Proof: (sketch) From Theorem 1, we have

∀φt, C(f
=
Θs

, φt, θ̄
⊥
t , v̄

max
t ) = max

fΘs

C(fΘs , φt, θ̄
⊥
t , v̄

max
t ). (16)

We have also proved in [27] that, when sensors move according
to f=

Θs
, an intrusion along a perpendicular path yields a lower

intrusion coverage degree than any other intrusion, assuming the
same intruding speed vector:

∀φt, θ̄t, v̄t, C(f=
Θs

, φt, θ̄⊥
t , v̄t) � C(f=

Θs
, φt, θ̄t, v̄t). (17)

Combining (17) with Lemma 1, we have

∀φt, C(f=
Θs

, φt, θ̄⊥
t , v̄max

t ) = min
θ̄t,v̄t

C(f=
Θs

, φt, θ̄t, v̄t). (18)

From (16) and (18), we have the following relation:

minφt,θ̄t,v̄t
C(f=

Θs
,φt,θ̄t,v̄t)=maxfΘs

C(fΘs ,φt,θ̄⊥
t ,v̄max

t )

�maxfΘs
minφt,θ̄t,v̄t

C(fΘs ,φt,θ̄t,v̄t),

meaning that the parallel sensor movement strategy described in
(8) maximizes the minimum intrusion coverage degree among all
possible intrusions to a non-obstructed barrier. �
Equilibrium From the above discussions, we conclude that a de-
fense/intrusion equilibrium in a non-obstructed barrier is reached
when (i) each sensor moves in parallel to the destination side of
barrier according to f=

Θs
described in (8); and (ii) the intruder

crosses the barrier at the maximum intruding speed and along the
path that is perpendicular to the destination side of the barrier.
This is because any other intrusion yields a higher intrusion cov-
erage degree, while any other sensor movement strategy allows
the intruder to plan a better intrusion that yields a lower coverage
degree. Hence, an equilibrium is reached.

4.2 Obstructed Barriers

Due to the obstacle eclipse effect, it is very difficult to derive
the optimal sensor movement strategy to defend an obstructed
barrier. So instead, we make a few simplifying assumptions
and propose a Dijkstra-like algorithm to produce the best sen-
sor movement strategy under those assumptions, and then use it
as the approximation.

4.2.1 Assumptions

Firstly, we assume that the entire barrier is tiled with an eight-
connected grid, as shown in Fig. 4(a), and an intruder can only
move along the line segments between centers (denoted by M ) of
neighboring grid squares. As shown in Fig. 4(c), there are eight
possible intersection points (called K points in Fig. 4(b)) of an
intrusion and the edges of a grid square. Note that K points from
neighboring grid squares may represent the same physical point.
For example, Ki,j−1(6), Ki−1,j(3), and Ki−1,j−1(8) all repre-
sent the same point as Ki,j(1). Secondly, we assume that all sen-
sors deployed in the same grid square adopt the same movement
strategy, and we use fΘs,〈i,j〉 to denote the movement strategy for
sensors in grid square 〈i, j〉. Thirdly, we assume that the coverage
degree of an intrusion segment in a grid square is only affected by
the sensors deployed in that grid square.

.

.

.

Figure 4. A snapshot of tiled obstructed barrier and structure

of grid square 〈i, j〉

4.2.2 Dijkstra-like Algorithm

Fig. 5 shows the pseudo-code of our proposed Dijkstra-like al-
gorithm. Set U (dark region in Fig. 4(a)) consists of grid squares
that have been processed and whose best sensor movement strate-
gies have already been determined. It is initially set to empty. Set
V consists of grid squares that belong to Ū but are neighbors
to U . Initially, it includes all the grid squares along the destina-
tion side. Set B (black dots in Fig. 4(a)) consists of all the K
points along the boundary between U and V . The basic idea of
our algorithm is to process all grid squares recursively from the
destination side to the entrance side as follows. For each grid
square in V , the algorithm finds out the best sensor movement
strategy for this grid that yields the maximin expected intrusion
coverage degree among all possible intruding paths from those of
its K points which do not belong to B to the destination side of
the barrier (Lines 8-11). Then, among all grid squares in V , the
algorithm (i) selects the grid square 〈i∗, j∗〉 whose best sensor
movement strategy, denoted by fmax

Θs,〈i∗,j∗〉, results in the lowest
maximin expected intrusion coverage degree (Line 12); (ii) plans
the sensor movement in this grid square according to fmax

