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Abstract—Quality of object detection and network lifetime hold
critical importance to many sensor network applications such
as military surveillance. Unfortunately, improving one of these
aspects comes at the expense of the other. In this paper, based on
the probabilistic sensing model, we propose a novel framework
for object detection in sensor networks, called DeCODe (on-
Demand framework for Collaborative Object Detection), which
provides a desired object detection performance (characterized in
terms of detection probability and false detection probability),
while attempting to prolong the network lifetime. The design
of DeCODe is motivated by a counterintuitive observation that
simple collaboration among active sensors indeed degrades the
object detection performance. By contrast, each active sensor in
DeCODe can trigger its neighboring inactive sensors to participate
in the detection process in an on-demand fashion, so as to
achieve the same low false detection probability while increasing
the probability of detection. The effectiveness of the proposed
DeCODe framework is supported by theoretical analysis and
simulation-based validation.

I. INTRODUCTION

Wireless sensor networks are being increasingly considered
as a viable alternative in monitoring and surveillance systems.
One of the promising applications is for object detection.
Sensors are low-power and resource-constrained devices, thus
making energy efficiency a prime concern in wireless sensor
networks. Our objective is to develop a novel framework
for collaborative object detection in sensor networks, which
guarantees a minimum level of system performance while
simultaneously attempting to prolong the network lifetime.

Many past works [1]–[3] for objection detection are based
on the 0/1 disc sensing model where each sensor is assumed
to have a sensing range and it can sense the environment and
detect object inside (outside) its sensing range with probability
one (zero). Obviously, this is not true in practice because such
a model does not capture the degradation of a sensor’s sensing
capability as the distance between the sensor and the object
increases. In this paper, we consider the probabilistic sensing
model [4]–[7] where sensor measurements are affected by noise
and the detection probability varies with the distance between
the sensor and the object. Based on this sensing model, we
revisit the object detection problem in sensor networks.

We characterize the performance of a sensor network by
two metrics: the detection probability (PD) and the false
detection probability (PFD). It is natural to think that col-
laboration among sensors should result in better detection
performance as apposed to no collaboration; however, upon
preliminary studies [8] we discover that simple decision fusion-
based collaborations among active sensors indeed degrade the
detection performance. This motivates us to develop a novel
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on-Demand framework for Collaborative Object Detection in
wireless sensor networks, called DeCODe. In this framework,
a sensor node which has potentially detected an object triggers
its neighboring nodes (which may or may not be sensing) for
decision making. An object detection is reported if the sensor
node collects a certain number of positive alarms from its
neighboring nodes. We provide theoretical analysis for PD and
PFD, and support it with simulation-based validation.

The rest of the paper is organized as follows. We discuss the
related work in Section II and give models and assumptions
in Section III. Section IV describes our proposed DeCODe
framework in detail, and Section V provides the theoretical
analysis of the proposed framework along with simulation-
based validation. Finally, we conclude the paper in Section VI.

II. RELATED WORK

Detection or coverage problem based on the 0/1 disc sensing
model has been well studied in the past [1]–[3]. In such a
model, an object inside (outside) a sensor’s sensing range is
detected with probability one (zero). Despite its simplicity for
analysis, many researchers consider alternative sensing mod-
els [4]–[7], [9] in order to better understand and characterize
sensor measurements which are usually affected by noise and
vary with the distance between the sensor and the object. In this
paper, we base our studies on the probabilistic sensing model.

A lot of research efforts [6], [10]–[13] have been made
on collaborative object detection in wireless sensor networks,
where the local data or decisions from individual sensors are
gathered by a fusion center to make the final decision. However,
none of these works considers the physical proximity between
sensors and the object while in practice, as the received signal
emitted by the object decays fast with distance, sensed readings
by sensors far away from the object are less important to
decision making. In [5], the authors introduce the concept of
virtual sensor resulting from neighboring sensors’ collabora-
tion, which may improve the coverage for object detection. In
contrast to our work, [5] assumes that sensors’ locations are
known and focuses on deriving a proper coverage set with less
sensors to guarantee a required coverage. Due to the greedy and
heuristic nature of the algorithm in [5] to find the coverage set,
it is difficult to theoretically analyze the relation between the
number of sensors deployed and the coverage performance.

