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Abstract. In this paper, we study the fundamental limits of a wireless
sensor network’s lifetime under connectivity and k-coverage constraints.
We consider a wireless sensor network with n sensors deployed indepen-
dently and uniformly in a square field of unit area. Each sensor is active
with probability p, independently from others, and each active sensor
can sense a disc area with radius rs. Moreover, considering the inherent
irregularity of a sensor’s sensing range caused by time-varying environ-
ments, we model the sensing radius rs as a random variable with mean
r0 and variance r2

0σ
2
s . Two active sensors can communicate with each

other if and only if the distance between them is smaller than or equal
to the communication radius rc.

The key contributions of this paper are: (1) we introduce a new def-
inition of a wireless sensor network’s lifetime from a novel probabilistic
perspective, called ω-lifetime (0 < ω < 1). It is defined as the expectation
of the time interval during which the probability of guaranteeing connec-
tivity and k-coverage simultaneously is at least ω; and (2) based on the
analysis results, we propose a near-optimal scheduling algorithm, called
PIS (Pre-planned Independent Sleeping), to achieve the network’s max-
imum ω-lifetime, which is validated by simulation results, and present a
possible implementation of the PIS scheme in the distributed manner.

1 Introduction

Energy conservation is perhaps the most important issue in wireless sensor net-
works [1, 2]. Most sensor devices are battery-powered and hence have a very
limited amount of energy. It is, therefore, very important to extend the battery
operation time of individual sensors and, consequently, the network’s lifetime.
Operating each sensor device in a low duty-cycle has been recognized as an ef-
fective way to achieve this goal, where duty-cycle is defined as the fraction of
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time that a sensor device is active. On the other hand, a wireless sensor network
typically has two major tasks: sensing and communication. It is always desirable
to have all active sensors connected and, at the same time, to have the entire
sensing field k-covered. The connectivity among active sensors is required in or-
der for an active sensor to report its sensing results back to the user, and the
reason for requiring k-coverage rather than just 1-coverage is to increase the de-
tection probability and accuracy of tracking. Obviously, the lower the duty-cycle
of individual sensors, the longer the wireless sensor network’s lifetime, but at
the same time, there are a smaller number of active sensors at a given time and,
hence, more likely either active sensors are not connected or the k-coverage of
the sensing field cannot be guaranteed. So, there are inherent tradeoffs, and the
key contribution of this paper is to present an integrated study on connectivity,
k-coverage, and lifetime of a large-scale wireless sensor network.

1.1 Related Work

Several researchers [3, 4, 5, 6, 7, 8] have addressed the coverage and connectivity
issues in wireless sensor/ad hoc networks. Gupta et al. [3] studied scaling laws
for asymptotic connectivity of sensors placed at random over a unit area, and
provided bounds on connectivity probability for finite-size networks. In [4], the
authors presented an analytical procedure to compute the node isolation proba-
bility in an ad hoc network in the presence of channel randomness, and showed
that, under the assumption that sensing relies on the same wave propagation laws
that also guide signal propagation, the coverage probability coincides with the
complement of the node isolation probability. In [5], the authors studied the re-
lation between k-coverage and k-connectivity when the communication radius is
at least twice the sensing radius, where the sensing radius is deterministic. How-
ever, no statistical properties of either k-coverage or k-connectivity were given.
In [6], three fundamental coverage measures of large-scale sensor networks were
studied: area coverage, node coverage, and detectability. In [7] and [8], the asymp-
totic coverage problem was addressed for mostly-sleeping (unreliable) wireless
sensor networks, where 1-coverage was studied in [7] and k-coverage in [8], but
neither one provided the sufficient-and-necessary condition for asymptotic cov-
erage. None of the above work studied network’s lifetime under connectivity and
coverage constraints.