Θs,〈i∗,j∗〉
(Line 13); (iii) records the minimum expected coverage degree
among all possible intruding paths from each of its K points to
the destination side, which is denoted by CJi∗,j∗ (·)�| (Lines 14-
15); and (iv) adds 〈i∗, j∗〉 to U , then updates V and B accordingly
(Lines 16-18). The computation details of the intrusion coverage
degree were discussed in Section 3.3, and we assume maximum
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1 U := ∅;
2 B := {Ki,0(n): n = 1, 2, 3};
3 V := {〈i, j〉 : Ki,j(n) ∈ B and 〈i, j〉 ∈ Ū};

4 for
(

each i, j, n
) {

5 CKi,j(n)�| := ∞;

6 if
(

(j == 0)&&(n == 1, 2, or 3)
)

CKi,j(n)�| := 0;
}

7 while (Ū �= ∅)
{

8 for
(

each 〈i, j〉 ∈ V
) {

9 for
(

each m, n
)

10 Y (i, j, m, n) := CKi,j(m)→Mi,j
+ CMi,j→Ki,j(n)

+ CKi,j(n)�|;

11 Zi,j := max
fΘs,〈i,j〉

min
m : Ki,j(m) /∈ B
n : Ki,j(n) ∈ B

Y (i, j, m, n);
}

12 〈i∗, j∗〉 := arg min
〈i,j〉∈V

Zi,j ;

13 f
max
Θs,〈i∗,j∗〉 := arg max

fΘs,〈i∗,j∗〉
min

m : Ki∗,j∗ (m) /∈ B

n : Ki∗,j∗ (n) ∈ B

Y (i
∗
, j

∗
, m, n);

14 for
(

each m : Ki∗,j∗ (m) /∈ B
) {

15 CKi∗,j∗ (m)�| := min
n:Ki∗,j∗ (n)∈B

h

Y (i∗, j∗, m, n)
˛

˛fmax
Θs,〈i∗,j∗〉

i

;
}

16 U := U
S {〈i∗, j∗〉};

17 B := {Ki,j(n) : 〈i, j〉 ∈ U} T {Ki,j(n) : 〈i, j〉 ∈ Ū};
18 V := {〈i, j〉 : Ki,j(n) ∈ B and 〈i, j〉 ∈ Ū};

}

Figure 5. Pseudo-code of the proposed Dijkstra-like algorithm

intruding speed in the computation. The algorithm stops when all
grid squares have been processed.

Let f̄max
Θs

denote the sensor movement strategy produced by
the above Dijkstra-like algorithm, and we have the following the-
orem:

Theorem 2 Under the assumptions in Section 4.2.1, f̄max
Θs

maxi-
mizes the minimum intrusion coverage degree among all possible
intrusions at the maximum intruding speed to an obstructed bar-
rier.

Proof: For any given sensor movement strategy fΘs and any
given intruding speed vector v̄t, we use φ∗

t (fΘs , v̄t) to denote the
entry point of the corresponding best intrusion with the minimum
coverage degree. Then, for any given fΘs , we have

min
φt,θ̄t

C(fΘs , φt, θ̄t, v̄max
t ) � min

θ̄t

C(fΘs , φ∗
t (f̄max

Θs
, v̄max

t ), θ̄t, v̄max
t )

� min
θ̄t

C(f̄max
Θs

, φ∗
t (f̄max

Θs
, v̄max

t ), θ̄t, v̄max
t )

= min
φt,θ̄t

C(f̄
max
Θs

, φt, θ̄t, v̄
max
t ),

(19)

which means that f̄max
Θs

maximizes the minimum intrusion cover-
age degree among all possible intrusions at the maximum speed
to an obstructed barrier. Note that the second inequality in (19) is
a direct result of the proposed Dijkstra-like algorithm, as f̄max

Θs
is

designed to maximize the minimum coverage degree among all
possible maximum-speed intrusions starting from the same entry
point. �
Corollary 2 Under the assumptions in Section 4.2.1, f̄max

Θs
max-

imizes the minimum intrusion coverage degree among all possible
intrusions to an obstructed barrier.

Proof: For any given sensor movement strategy fΘs

and any given intruding speed vector v̄t, let φ∗
t (fΘs , v̄t) and

θ̄∗t (fΘs , v̄t) denote, respectively, the entry point and the intrud-
ing path of the corresponding best intrusion with the minimum
coverage degree. Then, for any given v̄t, we have the following
relation:

min
φt,θ̄t

C(f̄max
Θs

, φt, θ̄t, v̄t) = C(f̄max
Θs

, φ∗
t (f̄max

Θs
, v̄t), θ̄∗

t (f̄max
Θs

, v̄t), v̄t)

� C(f̄max
Θs

, φ∗
t (f̄max

Θs
, v̄t), θ̄∗

t (f̄max
Θs

, v̄t), v̄max
t )

� min
φt,θ̄t

C(f̄max
Θs

, φt, θ̄t, v̄max
t ) � max

fΘs

min
φt,θ̄t

C(fΘs , φt, θ̄t, v̄max
t )

� max
fΘs

min
φt,θ̄t,v̄t

C(fΘs , φt, θ̄t, v̄t).

