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Abstract— Wireless sensor networks are increasingly
being employed for potentially hazardous and critical
applications such as monitoring the gas concentration levels
in a battle field. In such sensitive applications, it is vital
to monitor closely the transient phenomenon and take
requisite preventive and corrective actions, if necessary.
In such scenarios, due to the presence of adversaries
who intend to disrupt the functioning of the system, it
becomes imperative to shield our system from false data
injection attacks. We propose a novel secure statistical
scheme, called SSTF to effectively monitor the transient
phenomenon while being immune to false data injection
attacks. For achieving our goals, we require the sensors to
do a lightweight computation and report a simple statistical
digest in addition to the current sensed reading. SSTF is a
two-tier system consisting of a statistical inter-sensor testing
framework, which is the kernel of our scheme, employed
atop an enhanced version of a well-known existing security
scheme. We present detailed theoretical analysis and in-
depth simulations to show the effectiveness of SSTF.

I. INTRODUCTION

Sensor nodes may be deployed in hostile environments
and due to the sheer magnitude of number of nodes
deployed in a network, it is infeasible to physically
monitor all of them. As such, the network and sensor
nodes are susceptible to various kinds of attacks from
adversaries. Particularly, the nodes may be captured or
compromised, and all the secret information stored in the
nodes would be known to the adversary, who can then
easily inject false reports about the phenomenon to be
sensed into the network. Such an attack is called false
data injection attack [1].

The issue of preventing false data injection attack has
attracted substantial research interests [1]–[5]. Most ex-
isting schemes assume that each individual sensor reports
only the sensed reading. So, if the values reported by
sensors do not agree to each other, the data is considered
false and rejected by some process akin to majority voting
where all other sensors should agree. Consider a scenario
where the phenomenon to be sensed has transient tempo-
ral and spatial variations. In this case, different sensors
may sense different readings and may not agree to each

other all the time. Such transient data though genuine and
important, will be classified by existing schemes as false
and rejected. Motivated by this observation, we address
the distinction between genuine transient data vis-a-vis
false data in this paper.

Sensor networks are typically organized into clusters.
Each cluster has a Cluster Head (CH) responsible for
collecting data from sensors in the cluster, doing aggre-
gation and forwarding to a distant Base Station (BS). We
propose SSTF, a novel Secure Statistical scheme to distin-
guish data Transience from False injection in a clustered
wireless sensor network. The key ideas of SSTF are
twofold. Firstly, each sensor computes a statistical digest
of the monitored phenomenon over a moving window
of recent readings and reports this digest along with the
current reading to CH . By utilizing the statistical digests
to aid in decision making and data aggregation at the
CH , SSTF is able to distinguish transient data from false
data in most scenarios, which is very difficult if only the
current sensed readings are reported by individual sen-
sors. Secondly, SSTF requires the CH to perform a series
of carefully-designed inter-sensor tests on both readings
and digests reported by individual sensors. Since, the
false data reported by the compromised node has to pass
the inter-sensor tests to escape detection, the impact of
false data on the network is significantly restricted. The
security framework of SSTF is based on IHHAS [1].

The rest of the paper is organized as follows. We
discuss the related work in Section II and give the system
model and problem statement in Section III. We describe
the proposed SSTF scheme in Section IV, present a
realization of SSTF using IHHAS in Section V and an-
alyze its security performance in Section VI. Simulation
results are presented in Section VII. Finally, we present
conclusions and future work in Section VIII.

II. RELATED WORK

In this section, we present some relevant research
pertaining to false data rejection and secure aggregation.

1) False Data Rejection: Ye et al [2] propose a statis-
tical en-route filtering scheme (SEF), which allows both
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BS and en-route nodes to detect false data with a certain
probability. Zhu et al [1] propose an Interleaved Hop-
by-Hop Authentication Scheme (IHHAS) where pairwise
keys are established between nodes t+ 1 hops away and
up to t compromised nodes can be tolerated. Yang et al
[3] present a commutative cipher based en-route filtering
scheme (CCEF) which is based on public-key algorithms
that have been reported not suitable for sensor networks
due to limited resource capacity of sensor nodes [6].
Yu et al [4] present a dynamic en-route filtering scheme
for filtering false data injection; alleviating the constraint
of fixed path requirement between BS and CH in [1],
[3]; thus, making the scheme better suited to deal with
dynamic topology of sensor networks. Zhang et al [7]
present the interleaved authentication for filtering false
data in multipath routing based sensor networks.

2) Secure Aggregation: Przydatek et al [5] present
SIA for secure aggregation in sensor networks. It focuses
on reducing trust in BS, when queried by a trusted out-
side user and gives schemes to compute a few aggregation
primitives. Mahimkar et al [8] present SecureDAV which
uses Merkle Hash Trees to avoid over-reliance on CH .
Since attacker does not know the cluster key, it cannot
generate the full signature. Assuming a trusted BS,
Wagner [9] discusses which aggregation functions can
be meaningfully computed with resilience. However, [9]
does not consider any in-network aggregation and only
BS does the aggregation. Hu and Evans [10] propose
a secure hop-by-hop aggregation scheme that works if
one node is compromised. Yang et al [11] present SDAP
which partitions sensor nodes in a tree topology and
performs a commitment-based hop-by-hop aggregation in
each subtree to generate a group aggregated result.

