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Abstract— Wireless sensor networks have been deployed for
various critical monitoring applications in hostile environments
such as monitoring the concentration levels of hazardous gas
species in a battle field. Due to the sensitivity of such applications,
it becomes mandatory to record the transient variations in the
phenomenon, and take corrective actions, if necessary. At the
same time it is important to shield the network from false data
injection by adversaries who intend to disrupt the functioning
of the system. While many schemes exist to prevent false data
injection, they are counterproductive to preserving the transient
observations. We devise a robust statistical scheme to monitor
transient phenomenon while being immune to false data injection
attacks. The key idea of our scheme is to require each sensor
node to report a statistical digest of recent sensed readings in
addition to the current reading; then inter-sensor statistical tests
are designed and utilized to help preserve transient data while
restricting the impact of false data injection significantly. Detailed
theoretical analysis and in-depth simulations are presented to
corroborate our scheme.

I. INTRODUCTION

Application of wireless sensors for monitoring applications
has gathered significant attention from research community re-
cently. Numerous sensors are deployed to monitor a particular
area which could range from an industrial setup to an environ-
mental habitat. The network is responsible for collecting data
and sending it to a distant Base Station (BS) for monitoring
and taking requisite actions, if any. Due to large number of
sensors, high volume of data is generated and the network is
typically organized into clusters, with a Cluster Head (CH)
that is responsible for local decision making and aggregation
of data to be forwarded to BS.

The data being reported is prone to all sorts of malicious
attacks, where the adversary can compromise a sensor node and
gain access to all the stored information. It can also alter the
contents of the data in order to make BS accept a false value.
Such an attack is called False Injection attack [1]. Typically,
this attack has been addressed using schemes [1]–[5] wherein
the sensors report only the readings and a certain designed
number of sensors should agree (similar to majority voting)
for the reading to be considered valid. Such a scheme has an
inherent limitation: in the presence of a transient phenomenon,
the data source will be varying and sensors may not agree with
each other even though all reported data is genuine; hence, data
reported by a sensor may be classified wrongly as false and
rejected. Moreover, a monitoring application would be typically
interested in recording the transient phenomenon and taking
necessary actions. Hence, we devise a scheme which preserves

the transient variation while being simultaneously immune to
false injection attacks.

The problem of distinguishing transient data from false data
has not been studied in great depth before. Various secure
aggregation schemes [6]–[9] designed to compute specific
aggregates don’t find direct application in our goal of dis-
tinguishing data transience from false injection. In a recent
work [10], we propose SSTF, a novel scheme for distinguishing
data transience from false injection. SSTF employs a statistical
framework on top of a suitably enhanced version of an existing
security scheme to achieve its goals. In contrast to [10], in
this paper we concentrate on the statistical part only and
present theoretical analysis to demonstrate the robustness of
our scheme. We derive maximum possible false injection on
the reported reading that would be accepted in our scheme,
which shows that a compromised node will never be able to
make a significant impact in our scheme regardless of the false
readings it may report.

The rest of the paper is organized as follows. We give the
system model and problem statement in Section II. We describe
the proposed scheme in Section III and give a detailed security
analysis in Section IV. Simulation results are presented in
Section V and we conclude the paper by presenting conclusions
and future work in Section VI.

II. MODELS AND PROBLEM STATEMENT

A. System Model

The wireless sensor network is partitioned into clusters; each
cluster has a Cluster Head (CH) and a set of sensor nodes,
which gather information and transmit it to CH . CH does
decision making and aggregation on the information received
from the sensors and forwards an aggregated report to a distant
Base Station (BS).The sampling rate of sensors depends on
the maximum phenomenon variation per unit time as well as
the spatial diffusion rate. Instead of sending only the sensed
reading to CH , each sensor does a local computation over a
sliding window of recent sensed readings and sends a statistical
digest to CH at periodic intervals.

B. Threat Model

Sensor nodes may be compromised or physically captured.
All the secret information stored in a compromised node can
be accessed by the adversary. Various attacks like dropping
reports or altering the message contents can be launched, so
as to prevent the base station from receiving authentic sensor
readings. Also, there may be colluded attacks where two or
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more nodes collaborate to let the false reports escape detection
in the downstream path to the BS.