Recently, research efforts [9, 10] have been made to analyze the lifetime of a
wireless sensor network with coverage requirements. The definitions of network’s
lifetime in these literature are different from ours. In [9], the lifetime refers to
the time it takes for the coverage — defined as the fraction of the area covered
by working sensors — to drop below a pre-defined threshold. In [10], the α-
lifetime of a wireless sensor network is defined as the interval during which at
least α portion of the sensing region is covered by at least one sensor node.
These lifetime definitions are all from the deterministic point of view, while in
this paper, considering the fact that the deployment and dynamics of wireless
sensor networks are random and, hence, the coverage of the sensing field and the
connectivity among active sensors are also random variables, we study network’s
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lifetime from a (different) probabilistic perspective. Moreover, neither [9] nor [10]
studied the effect of the communication radius on the network’s lifetime.

1.2 Key Contributions

This paper explores the fundamental limits of a wireless sensor network’s life-
time under connectivity and k-coverage constraints, and the contributions are
twofold. First, we introduce a new definition of network’s lifetime from a prob-
abilistic perspective, namely ω-lifetime, which is defined as the expectation of
the time interval during which the probability of guaranteeing connectivity and
k-coverage simultaneously is at least ω. By solving two convex optimization
problems, we obtain a lower bound and an upper bound on the network’s max-
imum ω-lifetime. Second, based on the obtained lower bound, we propose a
near-optimal scheduling scheme, called PIS (Pre-planned Independent Sleep-
ing), to maximize the network’s ω-lifetime, and describe a possible distributed
implementation of the PIS scheme.

1.3 Organization

The rest of this paper is organized as follows. Section 2 describes our network
model and gives the problem statement. In Section 3, we derive the sufficient-
and-necessary condition for maintaining k-coverage with probability one as the
number of sensors goes to infinity. Section 4 describes the details of the pro-
posed ω-lifetime and PIS scheduling scheme. Section 5 presents and evaluates
the simulation results and, finally, the paper concludes in Section 6.

2 Network Model and Problem Statement

2.1 Network Model

Consider a wireless sensor network with n sensors deployed independently and uni-
formly in a square sensing field D of unit area. In order to extend network’s lifetime,
an appropriate duty cycle and a well-designed sleeping schedule are required, and
we propose the following Pre-planned Independent Sleeping (PIS) scheme for this
purpose: time is divided into rounds, and at the beginning of a round, each alive sen-
sor becomes active with probability p or inactive (sleeping) with probability (1−p),
independently from others; the value of p and active sensors’ communication radius
may vary with the round, and their variation patterns are pre-determined by the per-
formancemetric to be optimized.Here, alive sensors refer to the sensorswith enough
energy to operate. The PIS scheme is based on the Randomized Independent Sleep-
ing (RIS) schemeproposed in [8] and the details ofPISwill be discussed in Section 4.
Note that, in general, RIS-like schemes are energy-efficient, lightweight, and easy
to implement because each sensor determines its own sleeping schedule indepen-
dently without interacting with others. In comparison, the Neighborhood Cooper-
ative Sleeping (NCS) schemes [11, 9, 12, 13] allow neighbor sensors to collaborate
with each other to determine their sleeping schedules, hence improving the cov-
erage performance further but with increased complexity. Design and analysis of
NCS schemes are out of the scope of this paper.



Lifetime Maximization of Sensor Networks 425

Sensing model. To consider the sensing radii irregularity caused by time-
varying environments, we assume a random sensing radius model where (1) each
active sensor has a sensing radius of rs; (2) any object within a disc of radius
rs centered at an active sensor can be reliably-detected by the sensor; and (3)
rs’s are independently identically distributed (i.i.d) random variables with mean
r0 and variance r2

0σ
2
s , and the underlying distribution is assumed unknown. A

point in the sensing field D is said to be k-covered if it is within the sensing
radius of at least k active sensors. The field D is said to be k-covered if every
point in D is k-covered.

Communication model. Two active sensors can communicate directly with
each other if and only if the distance between them is less than rc. The radius rc

is referred to as the communication radius and may vary from round to round
in the PIS scheme. For the purpose of simplicity, we assume that, at each round,
all active sensors have the same and deterministic communication radii. The
network is said to be connected if the underlying graph of active sensors is
connected. Moreover, we assume torus convention (also known as the toroidal
model) [14], i.e., each disc (communication or sensing) that protrudes one side
of the field D enters D again from the opposite side. This eliminates the edge
effects and simplifies the problem.