3) Novelty of our work: There is significant difference
between past research and our work. In general, past
research has focused on computing the aggregates (a
single value e.g. sum, count, min, max, etc) securely or
accepting the aggregate being correct to a certain prob-
ability. Similarly, false data rejection protocols involve
accepting or rejecting single values which are proven
equal (with some tolerance) or not equal to each other. As
discussed earlier, this leads to rejection of even genuine
but transient data and we cannot observe the variations
in the phenomenon being sensed. Thus, we focus on
solving a novel problem: how to observe a time-variant
phenomenon by accepting the genuine transient data and
at the same time limit the effect of false data. In general,
it is difficult to distinguish between transient and false
data if sensor reading is the only information reported.
In our scheme, the sensor nodes also send a simple

statistical digest along with the reading to CH as opposed
to sending only the reading in the existing schemes.

III. MODELS AND PROBLEM STATEMENT

A. System Model
We consider a clustered wireless sensor network that

is partitioned into distinct clusters after deployment.
Each cluster has a Cluster Head (CH) and a set of
sensor nodes, which gather information and transmit it
to CH . CH does decision making and aggregation on
the information received from the sensors and forwards
an aggregated report to a distant Base Station (BS).
We do not address clustering-related issues such as CH
selection or rotation in this work.

Distinct clusters could be sensing different phenomena,
however we assume that all sensors in a single clus-
ter sense the same phenomenon. The sampling rate of
sensors is dependent on the maximum temporal change
in the phenomenon as well as the maximum spatial
diffusion rate. Instead of sending only the sensed reading
to CH , each sensor does a lightweight computation over
a moving window of recent sensed readings and sends a
simple statistical digest to CH at periodic intervals.

B. Threat Model
Sensor nodes may be compromised or physically

captured. All secret information stored in compromised
nodes can be accessed by adversaries and they can launch
multiple attacks like dropping or altering the message
contents going through them, so as to prevent BS from
receiving authentic sensor readings. Also, there may be
colluded attacks where two or more nodes collaborate to
let the false reports escape detection en-route to BS.

C. Problem Statement
Due to time and space variant nature of the phe-

nomenon being sensed, instantaneous sensor readings
recorded by individual sensors in a cluster may vary. In
a monitoring application, it is often critical to observe
such transient but genuine data and report them with low
false positives. On the other hand, a compromised node
(or group of colluding compromised nodes) will try to
inject a false reading into the network and our aim is to
minimize the impact of false injection on the aggregation
process and detect it eventually. Thus, we identify the
following design goals for our scheme: (i) It should
distinguish genuine transient data from injected false data
and report them with low false positives; (ii) False data
injection should have minimal impact on the aggregation
process and be detected as soon as possible; and (iii) It
should tolerate a large number of compromised nodes.



IV. PROPOSED SSTF SCHEME

SSTF is in short for Secure Statistical scheme to
distinguish data Transience from False injection. Our
proposed scheme is a two-tier system with a statistical
framework on top of a security framework. Such modular
design enables us to integrate the statistical framework
on top of any existing security scheme with necessary
adaptation and enhancement. Section IV-A presents our
proposed statistical framework and Section V describes
one particular realization of the SSTF scheme by integrat-
ing the proposed framework with an enhanced version of
a well-known security scheme, IHHAS [1].

A. Statistical Framework

Statistical framework is the kernel of our proposed
scheme. This framework can be applied on top of any
security scheme to achieve the goal of preserving data
transience while being immune to false data injection
attacks. The statistical framework can be divided into
four categories of operation: Individual Sensor Behav-
ior; Cluster Head Behavior; Sensor Endorsement; and
Enroute Nodes and Base Station Behavior. Table I sum-
marizes the notations used in this section.

TABLE I

NOTATIONS FOR STATISTICAL FRAMEWORK

Notation Remarks

P Phenomenon being sensed by a cluster
D Minimum diffusion rate of P , measured in units/sec.
ρ Phenomenon variation rate: maximum change

in the phenomenon per unit time measured in
units/sec (e.g. ppm/sec for gas concentration, etc).

x Sampling rate at each sensor, measured in samples/sec.
d Maximum distance between any two sensor

nodes within a cluster, measured in meters.
n Reporting interval: each sensor sends report to CH

every n samples.
SWi Sliding window for the i-th report.
w Size of the sliding window.
τ Number of nodes in the cluster (including CH)
vk A sensor in the cluster.
rki Sensed reading reported by vk in the i-th report.
µki Sample mean reported by vk in the i-th report.
σ2

ki Sample variance reported by vk in the i-th report.
Rki The i-th report sent by vk in the format of

〈rki, µki, σ
2
ki〉.

RAgi The i-th aggregated report generated by CH
in the format of 〈rAgi , µAgi , σ

2
Agi

〉.