C. Problem Statement

If the phenomenon being sensed observes transient vari-
ations, instantaneous sensor readings recorded by individual
sensors in a cluster may vary. Even though other sensors
do not immediately agree, they should sense similar transient
variation after a few samples due to the diffusing nature of the
phenomenon. Also, such transient data is genuine and should
be preserved. A compromised node (or group of colluding
compromised nodes) will try to inject a false reading into
the network and our aim is to minimize the impact of false
injection on the aggregation process and detect it eventually.
Thus, we identify the following design goals for our scheme:

• It should distinguish genuine transient data from injected
false data and report them with low false positives;

• False data injection should have minimal impact on the
aggregation process and be detected as soon as possible.

III. PROPOSED SCHEME

We propose a robust statistical scheme to monitor transient
phenomenon in wireless sensor networks while being immune
to false injection attacks. Our scheme has four aspects of
operation: Individual Sensor Behavior; CH Behavior; Sensor
Endorsement; and En-route Nodes and BS Behavior.

Security Assumptions: Similar to others [1], [10], we proceed
with the following security assumptions.Every node shares a
master secret key with BS. Each node knows its one-hop
neighbors and has established a pairwise key with each of them.
A node can establish a pairwise key with another node that is
multiple hops away, if needed. All the nodes are equally trusted
and if a node is compromised, all the information it holds will
also be compromised. However, it is assumed that BS can
not be compromised. We consider a clustered wireless sensor
network and there can be either one-to-one correspondence or
many-to-one correspondence established between the cluster
nodes and the en-route nodes to BS. With a proper association
scheme and an en-route filtering scheme, it is ensured that as
long as a valid cluster node does not sign the false aggregated
report, it will eventually be detected en-route and dropped
before being propagated further. In the rest of this paper,
aforementioned security assumptions hold, and more details
of the security scheme can be found in [10] and [1]. Table I
summarizes the notations used in this paper.

A. Individual Sensor Behavior

A sliding window implementation is instituted at each in-
dividual sensor node in the cluster. A sensor node senses the
phenomenon at the sampling rate. It maintains a buffer size
equal to that of the sliding window (w) to store the w most
recent readings. Every time a new reading is sensed, the oldest
one is deleted, thus maintaining a sliding window of size w at
each sensor. We need to have w samples to generate a report.
After every reporting interval (n samples), the sensor node vk

computes the sample mean (µk), and sample variance (σ2
k) over

TABLE I

NOTATIONS USED IN THE PAPER

Notation Remarks

P Phenomenon being sensed by a cluster.
D Diffusion rate of P , measured in units/sec.
ρ Phenomenon variation rate: maximum change

in the phenomenon per unit time measured in
units/sec (e.g. ppm/sec for gas concentration, etc).

x Sampling rate at each sensor, measured in samples/sec.
d Maximum inter-node distance between any two sensor

nodes within a cluster, measured in meters.
n Reporting interval: each sensor sends report to CH

every n samples.
w Size of the sliding window.
τ Number of nodes in the cluster (including CH).
vk A sensor in the cluster other than CH .
rk Sensed reading reported by vk in a report.
µk Sample mean reported by vk in a report.
σ2

k Sample variance reported by vk in a report.
Rk A report sent by vk in the format of (rk, µk, σ2

k).
RAg The aggregated report generated by CH

in the format of (rAg, µAg , σ2
Ag).

the sliding window (w samples). This is further illustrated in
Fig. 1. The report from sensor node vk to CH is in the format
of Rk ≡ (rk, µk, σ2

k).

Fig. 1. Sliding window implementation and report generation at sensor node
vk . r, µ, σ are respectively the last reading, mean and standard deviation of
w samples in a sliding window. Shown are reports for two windows (i = 1, 2)
at vk . There are n non-overlapping samples between two adjacent windows.

B. Cluster Head Behavior

In addition to performing the same functions as other sensors
in the cluster, CH collects the reports Rk from all individual
sensors for testing and aggregation.

CH performs three inter-sensor tests. First, CH verifies the
bounds on the readings reported by individual sensors, and if
true, CH does a pairwise inter-sensor test to verify conformity
of the reported distributions. Finally, CH does a bin test on
the reports that pass the previous two tests to further limit the
impact of false data by utilizing the reported distributions.