ω-lifetime. Due to the randomness in sensor deployment and sleeping sched-
ule, it is impossible to guarantee connectivity and k-coverage with probability
one with finite number of sensors, unless the communication disc and the sens-
ing disc of each active sensor can cover the entire field. However, the physi-
cal limitations prohibit such large communication radius and sensing radius. In
other words, there is no deterministic guarantee of connectivity or k-coverage
for randomly-deployed wireless sensor networks in practice. Such facts motivate
us to study the network’s lifetime from a probabilistic perspective. More specif-
ically, we define the ω-lifetime of a randomly-deployed wireless sensor network
as the expectation of the time interval during which the probability of guaran-
teeing k-coverage of field D and the connectivity of the network simultaneously
is at least ω, where 0 < ω < 1. For example, suppose that the PIS scheduling
scheme is employed, then the network’s ω-lifetime is Tω = E

[∑M
i=1 Ti

]
, where

Ti is the duration of the i-th round, and M is the maximum number of rounds
during which the network can function properly. In other words, for any round i
(i � M), the probability of guaranteeing both connectivity and k-coverage simul-
taneously, denoted by Pc&c, is at least ω, but for round (M + 1), Pc&c is smaller
than ω.

2.2 Problem Statement

The kernel problem we study in this paper is:

– For a finite-size wireless sensor network, how to find the optimal parameters
(p and rc) for the PIS scheme to maximize the ω-lifetime of the network?
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This is an interesting problem and the results may serve as good guidelines in
deploying finite-size wireless sensor networks. In order to address this problem,
we first study the following companion problem, which is referred to as the
critical condition for asymptotic k-coverage:

– What relation among n, p, r0, and σ2
s would be the sufficient-and-necessary

condition to guarantee that the probability of the entire field D being k-
covered approaches 1 as n goes to infinity?

3 Critical Condition for Asymptotic k-Coverage

In this section, we derive the sufficient-and-necessary condition, under our ran-
dom sensing radius model described in Section 2.1, to guarantee that the entire
sensing field D is k-covered with probability one as the total number of de-
ployed sensors n goes to infinity. Similar to [10], we apply the coverage process
techniques introduced in [14] to solve the problem.

Lemma 1. Let n points distributed independently and uniformly in a square
field D of unit area within R

2, then for sufficiently large n, these points form a
stationary Poisson point process with density n.

Lemma 1 is a well-known result and its proof is given by Hall in [14]. Let P ≡
{ξi, i � 1} denote the set of active sensors. It is shown in Lemma 2 that P is
also a stationary Poisson point process with density np for sufficiently large n.

Lemma 2. Let n points distributed independently and uniformly in a square
field D of unit area within R

2. Each point is marked independently as an active
point with probability p, where 0 < p � 1. Then the set of active points, P =
{ξi, i � 1}, is a stationary Poisson point process with density np for sufficiently
large n.

Let Si denote a random disc with radius rs,i centered at the origin of R
2, which

is defined as Si ≡ {x ∈ R
2 : |x| � rs,i}, where rs,i is the sensing radius of the i-th

active sensor ξi. Here, we assume that all sensing radii are i.i.d random variables
following an unknown distribution F (r), with known mean r0 and variance r2

0σ
2
s ,

i.e., all Si’s are distributed as S:

S ≡ {x ∈ R
2 : |x| � r, r ∼ F (r)}. (1)

Then, the sensing disc (abbreviated as disc) centered at active sensor ξi can be
defined as Di ≡ ξi + Si = {ξi + y : y ∈ Si}. The set of {Di, i � 1} forms a
stationary coverage process. For such a coverage process, Lemma 3 gives the
distribution of the number of discs with certain properties.

Lemma 3. Let Q = {ξi +Si, i � 1} denote a stationary coverage process, where
{ξi} is a stationary Poisson point process with density λ within D, and Si’s
are distributed as S defined in (1). For a given deterministic condition C, let
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Y denote the number of discs in Q that satisfy the condition C. Then, Y is
Poisson-distributed with mean

μ = λ · E
[
‖{x : IC(x + S) = 1}‖

]
,

where IC(·) is the indicator function of whether a disc satisfies the condition C
or not, and ‖ · ‖ denotes the area.