In [14], the authors propose and design a new power man-
agement scheme using a radio-triggered hardware component
to prolong the network lifetime. Equipped with a special radio-
triggered circuit, a sleeping sensor (with both radio and CPU
turned off) can be waken up by a special radio signal (transmit-
ted at a different frequency from regular data communications)
from a nearby active sensor.
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III. MODELS AND ASSUMPTIONS

A. System and Source Models

We consider a sensor network consisting of (Na + N i)
wireless sensors deployed randomly over a unit-area convex
region, where Na is the number of active sensors and N i is
the number of inactive sensors. Each active sensor senses at
a certain sampling frequency. In this paper, we assume that
sensors make object detection decisions based on snapshot
readings without considering temporal correlation; active sen-
sors are called sentry nodes and inactive sensors are called
inert nodes. There can be different models for the functioning
of inert nodes. In one model, called the message-based model,
inert nodes are only listening but not performing any sensing
task. A sentry node can trigger its nearby inert nodes to start
performing the sensing tasks by flooding a message carrying
the triggering command. In another model, called the circuit-
based model, inert nodes are sleeping and doing nothing. Under
such a model, the sensors are provisioned with a special circuit
for being triggered when need arises [14] and the triggering
signal is transmitted at a different frequency from that being
used for regular data communications.

We study the objects which emit physical signals such as
sound and electromagnetic waves. The strength of the signal
emitted by the object decays according to power law, meaning
that the signal strength measured at distance d away from the
object is: [5], [6]

ω =

{
Ω, d < d0,

Ω
(d/d0)α , d � d0,

(1)

where Ω is the signal amplitude of the object, d0 is a small
constant, and α is a known decay exponent. Since our analysis
below can be applied to any decay exponent, we let α = 2 in
this paper without loss of generality.

Assume that there is a single object in the region, which at
any given time is either present or absent at a random location
in the region according to certain probability distribution. Each
active sensor collects its sensed reading of x. Depending on the
hypothesis of whether the object is present (H1) or not (H0),
and the distance (d) between the object and the sensor if the
object is present, sensed readings are:

H0 : x = n,

H1 : x = ω + n,
(2)

where ω is the received signal strength given by (1) and n is
the background noise. As in [5], we assume a Gaussian noise
with zero mean and variance of one; indeed, our analysis can
be applied to any noise model as long as its pdf is known.

B. Sensing and Alarm Models

In contrast to the 0/1 disc sensing model, we consider the
probabilistic sensing model where (i) the sensor measurements
are affected by noise; and (ii) based on a pre-determined
decision threshold, a sensor detects an object with a probability
that varies with distance between the sensor and the object.
Assuming that a sensor is raising an alarm solely based on
its own measurement (x) and the decision threshold (T ), the
probability of genuine alarm (pa) and false alarm (pfa) raised
by the sensor are shown as areas of shaded regions in Figs. 1(a)
and (b), respectively.
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Fig. 1. (a) Probability of genuine alarm: pa = P (x � T |H1) and (b)
probability of false alarm: pfa = P (x � T |H0), where x is the sensor
measurement and T is the decision threshold.

IV. DECODE: THE PROPOSED ON-DEMAND FRAMEWORK
FOR COLLABORATIVE OBJECT DETECTION

In [8], we present and discuss several simple collabo-
rative object detection mechanisms. Through analytical and
simulation studies, we find that simple decision fusion-based
collaborations among sentry nodes do not help improve the
object detection performance. On the other hand, we suspect
that better detection performance may be achieved if the collab-
oration among sensors is planned carefully. This motivates us
to develop an on-demand framework for decision fusion-based
collaborative object detection in wireless sensor networks. The
key idea of our framework is that it no longer mandates sentry
nodes to collaborate only with each other; instead it exploits
the fact that, if a sentry node senses the object, its neighboring
inert nodes may also be able to sense the object upon being
triggered. This way, by leveraging on the inert nodes, we enjoy
the same low false detection probability while increasing the
probability of detection because the density of inert nodes is
usually much higher than that of sentry nodes.

A. The Proposed Framework

Formally, our proposed framework is described as follows.
Upon sensing a measurement higher than the decision threshold
(TK) where K is the collaboration degree, a sentry node
triggers the neighboring inert nodes within its fusion range
(a disc centered at the sentry node with radius of Rf ) to
collaboratively sense the environment. A collaboration degree
of K means that, in order to report a detection of the object, a
sentry node which initiates the detection process needs at least
(K − 1) positive alarms from sensors within its fusion range.
The decision threshold TK varies with K, Na

K (number of
sentry nodes), and N i

K (number of inert nodes). Our framework
consists of the following three phases: initialization, bounded
flooding, and selective bouncing.