1) Bound Test: Bound test checks for the maximum possible
difference between the readings reported by the sensors. The
maximum inter-node distance is d and phenomenon diffusion
rate is D. So the maximum time taken for a reading to
diffuse between two sensors is d

D . Since the phenomenon can
change at a maximum rate of Phenomenon variation rate ρ,
the maximum difference between readings reported by any
two sensors is ρ d

D . Thus the readings reported by two well-
behaving sensors j and k should satisfy:

|rj − rk| � ρ
d

D .
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2) Distribution Test: For the sensors that have passed the
bound test, CH does a further pairwise test to check whether
the distributions reported by the sensors conform to each
other. CH takes the means µk reported by the sensors as
measurements of a common mean. For two sensors vi and vj ,
CH does a z-test to check whether the means µi and µj are
equal with α confidence level, where α is a design parameter
and the desired α can be achieved by adjusting the sliding
window size. The z-test procedure is described in Fig. 2.

z-test for equality of two sensor reports

For any two sensors vi, vj :
N (µi, σ

2
i ): Distribution reported by vi

N (µj , σ
2
j ): Distribution reported by vj

To test µi = µj :
1) Compute Standard deviation of the difference distribu-

tion: σ2
ij = σ2

i + σ2
j .

2) Compute Standard error of the means: zij =
|µi−µj |√

σ2
ij
w

.

3) The condition for µi = µj with α confidence level is
zij � zα × σij . In this paper we use confidence level
of α = 90%; correspondingly zα = 0.1257.
Substituting for zij and σij , the condition becomes:

|µi − µj | � zα × σ2
i +σ2

j√
w

.

Fig. 2. Procedure for z-test

For the sensors that pass the distribution test, CH proceeds
to calculate the aggregated mean and variance based on the
sample means and variances reported by the individual sensor
nodes. Specifically, CH takes the means reported by individual
sensors as measurements of a common aggregated mean which
needs to be computed. Under this assumption, the aggregated
mean and variance can be computed by using Maximum
Likelihood Estimation (MLE):


µAg =

∑ γ
k=1 µk/σ2

k∑ γ
k=1 1/σ2

k
,

σ2
Ag = (

∑γ
k=1 1/σ2

k)−1,

(1)

where γ � τ is the number of sensors that passed the
distribution test. τ is the total number of nodes in the cluster.

3) Bin Test: The bound test limits the false readings to be
accepted only if they are within known bounds of variation, still
this could result in a large error. We utilize the aggregated vari-
ance produced at the end of the distribution test to further limit
the impact of false data on the aggregation process with the
following bin test. Bin test is performed only on the readings
reported by individual sensors that have passed both the bound
test and the distribution test, called the eligible sensors. For
each eligible sensor vk, CH utilizes the aggregated variance
to form a bin of size [rk − 2σAg, rk + 2σAg]. Then it checks
if the reading reported by other eligible sensors lie in this bin.
CH does this for every eligible sensor. Once it knows the bin
size of all eligible nodes, it picks one with the largest size and
averages the readings to compute a final aggregated reading
rAg . This is illustrated in Fig. 3.

Fig. 3. Bin Test. Number of sensors in Bin1, Bin2, Bin3, Bin4, Bin5 is
4,4,4,4,1 respectively. Hence final rAg = 1

4
(r1 + r2 + r3 + r4).

After rAg is computed, CH sends the aggregated report
RAg = (rAg, µAg, σ

2
Ag) to the individual sensors belonging

to the selected bin for endorsement.

C. Sensor Endorsement

When a sensor vk receives the aggregated report RAg from
CH for endorsement, which is done to prevent CH from lying
about the aggregation process, it performs the following tests:

• σAg � σk;
• z-test to test whether µAg = µk as described in Fig. 2;
• bin test on rAg: rAg ∈ [rk − 2σAg, rk + 2σAg].

vk endorses RAg only if the above conditions are met. If vk

is able to endorse , it signs RAg using two keys, one it shares
with an en-route node and one with BS [1], [10]. vk sends this
endorsed report to CH . Since CH does not have knowledge
of any of these two keys, it can make no further changes to
the endorsed reports.

D. En-route Nodes and Base Station Behavior

When CH receives endorsements from individual sensors,
it merges them into a single report to be forwarded towards
BS. When an en-route node receives the report, it verifies the
integrity of the report by checking the endorsement key. If it
is able to verify the entry, it forwards the report to the next en-
route node, else it drops the report. The process thus continues
to BS. If the verification at BS succeeds, the report RAg

is accepted, else it is discarded. Interested readers may refer
to [1], [10] for details of the en-route node filtering scheme,
which is not the focus of this paper, and is omitted due to
space limitations. BS records all the reports from each CH
in the network, and uses them to depict the variations in the
phenomenon.