The proofs of Lemma 2 and Lemma 3 are omitted due to space limitation.
Interested readers can refer to the full version of this paper [15].

Let Y (x) denote the number of active sensors that cover a point x, and Ik(x)
denote the indicator function of whether the point x is covered by at most (k−1)
active sensors, i.e.,

Ik(x) =

⎧
⎪⎨
⎪⎩

1, if Y (x) < k,

0, otherwise.

Then, the expectation of Bernoulli random variable Ik(x) is

E[Ik(x)] = P (x is at most (k − 1)-covered) = P (Y (x) < k).

By Lemma 3, we know that Y (x) is Poisson-distributed with mean

μ = np · E
[
‖{x : (x + S) ∩ {x} �= ∅}‖

]
= np · E

[
‖x − S‖

]
= npas,

where as ≡ E
[
‖S‖

]
= πr2

0(1 + σ2
s). Therefore,

E[Ik(x)] = e−npas

k−1∑
j=0

(npas)j

j!
. (2)

Let the k-vacancy Vk denote the area within D that is covered by at most
(k − 1) active sensors, then the random variable Vk can be expressed as Vk =∫
D Ik(x)dx. Using Fubini’s theorem [16] and exchanging the order of integral

and expectation, we obtain the expected value of the k-vacancy as:

E[Vk] =
∫

D
E[Ik(x)]dx = e−npas

k−1∑
j=0

(npas)j

j!
. (3)

K-coverage of the sensing field D means that each point in D should be covered
by at least k active sensors, which implies Vk = 0. Because sensors are deployed
independently and uniformly within D, it cannot guarantee P (Vk = 0) = 1 with
finite n for as < 1 regardless of the value of n. However, if np → ∞ as n → ∞,
it is possible that P (Vk = 0) → 1 as n → ∞. Before studying the asymptotic
behavior of P (Vk = 0), we first give an upper bound and a lower bound on
P (Vk = 0) for finite n. Similar bounds have been proved in [10] for the case of
deterministic sensing radius model and non-sleeping sensor networks. Theorem 1
is a generalization of the results in [10] for the random sensing radius model.
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Theorem 1. For n > 1, 0 < p � 1, and as < 1,

Pl < P (Vk = 0) < Pu, (4)

in which

Pu =
4(k + 1)!(1 + σ2

s)(np)−1(npas)−k · enpas

1 + 4(k + 1)!(1 + σ2
s)(np)−1(npas)−k · enpas

, (5)

and

Pl = 1 − 2e−npas

(
1 +

(
n2p2a′

s + 2npr0
) k−1∑

i=0

(npas)i

i!

)
, (6)

where a′
s ≡ πr2

0(1 + σ2
s/2).

Proof: (i) Upper bound.
By the Cauchy-Schwartz inequality [14],

E[Vk] = E[Vk · I(Vk > 0)] � {E[V 2
k ]P (Vk > 0)}1/2,

where I(·) denotes the indicator function, thus

P (Vk > 0) � (E[Vk])2

E[V 2
k ]

, (7)

where E[V 2
k ] = E

[ ∫ ∫
D2 Ik(x1)Ik(x2)dx1dx2

]
=
∫ ∫

D2 E[Ik(x1)Ik(x2)]dx1dx2.
Let Y1 denote the number of active sensors that cover x1, Y2 the number of
active sensors that cover x2, and Y3 the number of active sensors that cover x2
but not x1, then

E[Ik(x1)Ik(x2)] = P (Y1 < k, Y2 < k) � P (Y1 < k, Y3 < k). (8)

Lemma 4. For the random variables Y1 and Y3 defined above, we have the fol-
lowing results:

– Y1 is Poisson-distributed with mean npas,
– Y3 is Poisson-distributed with mean npbs,
– Y1 and Y3 are independent,

where bs ≡ E
[∥∥{x : (x + S) ∩ {x1} = ∅, (x + S) ∩ {x2} �= ∅}

∥∥].