1) Phase 1: Initialization: Upon sensing a measurement
higher than the decision threshold, a sentry node initiates the
collaborative detection process. If inert nodes function accord-
ing to the message-based inert node model, the sentry node will
enter Phase 2 immediately after initialization. Otherwise, with
the circuit-based inert node model, the sentry node will wait
for an appropriate triggering time for the inert nodes within its
fusion range to be triggered and then it enters Phase 2. The
triggering time varies with the size of the fusion range (Rf ) as
well as the strength of the triggering signal. For example, with
one of the radio-triggered circuits described in [14] to work
with MICA2 motes, if the triggering signal strength is 10 dBm,
it takes about 5 ms [14] to trigger the inert nodes within the
fusion range of radius Rf = 30 feet. Thus, depending on the
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inert node model, after a certain time, the sentry node enters
Phase 2 to start the flooding-and-bouncing protocol to collect
alarms from its neighboring inert nodes.

2) Phase 2: Bounded Flooding: The objective of this phase
is to form a tree rooted at the sentry node, which will be used
in Phase 3 to collect positive alarms from sensors within the
sentry node’s fusion range. This is accomplished via flooding of
f msg and ack msg messages. The flooding of f msg messages
is bounded within the fusion range of the sentry node by a TTL
field carried in the f msg message header. The initial TTL value
is determined by the radius of the fusion range (Rf ) and the

Algorithm 1 Bounded Flooding

For each sentry node sNodei (with node ID i)
Initialization:
1: Determine TTL based on K, Na

K and Ni
K

Upon sensing a reading higher than decision threshold TK :
1: Start timerc(i) with interval τ /∗ τ is a system parameter ∗/
2: sNodei.ChildrenList← ∅

3: sNodei.sumAlarm← 1 /∗ to be used during Selective Bouncing ∗/
4: sNodei.ReportList← ∅ /∗ to be used during Selective Bouncing ∗/
5: Broadcast a flooding message: f msg〈SID = i, NID = i, TTL, bAlarm = 0〉

Upon receiving an acknowledgment message ack msg〈SID, PID, NID〉:
1: if (ack msg.SID == i) AND (ack msg.PID == i) then
2: sNodei.ChildrenList← sNodei.ChildrenList ∪ ack msg.NID
3: end if

Upon timerc(i) is fired:
1: Clear sNodei data structure

For each inert node iNodej (with node ID j)
Initialization:
1: iNodej .SentryList← ∅

2: iNodej .Need2Sense = 1

Upon receiving a flooding message f msg〈SID, NID, TTL, bAlarm〉:
1: x← f msg.SID
2: if (x /∈ iNodej .SentryList) then
3: Start timerb(x) with interval δ /∗ δ is a system parameter ∗/
4: Start timerc(x) with interval τ /∗ τ is a system parameter ∗/
5: iNodej .SentryList← iNodej .SentryList ∪ x
6: iNodej .x.ReportList← ∅ /∗ to be used during Selective Bouncing ∗/
7: iNodej .x.BounceDone← 0 /∗ to be used during Selective Bouncing ∗/
8: iNodej .x.PID← f msg.NID
9: iNodej .x.ChildrenList← ∅

10: iNodej .x.LocalAlarm← 0
11: iNodej .x.BranchAlarm← f msg.bAlarm
12: if (iNodej .Need2Sense == 1) then
13: Sense and store its own reading at iNodej .Reading
14: iNodej .Need2Sense = 0
15: end if
16: if (iNodej .Reading � Tk) then
17: iNodej .x.LocalAlarm← 1
18: iNodej .x.BranchAlarm← 1
19: end if
20: iNodej .x.sumAlarm← iNodej .x.LocalAlarm /∗ to be used during Selective

Bouncing ∗/
21: Broadcast an acknowledgment message: ack msg〈SID = x,

PID = iNodej .x.PID, NID = j〉
22: if (f msg.TTL > 1) then
23: Broadcast a flooding message: f msg〈SID = x, NID = j,

TTL = f msg.TTL− 1, bAlarm = iNodej .x.BranchAlarm〉
24: else
25: Execute Algorithm 2: Selective Bouncing
26: end if
27: end if

Upon receiving an acknowledgment message ack msg〈SID, PID, NID〉:
1: x← ack msg.SID
2: if (x ∈ iNodej .SentryList) AND (ack msg.PID == j) then
3: iNodej .x.ChildrenList← iNodej .x.ChildrenList ∪ ack msg.NID
4: end if

Upon timerb(x) is fired:
1: Execute Algorithm 2: Selective Bouncing

Upon timerc(x) is fired:
1: iNodej .SentryList← iNodej .SentryList− x
2: iNodej .Need2Sense = 1
3: Clear iNodej .x data structure

average distance between neighboring nodes in the network.
Upon reception of the first f msg message with a positive TTL
value, an inert node attaches itself to the tree by replying
with an ack msg message, then refreshes its sensed reading,
if necessary, and records it in a local variable iNodej .Reading.