E. Example
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Fig. 4. An example to illustrate Bound Test, Distribution Test and Bin Test.
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Consider a sensor cluster shown in Fig 4. Source, four sensor
nodes and CH are randomly placed in a circle of radius 5 units.
The source exhibits random variations in the source data as
shown in Fig. 5. The window size w = 100 samples. Table II
lists the reports generated by the sensors at a particular instant.
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Fig. 5. Source data. Shown are the readings sensed by the sensors vi; i =
1, 2, 3, 4, CH . There is a delay in the reading measured based on distance
from the source.

TABLE II

LIST OF DATA REPORTS GENERATED BY SENSORS IN THE EXAMPLE

Sensor r µ σ2

v1 127.719 100.396 735.982
v2 130.709 99.320 734.46
v3 127.680 100.572 735.06
v4 127.761 99.441 734.41
CH 128.519 99.787 734.14

• Bound test:

– ρ d
D = 250;

– Since maxi,j∈{1,2,3,4,CH} |ri − rj | = 3.029 < 250,
all inter-sensor bound tests are passed.

• Distribution Test: Distribution test is performed only on
µi and σ2

i reported by the sensors. For example, for
sensors v1 and v2, |µ1 − µ2| = 1.0759 which is less than
(zα × σ2

1+σ2
2√

w
= 18.484). It is verified that all the pairwise

distribution tests pass. As a result, CH computes the
aggregated mean µAg = 99.9034 and aggregated variance
σ2

Ag = 146.97.
• Bin test: The bins are constructed around sensor readings.

Since σAg =
√

146.97 = 12.1231, we have

– Bin1: µ1 + 2σAg ≡ [103.4729, 151.9652];
– Bin2: µ2 + 2σAg ≡ [106.4629, 154.9552];
– Bin3: µ3 + 2σAg ≡ [103.4338, 151.9262];
– Bin4: µ4 + 2σAg ≡ [103.5148, 152.0072];
– BinCH: µCH + 2σAg ≡ [104.2728, 152.7652].

It can be seen that all the sensor readings belong to each
of the bins. Thus the largest bin size is 5 and rAg =
(r1 + r2 + r3 + r4 + r5)/5 = 128.4776.

• Sensor Endorsement: CH sends the aggregated report
RAg ≡ (rAg, µAg, σ

2
Ag) to the the sensors for endorse-

ment. When sensor v1 receives RAg , it tests:

– σAg � σ1: true since 12.1231 < 27.129;
– z-test to test µAg = µ1: true since |µAg − µ1| =

0.4934 which is less than (zα × σ2
1+σ2

Ag√
w

= 11.099);

– bin test on rAg: true since 128.4776 ∈
[103.4729, 151.9652].

Similarly, all other sensors do the same verifications
before endorsing RAg.

IV. SECURITY ANALYSIS

A. Effect of False Data Injection with the simple 1-step Bound
Test

Consider Fig. 6. r is a valid measurement. Let B = ρ d
D

denote the maximum possible difference between the readings
allowed by the Bound Test. rmin and rmax are respectively the
true minimum and maximum readings taken amongst all the
sensors. Assume that the readings have a uniform distribution
over [rmin, rmax]. Let Wr = rmax−rmin denote the width of
this interval. The maximum possible reading that can escape
the bound test is given by rmin +Wr. The compromised node
wants a false data r

′
= r + ∆r to get accepted.

rmin rma
x

B-(
r-rm

in
)
rmin

+B
B-W

r

Fig. 6. Imposing limits based on the Bound Test.

We are interested in computing the maximum possible
expected distortion that an attacker can inject without being
detected i.e. we want to maximize the expectation E[∆r|∆r

is accepted]. For a given r, let IA(∆r) denote the indicator
function whether ∆ is accepted, i.e.

IA(∆r) =

{
1, 0 � ∆r � rmin + B − r,

0, Otherwise.
Then we have

E[∆r|∆r is accepted]

=
∫ rmax

rmin

IA(∆r)∆r
dr

rmax − rmin

=




∆r, ∆r � B −Wr,
(B−∆r)∆

Wr
, B −Wr < ∆r � B,

0, ∆ > B.

(2)

Differentiating E[∆r] with respect to ∆r, we get the optimal
∆r = ∆∗

r given by:

∆∗
r =

{
B −Wr, Wr < B

2 ,
B
2 , Wr � B

2 .
(3)

Subsequently, the maximum expectation is given by:

Emax = max
∆r

E[∆r|∆ris accepted]

=

{
B −Wr, Wr < B

2 ,
B2

4Wr
, Wr � B

2 .