1) Individual Sensor Behavior: A sensor node senses
the phenomenon at the sampling rate. It maintains a
buffer size equal to that of the sliding window (w) to
store the w most recent readings. Every time a new

reading is sensed, the oldest one is deleted; thus a sliding
window of size w is implemented at each sensor. We
need to have w samples to generate a report. After
every reporting interval (n samples), the sensor node
vk computes a simple statistical digest consisting of the
sample mean, µki and sample variance, σ2

ki over the
sliding window SWi. This is further illustrated in Fig. 1.
The report from sensor node vk to CH is in the format
of Rki ≡ 〈rki, µki, σ2

ki〉.

Fig. 1. Sliding window implementation and report generation at a
particular sensor node. Hence, the sensor index k has been omitted. ri,
µi, σi are respectively the last reading, mean and standard deviation
of w samples in SWi. Shown are reports for two windows (i = 1, 2).
There are n non-overlapping samples between two adjacent windows.

2) Cluster Head Behavior: In addition to performing
the same functions as other sensors in the cluster, CH
collects the reports Rki from all individual sensors for
testing and aggregation. CH performs two inter-sensor
tests. First, CH does a distribution test to verify the
conformity of the reported digests. Next, by utilizing the
reported digests, CH does a bin test on the reports that
pass the distribution test to limit the impact of false data.

Distribution Test: CH does pairwise tests to check
whether the distributions Nki(µki, σ2

ki) (1 � k � q)
conform to each other, where q � τ is the number
of reporting nodes. A minimum of p nodes need to
pass distribution test for the aggregation to proceed.
The number p is discussed in Section V. CH takes the
means µki reported by the sensors as measurements of a
common mean. For two sensors vj and vk, CH does a
z-test [12] to check whether the means µji and µki are
the same with α% confidence level, where α is a design
parameter and the desired α can be achieved by adjusting
the sliding window size. The z-test checks whether:

• |µji − µki| � zα × σ2
ji+σ

2
ki√

w
.

If γ (p � γ � q) sensors pass this test, CH proceeds
to calculate the aggregated mean and variance based on
the sample means and variances reported by the individ-
ual sensor nodes that have passed the distribution test.
Specifically, CH takes the means reported by individual
sensors as measurements of a common aggregated mean
that needs to be computed. Under this assumption, the



aggregated mean and variance can be computed by using
Maximum Likelihood Estimation (MLE):




µAgi
=

∑γ
k=1 µki/σ2

ki∑γ
k=1 1/σ2

ki

,

σ2
Agi

= (
∑γ

k=1 1/σ2
ki)

−1.

(1)

Bin Test: We utilize the aggregated variance produced
at the end of distribution test to limit impact of false data
on the aggregation process with the following bin test.
The bin test is performed only on the readings reported by
individual sensors that have passed the distribution test,
called the eligible sensors. The intuition behind bin test
is that all sensors observe the same phenomenon which
is a diffusion process, so the difference between genuine
readings reported by any two sensors is most likely to be
less than twice the aggregated standard deviation, σAgi

.
Hence, for each eligible sensor vk, CH utilizes σAgi

to
form a bin of size [rki − 2σAgi

, rki + 2σAgi
]. Then it

checks if the reading reported by other eligible sensors
lie in this bin. CH does this for every eligible sensor.
Once it knows the bin size of all eligible nodes, it picks
the one with largest size and averages the readings to
compute a final aggregated reading rAgi

.
Finally, CH generates the i-th aggregated report

RAgi
≡ 〈rAgi

, µAgi
, σ2

Agi
〉 and sends to the individual

sensors belonging to the selected bin for endorsement.
3) Sensor Endorsement: Sensor endorsement is done

to prevent CH from lying about the aggregation process.
Specifically, when a sensor vk receives the aggregated
report RAgi

from CH for endorsement, it performs the
following tests:

• whether σAgi
� σki;

• z-test to test whether µAgi
= µki;

• whether rAgi
∈ [rki − 2 × σAgi

, rki + 2 × σAgi
].

If the above conditions are met. vk endorses RAgi
using

two keys, one it shares with an en-route node and one
with BS as described in Section V. vk sends this en-
dorsed report to CH . Since CH does not have knowledge
of any of these two keys, it can make no further changes
to the endorsed reports.

4) En-route Nodes and Base Station Behavior: When
CH receives endorsements from individual sensors, it
merges them into a single report and forwards it to BS.
When an en-route node receives the report, it verifies the
integrity of the report by checking the endorsement. If it
is able to verify, it forwards the report to the next en-route
node, else it drops the report. The process thus continues
to the BS. If the verification at BS succeeds, the report
RAg is accepted, else it is discarded. BS records all the
reports from each CH in the network, and uses them to

depict the variations in the phenomenon. En-route nodes
and BS as such, have no major role in the statistical
framework.

V. REALIZATION OF SSTF USING IHHAS AS THE

SECURITY SCHEME

Here we present a complete realization of SSTF using
an existing security scheme IHHAS [1]. IHHAS is not
directly applicable so we enhance the scheme to meet our
requirements. First, we present an overview of IHHAS,
then describe the limitations and finally present the
complete SSTF realization with modified IHHAS.