After Algorithm 1 has been executed for sentry node x,
almost all the inert nodes within its fusion range are at-
tached to the tree. Each on-tree node (iNodej) maintains
the IDs of its parent node (iNodej .x.PID) and children
nodes (iNodej .x.ChildrenList), as well as a Boolean variable
(iNodej .x.BranchAlarm) which indicates whether any of the
nodes between itself and the sentry node has sensed a mea-
surement higher than the decision threshold.

Fig. 2 gives an example of the proposed framework. Fig. 2(a)
shows a sentry node and inert nodes within its fusion range
before flooding-and-bouncing. The formed tree after execution
of Algorithm 1 is shown in Fig. 2(b), where black/white dots
represent inert nodes with sensed readings higher/lower than
the decision threshold, and cross dots represent inert nodes
whose own readings are lower than the decision threshold but
lie along the branches on which at least one node has sensed
a reading higher than the decision threshold.

(a) (b)

Sentry 
Node

Rf

1

0
0

1

2 4

Object

Inert
Nodes

Fig. 2. The proposed DeCODe framework. The object is shown as the
star, the sentry node is shown as the black square, and circles represent
inert nodes. (a) Network topology before flooding-and-bouncing. (b) During
Phase 3: Selective Bouncing, bouncing messages are initiated by leaf nodes
and routed towards the sentry node along the sub-tree inside the dash-curve-
bounded region; numbers along the edges are the iNodej .x.sumAlarm values
reported by the corresponding inert nodes.

3) Phase 3: Selective Bouncing: The objective of this phase
is to collect positive alarms from relevant sensor nodes and
propagate them to the sentry node. This is accomplished
via b msg messages. As shown in Algorithm 2, only leaf
nodes who either have sensed a measurement higher than the
decision threshold or belong to a branch on which at least
one node has sensed a measurement higher than the decision
threshold can initiate the bouncing process. For example, the
bouncing process in Fig. 2(b) is initiated by the leaf nodes
inside the dash-curve-bounded region. An inert node relays
the bouncing message after hearing from all of its children,
and indicates in the message the total number of positive
alarms raised by nodes belonging to the subtree rooted at itself:
b msg.nAlarm = iNodej .x.sumAlarm. Such bouncing process
is expedited when an inert node has collected adequate (i.e.,
� K − 1) positive alarms for the sentry node to report a
detection. Each inert node also maintains the latest sumAlarm
values reported by its children. This enables the node to update
its sumAlarm values in case one of its children nodes reports
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Algorithm 2 Selective Bouncing

For each inert node iNodej (with node ID j)
Initialization:
1: for (Each sentry node x ∈ iNodej .SentryList) do
2: if (iNodej .x.ChildrenList == ∅) AND (iNodej .x.BranchAlarm == 1) then
3: Broadcast a bouncing message: b msg〈SID = x, PID = iNodej .x.PID,

NID = j, nAlarm = iNodej .x.sumAlarm〉
4: if (iNodej .x.sumAlarm � K) then
5: iNodej .x.BounceDone← 1
6: end if
7: end if
8: end for

Upon receiving a bouncing message b msg〈SID, PID, NID, nAlarm〉:
1: x← b msg.SID
2: y ← b msg.NID
3: if (x ∈ iNodej .SentryList) AND (iNodej .x.BounceDone == 0)

AND (b msg.PID == j) then
4: if (y /∈ iNodej .x.ReportList) then
5: iNodej .x.ReportList← iNodej .x.ReportList ∪ y
6: iNodej .x.sumAlarm← iNodej .x.sumAlarm + b msg.nAlarm
7: iNodej .x.nAlarmy ← b msg.nAlarm
8: else
9: if (iNodej .x.nAlarmy < b msg.nAlarm) then