(20)

The first and third inequalities in (20) result from Lemma 1 and
Theorem 2, respectively. Hence,

min
φ,θ̄t,v̄t

C(f̄
max
Θs

, φt, θ̄t, v̄t) � max
fΘs

min
φt,θ̄t,v̄t

C(fΘs , φt, θ̄t, v̄t), (21)

which means that the sensor movement strategy f̄max
Θs

maximizes
the minimum intrusion coverage degree among all possible intru-
sions to an obstructed barrier. �

Equilibrium From the above discussions, we conclude that, un-
der the assumptions in Section 4.2.1, a defense/intrusion equi-
librium in an obstructed barrier is reached when (i) sensors
move according to f̄max

Θs
produced by the Dijkstra-like algorithm;

and (ii) the intruder crosses the barrier at the maximum intrud-
ing speed and along the path specified by φ∗

t (f̄
max
Θs

, v̄max
t ) and

θ̄∗t (f̄max
Θs

, v̄max
t ). This is because any other intrusion yields a

higher intrusion coverage degree, while any other sensor move-
ment strategy allows the intruder to plan a better intrusion that
yields a lower coverage degree. Hence, an equilibrium is reached.

4.2.3 Practical Considerations

In practice, since an intrusion segment will be covered by all the
sensors within a circle centered at the segment and with radius of
Rs, the third assumption in Section 4.2.1 does not hold. Hence,
f̄max
Θs

may not be able to result in the true equilibrium. In next
section, we evaluate the performance of f̄max

Θs
with different grid

square sizes and simulation results show that it performs well
in defending obstructed barriers under practical considerations.
Moreover, we assume that mobile sensors work independently of
each other. In practice, it would be beneficial by fully exploit-
ing the cooperation among mobile sensors, although the system
design may be more complicated.

In our simulation study, sensor movement is planned in
rounds. Specifically, time is divided into short rounds. During the
first half of each round, a sensor moves in a randomly-chosen di-
rection θs ∈ [0, 2π) according to its movement strategy fΘs(θs);
during the second half of the round, the sensor moves back to-
wards the starting point along the direction of (180◦ + θs). In
the case when a sensor movement is blocked by the obstacles, it
bounces back towards the starting point and, once reaching the
starting point, it starts a new round.
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5 Performance Evaluation

5.1 Simulation Setup

We use the Qualnet simulator [1] to evaluate the performances
of f=

Θs
and f̄max

Θs
in non-obstructed and obstructed barriers, re-

spectively. The simulated barrier is a (160 unit × 80 unit) rect-
angle area with sensors deployed inside the barrier according to a
Poisson point process with λ = 0.078 per unit square.

When studying the obstructed barrier, we assume that all ob-
stacles are in rectangular shape with various dimensions, and no
sensor can be deployed inside the obstacles. Fig. 6 shows the sim-
ulated obstructed barrier. Furthermore, we assume that the sens-
ing range is Rs = 2.5 units, the sensor speed is fixed at 4 units/sec,
and each round of sensor movement is 4 seconds. We evaluate
and compare the coverage performance of our proposed sensor
movement strategies against the random sensor movement strat-
egy: f r

Θs
(θs) = 1

2π , ∀θs ∈ [0, 2π), and the static strategy where
all sensors remain static. We study various types of intrusions
with different entry points, speed vectors, and direction vectors.
The intruding speed may vary from 1 unit/sec to 4 units/sec.

obstacle
obstacle

sensors

sensors

intruding path

entrance side

destination side

0 20 40 60 80 100 120 140 160
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70

80

Figure 6. Simulated obstructed barrier

5.2 Simulation Results

5.2.1 Impact of Sensor Movement

We first study the effects of sensor movement on the coverage
performance. For a non-obstructed barrier, we simulate 10 dif-
ferent sensor network deployments, and, for each deployment,
we simulate 50 different entry points. The intruding speed is 1
unit/sec. For each entry point of a given sensor network deploy-
ment, the performance of a testing sensor movement strategy is
characterized by the maximin intrusion coverage degree among
all possible intrusions starting from that entry point. Fig. 7(a)
plots the Empirical Cumulative Distribution Function (ECDF)
of the normalized performance difference between each testing
scheme and f=

Θs
. The figure reads that f=

Θs
outperforms random

sensor movement strategy and static strategy by at least 20% and
55%, respectively. We perform similar simulations on the ob-
structed barrier (shown in Fig. 6). Since it is difficult to derive the
global optimal sensor movement strategy for obstructed barriers,
we plot the ECDF of the normalized performance difference be-
tween each testing scheme and a local greedy sensor movement
strategy, which assumes that each sensor is aware of the intruding

path, and hence can plan its movement accordingly to maximize
the intrusion coverage degree. The performance of such local
greedy strategy is better than that of the global optimal strategy,
since the goal of the global optimal strategy is to maximin the
intrusion coverage degree among all possible intrusions from any
entry point. Fig. 7(b) shows the ECDF results for the obstructed
barrier, and f̄max

Θs
outperforms both random and static strategies.