(4)

Fig. 7 illustrates the variation of expectation with respect to
∆r. We can see that ∆r is dependent on B and Wr. When
the source variation is less, Wr is small and the compromised
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Fig. 7. E[∆r|∆r is accepted] vs. ∆r .

node should report r
′

= r + B − Wr; in case of a highly
varying source, Wr is large and the compromised node should
report r

′
= r+ B

2 . Assuming there are K nodes participating in
the aggregation process, on an average, a single compromised
node is able to distort the aggregated reading rAg by Emax/K,
where Emax is given by Eq. (4). As such, with simple 1-
step bound test, the network can still suffer pretty significant
injection effects.

B. Effect of False Data Injection with the proposed 3-step
testing scheme

1) Effect on µAg and σ2
Ag: Our primary measurement of

interest are the readings and not the mean and variance.
Nonetheless, mean and variance are important for the func-
tioning of our scheme. In the following we show that reporting
false mean or variance does not help the attacker.

A pairwise distribution test is performed to test the
equality of means reported by the sensor nodes. Let vj be a
compromised node with true mean and variance of (µ, σ2).
Assume vj reports (µ

′
, σ

′2) instead of the true values. To
pass the distribution tests, the following conditions should hold:

|µ′ − µk| � zα
σ

′2 + σ2
k√

w
; ∀k ∈ [1, τ ], k �= j,

where (µk, σ2
k) is the distribution reported by sensor vk and τ

is the number of nodes in the cluster.
µmin, µmax are the minimum and maximum means reported

by the sensor nodes. All the reported means are assumed to
be normally distributed over [µmin, µmax]. Let Wµ = µmax −
µmin denote the width of this interval. When the adversary
plans to inject false mean and variance, it assumes all other
sensors have the variance equal to its genuine variance. This is
justified because the phenomenon is assumed to be a diffusion
process and all sensors are sensing the same phenomenon. Also
the computation is being done over a large sliding window,
promoting homogeneity of variances.

Let µ
′

= µ + ∆µ and σ
′2 be the false mean and variance

reported by the compromised node. For a given ∆µ, let IA(σ
′2)

denote the indicator function whether σ
′2 is accepted. IA can

be written separately for two cases as shown below:

• When ∆µ � µmin+µmax

2 :

IA1(σ
′2) =

{
1, µ + ∆µ − µmin � zα√

w
(σ

′2 + σ2),

0, Otherwise.

• When ∆µ < µmin+µmax

2 :

IA2(σ
′2) =




1, µ + ∆µ − µmin � zα√
w

(σ
′2 + σ2) &

µ + ∆µ > µmin+µmax

2 ,

1, µmax − (µ + ∆µ) � zα√
w

(σ
′2 + σ2) &

µ + ∆µ < µmin+µmax

2 ,

0, Otherwise.

If the goal of the attacker is to minimize the aggregated
standard deviation σ2

Ag, so as to disturb the Bin Test and
consequently the final aggregated reading, it would try to report
the smallest σ

′2 that will be accepted. This will reduce σ2
Ag and

hence the bin size, such that the number of sensors constituting
the largest bin reduces while the compromised node may still
be a part of the largest bin. This can be obtained by maximizing
the expectation

E
[

1
σ′2 |σ

′2 is accepted
]

=
∫
Ω

IA(σ
′2) 1

σ′2
dµ

µmax−µmin
, (5)

where Ω denotes the range of valid means. Similar to the
indicator function, E[ 1

σ′2 |σ
′2 is accepted] can be computed for

two cases as shown below:
• When ∆µ � µmin+µmax

2 :

E
[

1
σ′2 |σ

′2 is accepted
]

=


1
σ
′2 , σ

′2� (Wµ+∆µ)
√

w

zα
−σ2,

zα√
w

(σ2+σ
′2)−∆µ

σ
′2Wµ

,
∆µ

√
w

zα
−σ2�σ

′2<
(Wµ+∆µ)

√
w

zα
−σ2,

0, σ
′2<

∆µ
√

w

zα
−σ2.

(6)

• When ∆µ < µmin+µmax

2 :

E
[

1
σ′2 |σ

′2 is accepted
]

=


1
σ
′2 , σ

′2� (Wµ+∆µ)
√

w

zα
−σ2,

zα√
w

(σ2+σ
′2)−∆µ

σ
′2Wµ

,
(Wµ−∆µ)

√
w

zα
−σ2�σ

′2<
(Wµ+∆µ)

√
w

zα
−σ2,

2zα√
w

(σ2+σ
′2)−Wµ

σ
′2Wµ

,
Wµ
2

√
w

zα
−σ2�σ

′2<
(Wµ−∆µ)

√
w

zα
−σ2,

0, σ
′2<

Wµ
2

√
w

zα
−σ2.