Similar to IHHAS we make the following security
assumptions. Every node shares a master secret key with
BS. Each node knows its one-hop neighbors. Pairwise
keys can be established between next-hop nodes or nodes
that are multiple hops away. All nodes are equally trusted
and if a node is compromised, all the information it
holds will also be compromised. It is assumed that BS
is not compromised. We consider a clustered sensor
network and there can be either one-to-one or many-to-
one correspondence established between the cluster nodes
and the en-route nodes to BS. With a proper association
scheme and en-route filtering scheme, it is ensured that
as long as a valid cluster node does not sign the false
aggregated report, it will eventually be detected enroute
and dropped. Table II summarizes the notations that will
be used in this section.

TABLE II

NOTATIONS FOR SECURITY FRAMEWORK

Notation Remarks

Ku Key shared between node u and BS.
Kuv Pairwise key shared between nodes u and v.
F Family of pseudo-random functions.
Ka

u Node u’s authentication key: Ka
u = FKu(0).

ui (1 � i � n) En-route nodes from CH to BS.
t Maximum number of detectable compromised

nodes in the original IHHAS.
vi (1 � i � τ) Nodes (including CH) in the cluster (τ � t+ 1).

A. Overview of IHHAS

IHHAS consists of five phases.
1) Node initialization and Deployment: The key

server loads each node with a unique ID and necessary
keying materials. After deployment, the node establishes
a pairwise key with its one-hop neighbors.

2) Association Discovery: This phase is for a node to
discover the IDs of its association nodes. The initial path
setup consists of two steps - base station hello and cluster
acknowledgment. Incremental association discovery is
used for path changes from cluster to base station.



3) Report Endorsement: Requires that at least t + 1
nodes agree on the report for it to be considered a valid
report. Every participating node computes two MACs
(Message Authentication Codes) over the event, one
using its shared key with BS (called individual MAC)
and other using the shared key with its upper associated
node (called pairwise MAC). Then its sends the MACs to
CH . CH collects MACs from all the participating nodes,
authenticates them, wraps them into a single report and
forwards it to BS. The format of the IHHAS report is
as follows (assuming t = 3):

R : E,Ci, {v1, v2, v3, CH}, XMAC(E),

{MAC(KCHu4 , E),MAC(Kv3u3 , E),

MAC(Kv2u2 , E),MAC(Kv1u1 , E)}.
(2)

where MAC(Kviui
, E), i = 1, 2, 3, 4 are the pairwise

MACs and XMAC is a compressed MAC computed by
CH using individual MACs as given below:

XMAC(E) = MAC(Ka
v1, E) ⊕MAC(Ka

v2, E)

⊕ MAC(Ka
v3, E) ⊕MAC(Ka

v4, E).
(3)

4) En-route filtering: Every en-route node verifies the
MAC computed by its lower associated node, and then
removes the MAC from the received report. If verification
succeeds, it attaches a new MAC based on pairwise key
with its upper associated node and forwards it to BS.

5) Base station verification: BS verifies the report
after receiving it. If the BS detects that t + 1 nodes
have endorsed the report correctly, it accepts the report;
otherwise, it discards the report.

B. Limitations of IHHAS

While IHHAS works well with the system model
described in [1], it overlooks the following scenarios.

1) Large cluster size not addressed: Designed with the
implicit assumption that there are exactly t+ 1 nodes in
a cluster (including CH), IHHAS works well as long as
the number of compromised nodes (within cluster or en-
route) is no larger than t. With more than t+ 1 nodes in
the cluster, association discovery phase of IHHAS works
incorrectly since it can not guarantee a unique lower
association node to an en-route node. We generalize
IHHAS to accommodate more than t+ 1 cluster nodes.

2) ID attack not considered: The format of the IH-
HAS report is given in Eq. (2). All en-route nodes check
only the pairwise MACs and do not verify the IDs of
sensor nodes endorsing the reports. Only BS can verify
the node IDs and the XMAC. However, this makes the
scheme prone to ID attack, where adversary can simply
modify the node ID list {v1, v2, v3, CH} so that BS is
not able to verify the XMAC with the modified list and

all en-route nodes waste energy forwarding such false
data. To overcome this limitation, we make a simple
improvement to IHHAS wherein each node also includes
its node ID in the MAC contents and the en-route nodes
verify node ID in the list with that in the MAC contents.

3) Not suitable for distinct reports from sensors:
IHHAS works perfectly when all the sensors agree on
an event E, which means that E could be a logical or
boolean value so that all sensors agree on exactly the
same thing. For example, sensors responding either “Yes”
or “No” to a query whether the room temperature is
higher than 150oF, would be such an event. In a scenario
where CH needs to do aggregation and all the sensors
could report possibly different readings and digests which
would generally be the case in practice, the computation
of XMAC as in Eq. (3) is not possible. Further, it may
incur infeasible communication overheads to forward all
individual MACs to BS instead of compressing them.

C. Enhancing IHHAS to Integrate with SSTF

To address above inadequacies, following modifica-
tions are done to association discovery phase, final report
preparation by CH and enroute filtering phase in IHHAS.