Moreover, the performance of f̄max
Θs

varies with the grid square
size, denoted as (L units × L units). For this particular obstructed
barrier, grid square size of (0.5 unit × 0.5 unit) seems to be a
reasonable choice and will be used in other relevant simulation
runs.

In general, we can see that the coverage performance is greatly
improved by introducing sensor movement into the network and
our proposed sensor movement strategy based on game theoretic
approaches yields larger performance gain than the random strat-
egy in both obstructed and non-obstructed barriers.

5.2.2 Non-Obstructed Barrier

Fig. 8 compares the coverage degrees of various straight-line in-
trusions in a non-obstructed barrier. The x-axis represents the
intruding angle θt and the y-axis represents the the normalized
intrusion coverage degree over the result when θt = 90◦ and
vt = 1.0 unit/sec. The intruder may move at the fixed speed
of 1, 2 or 4 units/sec, or vary its speed between 1 and 4 units/sec.
All sensors move according to f=

Θs
. Each point in the figure is

averaged over 10 simulation runs. As shown in the figure, the
minimum intrusion coverage degree is achieved when θt = 90◦

and vt = 4 units/sec. This is intuitively true since both a smaller
intruding angle and a lower intruding speed result in a longer ex-
posure time of the intruder in the barrier, and hence, a higher
intrusion coverage degree. The above observations confirm our
analysis in Section 4.1.
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Figure 7. Comparison of different sensor movement strategies.

5.2.3 Obstructed Barrier

We now study the intrusions to the obstructed barrier. We ran-
domly select 50 entry points, and for each entry point, we sim-
ulate 10 different intrusions at the intruding speed of 1 unit/sec.
Among the 10 intrusions, one is along the optimal intruding path
and others are along randomly-selected intruding paths. For each
entry point, the intrusion coverage degree results are normalized
over that obtained with the optimal intruding path. Fig. 9 shows
the results of six selected entry points. Each point for “random
intruding path” in the figure is averaged over those 9 random in-
trusion paths. For reader’s interest, the optimal intruding path
starting from entry point #2 is plotted in Fig. 6, and in the zoomed
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portion of the figure, the movement strategy of each sensor is
shown as two-directional line segments. Clearly, a smart intruder
shall follow the optimal intruding path which always yields lower
intrusion coverage degree than a random path.

We now examine the effect of intruding speed. For each of
the 50 entry points, we also simulate intrusions along the optimal
intruding path but at various speeds. The results are normalized
over that obtained with intruding speed of 4 units/sec. Fig. 10
shows that a smart intruder shall always move at the maximum in-
truding speed, in order to minimize the chance of being detected,
which is consistent with our earlier observation in Fig. 8.

Recall that f̄max
Θs

was obtained by assuming the knowledge of
maximum intruding speed. However, if such knowledge is not
available to the sensor network and sensors move according to,
unfortunately, a false-optimal movement strategy derived with a
wrong assumption on the maximum intruding speed, the cover-
age performance will be inevitably worse that of f̄max

Θs
. This is

because, with regard to the true maximum intruding speed, such
sensor movement is merely another non-optimal strategy. This
phenomenon can be clearly observed from Fig. 11 and confirms
our analysis in Section 4.2. In general, more knowledge about
the intrusion characteristics helps in designing sensor movement
strategies to better defend an obstructed barrier.

6 Conclusions

In this paper, we investigate the coverage performance of a
mobile sensor network in defending against barrier intrusions.
More specifically, we define the coverage degree of an intrusion
as the number of distinct sensors that each detects the intruder be-
fore it reaches the destination side of the barrier, and then study
the best worst-case performance of a mobile sensor network in
terms of the intrusion coverage degree at both non-obstructed and
obstructed barriers.

For non-obstructed barriers, we prove that the optimal sen-
sor movement strategy is that each sensor moves in parallel to
the destination side of the barrier, and the optimal intrusion is

to intrude the barrier at the maximum speed along the path that
is perpendicular to the destination side of the barrier. For ob-
structed barriers, we identify the unique obstacle eclipse effect
that can only be observed in obstructed barriers, and then propose
a Dijkstra-like algorithm to generate a sensor movement strat-
egy that performs well in defending obstructed barriers. In-depth
simulation verifies the correctness of our theoretical analysis and
demonstrates the effectiveness of our devised sensor movement
strategies.
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