10: iNodej .x.sumAlarm← iNodej .x.sumAlarm− iNodej .x.nAlarmy

+b msg.nAlarm
11: iNodej .x.nAlarmy ← b msg.nAlarm
12: end if
13: end if
14: if (iNodej .x.ReportList == iNodej .x.ChildrenList)

OR (iNodej .x.sumAlarm � K) then
15: Broadcast a bouncing message: b msg〈SID = x,

PID = iNodej .x.PID, NID = j, nAlarm = iNodej .x.sumAlarm〉
16: if (iNodej .x.sumAlarm � K) then
17: iNodej .x.BounceDone← 1
18: end if
19: end if
20: end if

For each sentry node sNodei (with node ID i)
Upon receiving a bouncing message b msg〈SID, PID, NID, nAlarm〉:
1: y ← b msg.NID
2: if (b msg.SID == i) AND (b msg.PID == i) then
3: if (y /∈ sNodei.ReportList) then
4: sNodei.ReportList← sNodei.ReportList ∪ y
5: sNodei.sumAlarm← sNodei.sumAlarm + b msg.nAlarm
6: sNodei.nAlarmy ← b msg.nAlarm
7: else
8: if (sNodei.nAlarmy < b msg.nAlarm) then
9: sNodei.sumAlarm← sNodei.sumAlarm− sNodei.nAlarmy +b msg.nAlarm

10: sNodei.nAlarmy ← b msg.nAlarm
11: end if
12: end if
13: if (sNodei.sumAlarm � K) then
14: Report a detection
15: return true
16: end if
17: end if

multiple times. This situation may occur because, if the tree is
unbalanced, it is possible (though not likely) that the leaf nodes
along the shorter branches have already started bouncing while
the formation of the longer branches has not yet completed.

Not shown in Algorithms 1 and 2 are how a sentry node
responds to the f msg messages from other sentry nodes and
how it participates in selective bouncing. In such situations,
the sentry node acts exactly like an inert node except that
it uses its most recently-sensed reading to participate in the
decision process, instead of performing an additional sensing
upon reception of the f msg message.

V. THEORETICAL ANALYSIS AND SIMULATION-BASED
VALIDATION OF THE PROPOSED FRAMEWORK

In this section, we give details for calculating the false
detection probability (PFD) and the detection probability (PD).
Before proceeding to that, we first introduce the concepts of
detection zone and fusion range for the proposed framework.

A. Detection Zone and Fusion Range

We define detection zone (D.Z.) to be a disc centered at the
object and with a radius Rd. If the distance between a sensor
and the object is larger than Rd, the probability of the sensor’s
measurement exceeding the decision threshold is less than a
very small number (we use 1% in this paper) hence negligible.

Rd

Rf
Object

Sentry 
Node

Detection 
Zone

Fig. 3. Illustration of detection zone
and fusion range.

On the other hand, if a sensor
is within Rd from the object,
the probability of its mea-
surement exceeding the deci-
sion threshold cannot be ne-
glected and varies with the
distance between them. Given
the definition of D.Z., we
define fusion range to be a
disc centered at a sentry node
and with a radius of Rf =
2Rd. Such definition of fu-
sion range guarantees that,
whenever a sentry node is
within D.Z. of the object and
senses a measurement above
the decision threshold (which itself is a high-probability event),
all inert nodes within D.Z. will be triggered, as shown in Fig. 3.

B. The Calculation of PFD and PD

When there is no object in the network, a sensor’s reading
is only affected by noise. The false detection probability PFD

is the probability that at least one sentry node in the network
reports a false detection:

PF D(K, N
a
K , N

i
K) = P (detection|H0) = 1− (1− PF A)

Na
K , (3)

where PFA is the probability that a sentry node reports a false
detection for a collaboration degree K. Na

K is the number of
sentry nodes. Clearly, when K = 1, PFA = pfa = erfc(T1),
where T1 is the corresponding decision threshold, as shown in
Fig. 1(b). For K > 1, sensors collaborate and PFA is given
by:

PF A = erfc(TK) · P (at least K − 1 sensors within fusion range raise alarms)

= erfc(TK) · (1− Pb),
(4)

where
Pb = P (at most K − 2 sensors raise alarms)

=

Ni
K+Na

K−1∑
m=0

(λ‖D.Z.‖)me(−λ‖D.Z.‖)

m!
×


min(K−2,m)∑

n=0

(m

n

)
(erfc(TK))

n
(1− erfc(TK))

m−n


 ,

(5)

where λ = N i
K +Na

K is the node density in the network. Note
that we treat distinct sentry nodes reporting false detections as
independent events. This is reasonable because, due to the low
PFD usually required by the system, sentry nodes that report
false detection are likely far away from each other, hence their
fusion ranges seldom overlap.