1) Association Discovery: There are total τ � t + 1
nodes (including CH in the cluster. As in IHHAS, BS
sends Hello message to enable a node discover its upper
association node. On receiving a Hello message from BS,
a node attaches its own ID to the Hello message before
re-broadcasting it. The maximum number of node IDs
that are included in Hello message is t+ 1. CH divides
the cluster nodes (including itself) into t + 1 groups, gi
(1 � i � t+ 1) and each group has a minimum of 1 and
a maximum of ψ = � τ

t+1� nodes. When CH receives the
Hello message containing t+1 IDs from its previous hop
node, it assigns the t+ 1 IDs to the t+ 1 groups. Thus,
all the nodes in a group have a single upper association
node. Also, CH keeps a list of the nodes in each group.

Example: Fig. 2 illustrates the association discovery
process (BS “Hello” and cluster “ACK”). There are
total 10 nodes. When CH receives the hello message
(u4, u3, u2, u1), it divides all the nodes into 4 groups:
(g1(v5, v2, v1), g2(v6, v4, v3), g3(v9, v8, v7), g4(CH)).
There can be a maximum of 3 nodes in a group. Then
it assigns each of (u4, u3, u2, u1) to (g4, g3, g2, g1)
respectively. During the cluster ACK process, the
acks consists of group ID with the group nodes
so that the en-route nodes come to know of its
lower associated nodes. For example, when u1
receives (g4(CH), g3(v9, v8, v7), g2(v6, v4, v3),
g1(v5, v2, v1)), it knows that its lower associated nodes



BS u6 CH

v1
v2

v5

v3 v6
v4

v7
v9v8

u5 u4 u3 u2 u1

g1

g2

g3

g4(BS) (BS,u6) (BS,u6,u5) (BS,u6,u5,u4) (u6,u5,u4,u3) (u5,u4,u3,u2) (u4,u3,u2,u1)
u1

u2

u3

u4
(g4(Ag),
g3(v9,v8,v7),
g2(v6,v4,v3),
g1(v5,v2,v1))

(u1,
g4(Ag),
g3(v9,v8,v7),
g2(v6,v4,v3))

(u2, u1,
g4(Ag),
g3(v9,v8,v7))

(u3, u2, u1,
g4(Ag))

(u4, u3, 
u2, u1)

(u5, u4, 
u3, u2)

(u6, u5,
u4, u3)

Ci

Fig. 2. An example to show the association discovery process for t + 1 = 4 and τ = 10. The cluster head CH divides the cluster nodes
(including itself) into t+ 1 groups and assigns a group ID to each group. Each group has a maximum of ψ = �τ/(t+ 1)� = 3 nodes. BS
is the base station. (M) is the content of the beaconing message.

are v5, v2, v1 in group g1. It then removes this group
and substitutes its ID u1 in the beginning and forwards
(u1, g4(CH), g3(v9, v8, v7), g2(v6, v4, v3)) to u2. The
process proceeds similarly at each en-route node. �

We define a new term Report Limit, θ which is the
maximum number of reports from a group that will be
used by CH . It is easy to see that θ � ψ. CH needs at
least t+1 reports and at most θ reports from each group
will be used. To satisfy this, our scheme requires that at
least p nodes in the cluster report, where p is given by:

p = max

(
t+ 1, ψ ×

(⌈
(t+ 1)

θ

⌉
− 1

)
+ θ

)
(4)

Note that even though the maximum number of com-
promised nodes that the scheme can accept is still t;
the en-route filtering phase will work only if less than
(t+1)/θ nodes are compromised. If Nc

(
t+1
θ � Nc � τ

)
nodes are compromised, though BS will eventually de-
tect the false report, the en-route nodes may not be able
to detect it and keep on forwarding the false report. θ is
useful in the en-route filtering phase, see Section V-C.3.

2) Final Report Preparation: CH sends the aggre-
gated report RAgi

back to the selected t + 1 nodes
for endorsement. This endorsement prevents CH from
lying about the aggregation process. If at sensor node
vk, RAgi

passes the endorsement tests, it endorses RAgi

by providing an individual MAC for RAgi
using the

authentication key Ka
vk shared with BS; and a pairwise

MAC for (RAgi
, vk) using the pairwise key Kvkuk

shared
with its upper association node. Note that vk inserts the
node ID into the pairwise MAC contents. Only when CH
receives endorsements from all t+1 nodes, it generates a
compressed MAC over RAgi

denoted as XMAC(RAgi
)

which contains the MACs of the t+1 nodes. For example
in Fig. 2, if CH receives individual MACs from the
previously chosen nodes v1, v2, v3 and v4, it computes
the XMAC as given below:

XMAC(RAgi
) = MAC(Ka

v1, RAgi
) ⊕MAC(Ka

v2, RAgi
)

⊕ MAC(Ka
v3, RAgi

) ⊕MAC(Ka
v4, RAgi

).
(5)

The report R that CH finally generates and forwards
to BS consists of the aggregated report RAgi

, cluster ID

Ci, ID list of the t + 1 endorsing nodes, the XMAC as
computed above and the t + 1 distinct pairwise MACs,
and a special counter κ initially set to zero. For example,
in Fig. 2, the report R generated by CH is:

R ≡ 〈RAgi
, Ci, κ = 0, {v1, v2, v3, v4}, XMAC(RAgi

),

{MAC(Kv4u2 , (RAgi
, v4)),MAC(Kv3u2 , (RAgi

, v3)),

MAC(Kv2u1 , (RAgi
, v2)),MAC(Kv1u1 , (RAgi

, v1))}〉.
(6)

The order of the pairwise MACs in R corresponds to
that in the cluster acknowledgment message during the
association discovery phase so that a node receiving R
knows which pairwise MACs could be from its lower
association nodes. κ is a special counter updated by en-
route nodes to keep in track how many consecutive nodes
have not been able to verify any of the MACs. It is
described more in the En-route Filtering phase next.