The proof of Lemma 4 is omitted here due to space limitation. Interested
readers can refer to [15]. Using Lemma 4 and (8), we have

E[Ik(x1)Ik(x2)] � P (Y1 < k) · P (Y3 < k) = E[Ik(x1)] · P (Y3 < k)

= E[Ik(x1)] ·
(

e−npbs

k−1∑
j=0

(npbs)j

j!

)
.

(9)



Lifetime Maximization of Sensor Networks 429

Let z = x1 − x2, then

bs = E
[∥∥{x : (x + S) ∩ {x1} = ∅, (x + S) ∩ {x2} �= ∅}

∥∥]

= E
[∥∥{x : (x + S) ∩ {z} = ∅, (x + S) ∩ {0} �= ∅}

∥∥] = as − ρ(z),

where

ρ(z) = E
[∥∥{x : (x + S) ∩ {z} �= ∅, (x + S) ∩ {0} �= ∅}

∥∥] =
∫ ∞

0
r2B(|z|/2r)dF (r),

and

B(x) =

⎧⎪⎨
⎪⎩

4
∫ 1
x

√
(1 − y2)dy if 0 � x � 1,

0 otherwise

is the area of the lens of intersection of two unit discs centered 2x apart, and
F (r) is the distribution of sensing radius rs.

It is shown in [15] that B(x) � π(1 − x) for 0 � x � 1, then using the fact that
ρ(z) � 0 and after some algebraic manipulation, we can bound ρ(z) as

⎧
⎪⎨
⎪⎩

ρ(z) � as − πr0|z|/2 if |z| < 2r0(1 + σ2
s),

ρ(z) = 0 if |z| � 2r0(1 + σ2
s).

If |z| � 2r0(1 + σ2
s), then bs = as. Using (9), we have

E[Ik(x1)Ik(x2)] � E[Ik(x1)] · E[Ik(x2)].

Therefore,

I1 ≡
∫ ∫

D2∩{|x1−x2|�2r0(1+σ2
s)}

E[Ik(x1)Ik(x2)]dx1dx2

�
∫ ∫

D2
E[Ik(x1)] · E[I(x2)]dx1dx2 = (E[Vk])2.

(10)

Similarly, if |z| < 2r0(1 + σ2
s), then bs � πr0|z|/2. Using (9), we have

E[Ik(x1)Ik(x2)] � E[Ik(x1)] ·

⎛
⎝e−np

πr0
2 |z|

k−1∑
j=0

(npπr0|z|)j

2j · j!

⎞
⎠ .

Therefore,

I2 ≡
∫ ∫

D2∩{|x1−x2|<2r0(1+σ2
s)}

E[Ik(x1)Ik(x2)]dx1dx2

�
∫

D
E[Ik(x1)]dx1

∫ 2r0(1+σ2
s)

0
e−npπr0z/2

k−1∑
i=0

(npπr0z)i

2i · i!
2πzdz
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= E[Vk] ·
(∫ 1

0
e−λu

k−1∑
i=0

(λu)i

i!
8πr2

0
(
1 + σ2

s

)2
udu

)

< 4as(1 + σ2
s)k(k + 1)λ−2,

where λ = npas. The proof of the last inequality above can be found in [15].
Hence, we have

I2 < 4as(1 + σ2
s)k(k + 1)(npas)−2 ·

(
e−npas

k−1∑
i=0

(npas)i

i!

)
. (11)

Since E[V 2
k ] = I1 +I2, combining (7), (3), (10), and (11), we can upper-bound

P (Vk = 0) as follows:

P (Vk = 0) = 1 − P (Vk > 0) � 1 − (E[Vk])2

E[V 2
k ]

<
β

1 + β
,

where

β =
4(1 + σ2

s)ask(k + 1)(npas)−2

e−npas
∑k−1

i=0 (npas)i/i!
� 4(1 + σ2

s)(k + 1)!(np)−1(npas)−k · enpas .

Therefore, we obtain the upper bound on P (Vk = 0) as

P (Vk = 0) <
4(k + 1)!(1 + σ2

s)(np)−1(npas)−k · enpas

1 + 4(k + 1)!(1 + σ2
s)(np)−1(npas)−k · enpas

.