The calculations of PD and PFD are related since both vary
with K,TK , Na

K and N i
K . Next we describe the calculation

details for PD(K,Na
K , N i

K) when the target P ∗FD is given.
The probability of detection is the conditional probability that
given the object is present, at least one sentry node reports a
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detection. Recall that the probability that a sentry node outside
D.Z. recording a detection is very low. Therefore, we have:

PD(K, N
a
K , N

i
K) = P (detection|H1)

�
Na

K+Ni
K∑

n=K

P (n sensors inside D.Z.)×

n∑
m=K

P (m sensors raising alarms upon triggered by a sentry node inside D.Z.)

(6)

=

Na
K+Ni

K∑
n=K

(λ‖D.Z.‖)ne(−λ‖D.Z.‖)

n!
×

n∑
m=K

(( n

m

)
(PA)

m
(1− PA)

n−m

) (
1−

(
Ni

K

Na
K + Ni

K

)m)
,

where λ = Na
K + N i

K is the node density in the network. PA

is the probability that a sensor within D.Z. has a measurement
higher than TK :

PA =

∫ Rf
2

0

2πr

π
(

Rf
2

)2 × erfc

(
TK −

Ωd2
0

r2

)
dr. (7)

C. Simulation-based Validation

In this section, we conduct numerical and simulation studies
to support our previous theoretical analysis. First, we study the
performance of our proposed framework in terms of detection
probability with respect to Na

K , N i
K , TK for various K. For

a fixed Na
K + N i

K (i.e., total number of sensors deployed)
and a target false detection probability P ∗FD = 0.001, Fig. 4
shows PD for different K with respect to varying Na

K . We
observe that for a fixed Na

K , PD increases with K. PD also
increases with increase in Na

K . However, for a fixed Na
K , the

performance improvement is not significant for higher degree
of collaboration, e.g., K increasing from 3 to 4.

500 550 600 650 700 750 800 850 900 950 1000
0

0.2

0.4

0.6

0.8

1

N
K
a: number of sentry nodes

P
D

K = 1
K = 2
K = 3
K = 4
K = 5
K = 6

Fig. 4. Detection probability (Pd) vs. number of sentry nodes (Na
K ) when

P ∗
FD = 0.001 and Na

K + N i
K = 4000.

Fig. 5(a) shows the variation of decision threshold TK (nor-
malized with respect to Ω, signal amplitude of the object) with
K for fixed P ∗FD, Na

K and N i
K . Corroborating our analysis, we

observe that TK decreases with increase in K. This means that,
with a higher collaboration degree, each sentry node will have
a larger D.Z., and therefore would trigger more inert nodes for
collaboration.

To verify the validity of our numerical analysis, we simulate
our proposed framework with the following setup. We deploy
4000 nodes randomly in a unit area, out of which 1000 sentry
nodes regularly sense the environment. We test 10 different
deployments for evaluating the detection probability and the
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Fig. 5. (a) Normalized decision threshold (TK ) vs. degree of collaboration
(K) when P ∗

FD = 0.001, Na
K = 1000, and N i

K = 3000. (b) Comparison of
numerical and simulation results when P ∗

FD = 0.001, Na
K = 1000, N i

K =
3000, Ω = 2100 mW, and d0 = 0.001 units.

false detection probability. For simulating the detection proba-
bility, we randomly choose 40 different locations for the object
and simulation is repeated 100 times for each object location.
We evaluate the false alarm probability based on 10000 trials.
Results plotted in Fig. 5(b) show a close correspondence
between numerical and simulation results. Moreover, since
decision fusion incurs extra energy consumption in triggering
neighboring inert nodes and aggregating collaborative mes-
sages, we further investigate the energy-efficiency performance
of the proposed framework and please refer to [8] for details.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel on-demand framework
for collaborative object detection in wireless sensor networks
based on the probabilistic sensing model. We leverage on the
collaboration between sentry nodes and inert nodes to improve
the system performance in terms of detection probability and
false detection probability. We provide the theoretical analysis
of our proposed framework, and support it with simulation-
based validation. In the future, we would extend our frame-
work to operate in the presence of multiple objects or events
involving diffusion phenomenon. It would also be interesting to
explore the advantages of temporal correlation and investigate
our framework for mobile sensors and objects.
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