(7)

From the above expressions, it can be seen that the expectation
decreases as ∆µ increases. Hence if the attacker wants to
maximize the expectation, it should choose ∆µ = 0. On the
other hand, we can see that the expectation increases as σ

′2

increases up to σ
′2 = (Wµ+∆µ)

√
w

zα
− σ2 and then it starts

decreasing. Hence, the maximum expectation occurs when{
∆∗

µ = 0,

σ∗2 = max
(Wµ

√
w

zα
− σ2, 0

)
.

(8)
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The maximum expectation is Emax = 1( Wµ
√

w

zα
−σ2

)2 . The

dependence of Emax on ∆µ and σ
′2 is shown in Fig. 8. The

plot is shown for the case when ∆µ � µmin+µmax

2 (= 25). Plot
for ∆µ > 25 is not shown since it will have smaller maximum
expectation and will decrease with increasing ∆µ. We can see
three distinct surfaces, which correspond to the three cases in
Eq. (7).

Fig. 8. E
[

1

σ
′2 |σ

′2 is accepted
]

vs. ∆µ and σ
′2.

Thus, compromised node should report a false mean µ∗ =
µ + ∆∗

µ = µ and a false variance σ∗2 = Wµ
√

w
zα

− σ2. The
effect on aggregated mean and variance is shown below:


µ∗

Ag =

∑ γ
k=1
k �=j

µk/σ2
k+µ/(

Wµ
√

w

zα
−σ2)∑ n

k=1
k �=j

1/σ2
k

,

σ∗2
Ag =

(∑γ
k=1
k �=j

1/σ2
k + 1/(Wµ

√
w

zα
− σ2)

)−1

,

(9)

where γ is the number of sensors that passed distribution tests.
On the other hand, if goal of the attacker is to increase σ2

Ag

so that it can report a higher µ
′

to be accepted. It is noted from
Eq. (1) that σ2

Ag will be the largest when σ
′2 = ∞. Hence, the

adversary reports σ∗2 = ∞. Consequently, regardless of the µ
′

being reported, the effect on µ∗
Ag and σ∗2

Ag is given by:


µ∗
Ag =

∑ γ
k=1
k �=j

µk/σ2
k∑ n

k=1
k �=j

1/σ2
k

,

σ∗2
Ag =

(∑γ
k=1
k �=j

1/σ2
k

)−1

.

(10)

2) Effect on rAg: If only the simple 1-step bound test
is implemented, an attacker injects false reports using ∆∗

r

calculated in Eq. (3). In such a scenario, the attacker can
succeed to induce a large error into the aggregated readings as
the bounds are still very loose. However, in our scheme, due
to the additional application of distribution test and bin test,
the limits on the false data being accepted is tightly restricted.

After distribution test is passed, CH computes the ag-
gregated mean (µAg) and aggregated variance (σ2

Ag). In the
presence of compromised node, the computed aggregate mean
and variance (µ∗

Ag and σ∗2
Ag) are bounded by Eqs. (9) and (10).

CH then does a bin test on the eligible sensors and computes
the aggregated reading (rAg) by averaging the reading of the
sensors belonging to the largest bin. As such, if an attacker

wants to report a false reading, it has to report a reading which
will be included in the bin.

With these tests into effect, bound on readings reported by
the attacker can be calculated as follows. Conventions are the
same as in Section IV-A. r is a valid measurement. rmin and
rmax are respectively the true minimum and maximum read-
ings reported amongst the sensors. The reading r is assumed
to a uniform distribution over [rmin, rmax]. The maximum
reading that a compromised node can report to escape detection
is rmin+2σ∗

Ag. σ∗2
Ag is the optimal affected aggregated variance

based on the optimal σ∗2 reported by the compromised node.
The goal of the attacker could have been to either increase or
decrease σ2

Ag as discussed in Section IV-B.1.
The compromised node wants a false value r

′
= r + ∆r

to get accepted. We are interested in computing maximum
possible expected distortion that attacker can inject without
being detected, which is obtained by maximizing the condi-
tional expectation E[∆r|∆r is accepted]. Following a similar
analysis as in Section IV-A, replacing B by 2σ∗

Ag , we can get
the optimal ∆r:

∆∗
r =

{
2σ∗

Ag −Wr, Wr < σ∗
Ag,

σ∗
Ag, Wr � σ∗

Ag.
(11)

Also, the maximum expectation is:

Emax =

{
2σ∗

Ag −Wr, Wr < σ∗
Ag,

σ∗2
Ag

Wr
, Wr � σ∗

Ag.
(12)

We can see that ∆∗
r is dependent on the aggregated variance

σ∗2
Ag and Wr. When the source variation is less, Wr is small

and the compromised node should report r
′

= r + 2σ∗
Ag −

Wr; in case of a highly varying source, Wr is large and the
compromised node should report r

′
= r + σ∗

Ag. If there are K
nodes participating in the aggregation process, on an average,
a single compromised node is able to distort the aggregated
reading rAg by Emax/K, where Emax is given by Eq. (12).

Thus, utilizing distribution test and bin test, we are able to
restrict significantly the maximum false reading that would be
accepted by the system. This is evident from the fact that pa-
rameter 2σ∗

Ag in Eq. (11) is typically much smaller in practice
than parameter B in Eq. (3), where B is the maximum possible
difference in the readings that can be observed between two
sensors when the phenomenon variation rate is maximum.

C. Compromised Cluster Head

In general, irrespective of the testing scheme being applied,
the worst case performance of the system occurs when CH
is compromised. This happens because compromised CH can
lie about the aggregated report RAg = (rAg, µAg, σ

2
Ag). Here

we show the bounds on false readings that can be reported
in this case. CH sends RAg back to selected sensors for
endorsement. The following conditions should hold for the
RAg to be accepted for endorsement:

• From Eq. (1), we can see that σAg � min(σi), for each
sensor vi. Hence RAg with a larger σAg will be rejected.
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To alter the aggregated mean µAg, CH chooses the largest
possible σAg given by: σ

′
Ag = min(σi).

• A sensor vi performs distribution test to test the equality
of µAg and µi. Hence, a large µAg will be rejected if it
does not satisfy the distribution test. Based on discussion
in Section IV-B.1, the maximum false µ

′
Ag that can be

accepted is given by:

µ
′
Ag = min

(
µi + zα

min(σ2
i )+σ2

i√
w

)
, (13)

where i is the index of the eligible sensors.
• Further, the aggregated reading rAg should satisfy the

bin test at each endorsing sensor vi. Let rAg be the true
aggregated reading, and r

′
Ag be the maximum acceptable

false reading reported by compromised CH . It is easy
to see that, if CH reports r

′
Ag = min(ri) + 2σAg , it

will always be accepted. Thus, CH can distort the true
readings by a maximum of rAg − min(ri) + 2σAg .

On the other hand, with the 1-step Bound Test scheme, when
CH is compromised, if CH reports r

′
Ag = min(ri)+B, it will

always be accepted. Thus, CH can distort the true readings by
a maximum of rAg−min(ri)+B. As discussed before, since B
is typically much larger than 2σAg, our scheme performs much
better than simple Bound Test scheme. Also, in our scheme the
false r

′
Ag is always within ±2σAg of the true rAg , which is a

pretty tight bound.

V. PERFORMANCE EVALUATION

We study the performance of our scheme by simulation.
Comparisons are done with the naı̈ve bound test scheme to
show significant improvements with respect to immunity to
false data injection and with a simple majority voting scheme
to show preservation of transient data. We also study the per-
formance of the scheme under various scenarios like different
phenomenon variation rates and extent of false injection.

A. Simulation Setup

The wireless sensor network is divided into circular clusters.
Each cluster is responsible for sensing the time-varying phe-
nomenon in its region. Cluster nodes are randomly placed in
the circular region and one of the nodes is CH . A single source
is present at a random location in the cluster. The phenomenon
exhibits a radial diffusion pattern, implying that the sensors
nearest to the source sense the change first. Table III lists the
parameters used for simulation.

TABLE III

SIMULATION PARAMETERS

Parameter Notation Value

Phenomenon variation rate ρ 10 units/sec
Maximum inter-sensor distance d 10 meters
Diffusion rate D 2 units/sec
Sampling rate x 10 samples/sec
Reporting interval n 25 samples
Sliding window size w 1000 samples
Number of nodes in the cluster τ 10
Random measurement error at sensors N (0, 0.01)

B. Simulation Results

We conduct various simulations to demonstrate the effec-
tiveness of our scheme and compare it with bound test scheme
to show the improvements. We also study the impact of
phenomenon variation on our scheme vis-a-vis bin size and
the aggregation process.