3) En-route Filtering: When an en-route node uk
receives R from its downstream node, it checks the
number of different pairwise MACs in R. If uk is s
(s < t+ 1) hops away from BS, it should see at most s
pairwise MACs; otherwise, it should see t + 1 pairwise
MACs. uk tries to verify the last θ MACs in the pairwise
MAC list, based on the pairwise key shared with its lower
association node(s). The verification is done as follows.
uk checks whether the node ID decrypted from its lower
association node MAC is in the ID list of endorsing
nodes, and whether report endorsed by its downstream
node vk conforms to RAgi

. If the node uk is not able to
verify any of the pairwise MACs, it increments κ by 1
and forwards the report R to its upstream node.

If at any point of time κ � �(t+1)/θ�, it implies that
more than �(t+1)/θ� adjacent en-route nodes have been
compromised and the report will be dropped. On the other
hand, the scheme will not work if more than �(t+1)/θ�
nodes are compromised, since the compromised nodes
may reset κ to zero.

If uk is able to verify ν(� θ) nodes and if uk is more
than t + 1 hops away from BS, it proceeds to compute
ν new pairwise MACs over the report Rki (1 � k � ν)
using the pairwise key shared with its upper association
node. It then removes the last ν MACs from the MAC



list and inserts the ν new MACs at the beginning of the
MAC list. Finally it resets κ to zero and forwards the
report to its upstream node.

VI. SECURITY ANALYSIS

Individual sensor nodes or CH can lie about the
measurements, digests and aggregated reports. All these
attacks are collectively referred to as content attacks.
In this section, we present a brief analysis on various
content attacks. Throughout the analysis, for the sake of
simplicity, the index for sliding window in the reports is
omitted.

A. Content Attacks by Individual Sensors

1) Effect of False Injection: A pairwise distribution
test is performed to test the equality of means reported by
the sensor nodes. Let vj be a compromised node with true
mean and variance of (µ, σ2). Assume vj reports (µ′, σ′2)
instead of the true values. To pass the distribution tests,
the following conditions should hold:

|µ′ − µk| � zα
σ′2 + σ2

k√
w

; ∀k ∈ [1, τ ], k 	= j (7)

where (µk, σ2
k) is the distribution reported by sensor vk

and τ is the number of nodes in the cluster, w is size of
sliding window.

The reading reported by sensor should be within limits
to pass the bin test. The compromised node wants a false
reading r′ = r + ∆r to get accepted, where r is the
true reading measured by the sensor. We are interested
in computing the maximum possible expected distortion
that an attacker can inject without being detected i.e. we
want to maximize E[∆r|∆r is accepted].

We can obtain [13] the optimal ∆r = ∆∗
r as:

∆∗
r =

{
2σ′

Ag −Wr, Wr < σ′
Ag

σ′
Ag , Wr � σ′

Ag

(8)

where Wr = max (ri) − min (ri), ri being the reported
individual sensor readings. σ′2Ag is the compromised ag-
gregated variance. Also, the maximum expectation of
E[∆r|∆r is accepted] is given by [13]:

Emax =




2σ′
Ag −Wr, Wr < σ′

Ag
σ′2

Ag

Wr
, Wr � σ′

Ag

(9)

Fig. 3 illustrates the variation of expectation with
respect to ∆r. We can see that ∆r is dependent on the
aggregated variance σ′2Ag and Wr. When source variation
is less, Wr is small and compromised node should report
r′ = r + 2σ′Ag − Wr; and in case of a highly varying
source, Wr is large and the compromised node should
report r

′
= r+σ′Ag. If there are K nodes participating in
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Fig. 3. E[∆r|∆r is accepted] vs. ∆r .

the aggregation process, on an average, a single compro-
mised node is able to distort the aggregated reading rAg
by Emax/K, where Emax is given by Eq. (9). Note that
K � E , where E denotes the number of eligible sensors.

Let rAg be the genuine aggregated reading. When
the adversary injects a false reading r′ = r + ∆r, the
aggregated reading rAg is given by:

rAg =

∑
ri + r + ∆r

Number of Samples in the Largest Bin
, (10)

where ri are the genuine readings reported by other
sensors. Thus, the impact of the false injection on rAg,
denoted by F , is:

F =
∆r

Number of Samples in the Largest Bin
. (11)

2) Attack Strategies: There are two strategies that the
adversary can adopt to inject false data and distort rAg.
As can be seen from Eq. (11), the adversary can either
attempt to maximize ∆r or minimize the number of
samples in the largest bin to increase F .

a) Strategy 1: First strategy is to report a small
false variance such that the aggregated variance and
hence the bin width is reduced. This is equivalent to
decreasing the denominator in Eq. (11). As a result some
of the genuine readings are excluded from aggregation
and hence, the false data injected by the adversary can
have more impact. However, due to reduced bin width,
the distortion ∆r that can be introduced into the reading
is also small.

b) Strategy 2: The other strategy is to report a large
variance such that the aggregated variance is increased.
This results in a larger bin width and hence, larger
distortion ∆r can be introduced in the reading.

3) Selecting the Best Strategy: Let σ∗0 be the genuine
aggregated standard deviation and σ∗1 and σ∗2 be the false
aggregated standard deviation computed using strategy 1
and strategy 2 respectively.

Consider Fig. 4. Let P0, P1, P2 denote the probability
that a sample lies in the bins AiDi(µ± 2σ∗i ; i = 0, 1, 2)
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standard deviation.

for the case of no compromised node, one compromised
node using strategy 1 and one compromised node using
strategy 2 respectively. E denotes the number of eligible
sensors. The bin size i.e. the expected number of samples
that lie in the bins A0B0, A1B1, A2B2 is given by EP0,
EP1, EP2 respectively.

From Fig. 4, we can see that:
P1

P2
=

Area(A1B1C1D1)

Area(A2B2C2D2)
>

σ∗
1

σ∗
2

⇒ σ∗
1

P1
<

σ∗
2

P2
.

(12)

The adversary introduces a distortion of ∆∗
r according

to Eq. (8). For the case when ∆∗
r = σ∗Ag, from Eq. (11),

the impact on rAg using the first and second strategies
is: F1 = σ∗

1
EP1

and F2 = σ∗
2

EP2
respectively. From Eq. (12),

it can be easily seen that:
σ∗
1

EP1
<

σ∗
2

EP2
, (13)

implying F2 > F1. Hence, the attacker can cause
maximum distortion in rAg when it adopts the second
strategy. So, the compromised node should report a high
variance. For maximum impact, the adversary reports a
fake variance equal to ∞. Similar analysis can be done
for the case, when ∆∗

r = 2σ∗Ag − Wr (refer to Eq. (8))
and it is seen here too that attacker can cause maximum
distortion in rAg by faking its variance as ∞.

Hence, the adversary reports σ∗2 = ∞. Consequently,
regardless of the µ′ being reported, the effect on µ∗Ag and
σ∗2Ag is given by:


µ∗Ag =

∑γ
k=1
k �=j

µk/σ2
k∑n

k=1
k �=j

1/σ2
k

,

σ∗2
Ag =

(∑γ
k=1
k �=j

1/σ2
k

)−1

,

(14)

where j is the index of the compromised sensor node.
Further, from Eq. (11), the effect on rAg is:

F =
∆∗

r

K , (15)

where K = EP1 and ∆∗
r is given by:

∆∗
r =

{
2σ∗

Ag −Wr, Wr < σ∗
Ag

σ∗
Ag , Wr � σ∗

Ag

(16)

and σ∗Ag is given by Eq. (14).

B. Content Attacks by the Cluster Head

CH produces an aggregated report RAgi
and sends

it back to individual sensors for endorsement. The worst
case performance of the system occurs when CH is com-
promised. This happens because compromised CH can
lie about the aggregated report RAg = 〈rAg, µAg, σ2

Ag〉.
CH sends RAg back to selected sensors for endorsement.
The following conditions should hold for the RAg to be
accepted for endorsement:

• From Eq. (1), we can see that σAg � min(σi), for
each sensor vi. Hence RAg with a larger σAg will
be rejected. To alter µAg and rAg, CH chooses the
largest possible σAg given by: σ′Ag = min(σi).

• A sensor vi performs distribution test to test the
equality of µAg and µi. The maximum false µ′Ag
that would satisfy the distribution test is given by:

µ′Ag = min

(
µi + zα

min(σ2
i ) + σ2

i√
w

)
(17)

where i is the index of the eligible sensors.
• Further, the aggregated reading rAg should satisfy

the bin test at each endorsing sensor vi. Let rAg
be the true aggregated reading, and r′Ag be the
maximum acceptable false reading reported by com-
promised CH . It is easy to see that, if CH reports
r′Ag = min(ri) + 2min(σi), it will always be
accepted. Thus, CH can distort the true readings
by a maximum of rAg −min(ri) + 2min(σi).

Since our security framework is based on IHHAS, our
scheme is equally resilient as IHHAS to other security
attacks, such as outsider attacks, replay attacks, cluster
insider attacks and en-route insider attacks. Due to space
limitations, discussions on those security attacks are
omitted.

VII. PERFORMANCE EVALUATION

We study the performance of our scheme by simu-
lation. We compare our scheme with a simple majority
voting scheme to show the effectiveness of our scheme in
preserving transient data. We also demonstrate the limited
impact of false data in the presence of compromised
nodes under various attack strategies.