1) Preservation of Data Transience: We consider the per-
formance of our scheme in the presence of no compromised
nodes. The phenomenon varies from 0 units/second to 50
units/second which amounts to a change of 0 units/sample to
5 units/sample. Fig. 9 illustrates the simulation results. In our
scheme, most of the times all the nodes form a majority and all
the genuine data is preserved regardless of transient variations.
It is observed that when the variation rate is small, up to 15%
of the nodes are excluded from participating in the aggregation.
This could be a possible negative side effect of our scheme,
however, since this occurs only when the source data is pretty
constant, the effect on rAg is very small.
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Fig. 9. Nodes in Majority vs. Phenomenon Variation.

We compare our scheme to a simple majority voting scheme
where nodes agree if the readings reported are within random
measurement error of each other. When there is no variation,
the readings are pretty constant and all the nodes agree.
However, as variation rate increases, the readings amongst
sensors do not agree with each other any more, hence more
and more genuine data are excluded from aggregation. Thus
the system starts losing “important” information during data
transience which is not desired. We can see in Fig. 9, up to
60% data is lost at high variation rates.

2) Immunity to False Data Injection: We consider a single
compromised node injecting false data into the network. We
study the effect of the false report on the aggregated reading.
Also, we simulate how different phenomenon variation rates
affect our scheme. Fig. 10 shows the impact on the aggregated
reading when when the compromised node is injecting false
data at a constant ∆ = 12.5 units. The Y-axis represents the
effect of false data and is the absolute difference between the
true aggregate and the computed aggregate in the presence of
a compromised node. It is observed that as the phenomenon
variation rate increases, σAg also increases (refer to Eq. (12)),
and consequently the effect of false data increases.

In Fig. 11(a), we show the effect of false data with respect to
different phenomenon variation rates and false injection. The
compromised node adds a constant false value, measured in
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Fig. 10. False effect vs. Phenomenon variation for a constant false injection
of ∆ = 12.5 units.
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(a) Our proposed scheme: Bound Test + Distribution Test + Bin Test
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(b) Bound Test scheme

Fig. 11. False effect vs. Phenomenon variation and False Injection. Please
note that the z-axis scale of (a) is different than that of (b). The maximum
false effect in the case of Bound Test is about 30 times more than that with
Bin Test.

units, shown as false injection on the Y-axis. Z-axis represents
the effect on rAg . X-axis represents phenomenon variation rate.
As discussed above, it can be seen that, for a constant false
injection, the impact of false data increases with phenomenon
variation rate. On the other hand for a constant rate, as false
injection is increased, the impact of false data first increases
and then decreases and becomes zero as the false injection is
increased further. This observation is expected and in accor-
dance with our theoretical analysis (refer to Section IV-B.1).

3) Comparison with the Bound Test scheme: We compare
the performance of our scheme with the 1-step bound test
scheme. Fig. 11(b) shows the effect of false data with respect
to varying false injection and phenomenon variation rate. It is
observed that the impact of false data increases with higher
variation rate since the bound increases. With increasing false
injection, the impact of false data first increases and then

decreases and finally becomes zero, as expected. However, it
is important to note that the effect of the false reading on the
aggregate rAg is much more pronounced in this case than in
our scheme. In our scheme, the majority of false injection is
filtered out and whatever is accepted has very small effect.
In contrast, in the Bound Test scheme the adversary is easily
able to inject a difference, approximately 30 times that of our
scheme. This indicates the superiority of our scheme and the
necessity of using distribution test and bin test.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a robust statistical scheme to mon-
itor transient phenomenon in cluster-based sensor networks.
Our scheme requires sensors to add extra statistical information
into their data reports to the cluster head. At the cluster head,
instead of applying the naive majority voting scheme to test
equality of reported sensed readings, three inter-sensor tests,
namely bound test, distribution test, and bin test, are performed.
As a result, genuine transient data within normal variation
range are preserved most of the time, while injected false data
are either filtered or their effects on the final data aggregation
are limited significantly. We demonstrate the effectiveness of
our scheme via detailed analysis and in-depth simulation.

Our scheme presents a complete statistical framework and
can be suitably applied on top of any existing security scheme.
Future work includes extending our scheme to operate in a
dynamic topology, e.g., in conjunction with the security scheme
presented in [4]. It would also be interesting to look into
the modifications mandated for the application of our scheme
to a structure-free aggregation setup [11]. We also plan to
implement the proposed scheme on a sensor network test-bed.
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