A. Simulation Setup

The wireless sensor network is divided into circular
clusters. Each cluster is responsible for sensing the time-
varying phenomenon in its region. We focus on one
particular cluster shown in Fig. 5 to demonstrate our
scheme. Cluster nodes are randomly placed in the circular
region and one of the nodes is CH . A single source



is present at a random location in the cluster. The
phenomenon exhibits a radial diffusion pattern, implying
that the sensors nearest to the source sense the change
first. Table III lists the parameters used for simulation.
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Fig. 5. Simulation Setup.

TABLE III

SIMULATION PARAMETERS

Parameter Notation Value

Phenomenon variation rate ρ 10 units/sec
Maximum inter-sensor distance d 10 meters
Diffusion rate D 2 units/sec
Sampling rate x 10 samples/sec
Reporting interval n 25 samples
Sliding window size w 1000 samples
Number of nodes in the cluster τ 10
Random measurement error at sensors N (0, 0.01)

B. Simulation Results

We conduct various simulations to demonstrate the
effectiveness of SSTF in meeting its design goals viz.
preservation of data transience and limiting the impact
of false data injection.

1) Preservation of Data Transience: We consider
the performance of our scheme in the presence of no
compromised nodes. The phenomenon varies from 0
units/second to 50 units/second which amounts to a
change of 0 units/sample to 5 units/sample. Fig. 6 il-
lustrates the simulation results. In our scheme most of
the times all the genuine data is preserved regardless of
transient variations. It is observed that when the variation
rate is small, up to 30% of the nodes are excluded from
participating in the aggregation. This happens because the
bin size becomes very small when the source is constant.
However, this doesn’t hamper the ability of our scheme
to monitor transient data since some genuine nodes are
excluded from the largest bin only when source data is
itself constant and there is negligible impact on rAg.

We compare our scheme to a simple majority voting
scheme where the nodes agree if the readings reported are
within random measurement error of each other. When
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Fig. 6. Percentage of genuine readings excluded vs. Phenomenon
variation rate.

there is no variation, the readings are pretty constant
and all the nodes agree, however, as the variation rate
increases, the readings amongst sensors do not agree with
each other anymore, and more and more genuine data are
excluded from aggregation. Thus the system starts losing
“important” information during data transience which is
not desired. We can see in Fig. 6, almost 60% genuine
data is lost at high variation rate.

2) Limiting the Impact of False Data Injection: In
Fig. 7, we show the effect of false data with respect to
different phenomenon variation rates and false injection.
X-axis represents the standard deviation of the varying
source data which is indicative of phenomenon variation.
Y-axis represents the false injection. Z-axis represents the
effect on rAg expressed as a percentage of the source data
standard deviation. As discussed above, it can be seen
that, for a constant false injection, the impact of false
data increases with the phenomenon variation rate. On
the other hand for a constant rate, as the false injection
is increased, the impact of false data first increases and
then decreases and becomes zero as the false injection
is increased further. This is attributed to the fact that
the false reading remains no longer a part of the largest
bin and is excluded from aggregation. It is also observed
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Fig. 7. False effect vs. Phenomenon variation and False injection.
Phenomenon variation is indicated by source data standard deviation
and z-axis shows the impact on rAg as a percentage of source data
standard deviation.
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Fig. 8. Demonstrating the effectiveness of SSTF. Shown are two attack strategies. In (b), the attacker chooses to inject false data that
complies to the bin test and in (c), the attacker injects arbitrarily random false data.

that impact on rAg is very limited (up to 2% of source
data standard deviation) which conforms to our security
analysis (refer to Section VI-A).

Fig. 8 further demonstrates the effectiveness of SSTF
in limiting the impact of false data. Shown is a snapshot
of a randomly varying source, the Y-axis represents the
value in units of the phenomenon. The X-axis represents
the report index, a stretch of 100 reports is shown and
we can see that SSTF closely resembles the source data.
In Fig. 8(a), there is no attack and SSTF is close to the
source data, it deviates only due to the delay incurred
for the phenomenon to propagate from source to sensor
nodes. Fig. 8(b) shows the case when attacker does
a subtle attack by reporting false values that pass the
distribution test and bin test. However, the impact on
the aggregated reading is almost negligible. In Fig. 8(c),
the attacker injects arbitrarily random false data, which
doesn’t alter the result of SSTF either since the injected
false data is excluded during the testing process.

VIII. CONCLUSIONS AND FUTURE WORK

We present SSTF, a secure statistical scheme to distin-
guish data transience from false injection in clustered sen-
sor networks. We develop a statistical framework which is
the kernel of SSTF and enhance the IHHAS scheme to be
used as the underlying security framework. In contrast to
existing false data rejection schemes, SSTF requires each
individual sensor to report a statistical digest, in addition
to the sensed reading and we emphasize the merits of
this strategy to effectively monitor transient variations in
the phenomenon. Through detailed security analysis and
intensive simulations, we demonstrate the effectiveness of
our scheme in preserving the transient data while being
resilient to false data injection attacks.

SSTF is designed primarily for applications requiring
periodic reporting and monitoring. Future work includes
applying SSTF to query-based setup, wherein the sensors
respond to a query from the BS, and integration of SSTF

with other frameworks such as [4] for operating in a
dynamically changing topology or [14] to make it work
in a structure-free aggregation setup. We also plan to
implement SSTF on a sensor network test-bed.
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