(ii) Lower bound.
Observe that

p(Vk = 0) = 1 − p1 − p2 − p3,

where

p1 = P (no active sensors centered within D) = e−np < e−npas .

Here, we assume as < 1, meaning that, even for the random sensing radius
model, the expected sensing area of one sensor will not cover the entire field D.

p2= P (at least one disc centered within D, but none of the discs intersects with

any other disc, and none of the discs intersect the boundary of D)

�P (at least one disc centered within D)·P (a given disc intersects with no other discs)

= (1 − e−np) · e−npπE[π(rs,1+rs,2)2] = (1 − e−np) · e−2npπr2
0(2+σ2

s) < e−npas ,

where rs,1 and rs,2 are sensing radii of two active sensors, which are i.i.d with
mean r0 and variance r2

0 · σ2
s , and the second equality is due to Lemma 3.

p3 = P (D is not k-covered, at least one disc centered within D, and at least

one disc intersects with another disc or the boundary of D).



Lifetime Maximization of Sensor Networks 431

Therefore
p(Vk = 0) > 1 − 2e−npas − p3. (12)

Our next task is to derive an upper bound on p3.
Define a crossing to be either an intersection point of the boundaries of two

discs or an intersection point of the boundary of an disc and the boundary of
the field D. A crossing is said to be k-covered if it is within at least k discs. It is
proved in [5] that, field D is k-covered if there exist crossings and every crossing
is k-covered. Therefore, if D is not k-covered, if one or more discs are centered
within D, and if there exist crossings in D, then at least one of the discs has two
or more crossings that are not k-covered. Thus

p3 � P (Mk � 2) � E[Mk]/2, (13)

where Mk denotes the number of crossings that are not k-covered.
Define L1 and L2 as the number of crossings created by two discs intersecting

with each other, and the ones created by a disc intersecting the boundary of field
D. We first study the expected value of L1. The expected number of crossings
created by a given active sensor ξ1 with other active sensors is

E[2np · π(rs,1 + rs,2)2] = 8npa′
s,

where a′
s ≡ πr2

0(1 + σ2
s/2), and the expected number of discs centered within D

is np. Therefore,

E[L1] = np · 8npa′
s/2 = 4n2p2a′

s.

If a disc intersects the edge of field D, at most two crossings will be created; if
a disc intersects the corner of field D, at most four crossings will be created (due
to the toroidal model assumption). Thus the expected value of L2 is bounded by

E[L2] � 8npr0.

The probability that a given crossing is not k-covered is given by (2). Therefore,

E[Mk] = (E[L1] + E[L2])e−npas

k−1∑
j=0

(npas)j

j!
� 4(n2p2a′

s + 2npr0)e−npas

k−1∑
j=0

(npas)j

j!
.

(14)
By (12), (13), and (14), we have

P (Vk = 0) > 1 − 2e−npas

(
1 +

(
n2p2a′

s + 2npr0
) k−1∑

i=0

(npas)i

i!

)
.

This completes the proof. �

In what follows, we establish the sufficient-and-necessary condition for asymp-
totic k-coverage.
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Corollary 1. Assume np → ∞ as n → ∞, and let

πr2
0
(
1 + σ2

s

)
=

ln(np) + k ln ln(np) + c1(np)
np

, (15)

then the entire unit square field D is k-covered with probability one as n → ∞,
if and only if c1(np) → ∞ as n → ∞.

Proof: The entire unit square field D is k-covered with probability one means
that P (Vk = 0) → 1 as n → ∞. First, we prove if c1(np) → ∞ as n → ∞,
P (Vk = 0) → 1.

By (4) and (6) in Theorem 1, we have

P (Vk = 0) > 1 − 2e−npas − (b1 + b2) · (np)(npas)ke−npas ,

where b1 ≡ 2k
1+σ2

s/2
1+σ2

s
> 0 is independent of n, and b2 ≡ 4k

πr0(1+σ2
s)np . Let npas =

ln(np) + k ln ln(np) + c1(np), then npas → ∞, e−npas → 0, and b2 → 0, as
n → ∞. Therefore, when c1(np) → ∞,

ln
(
(b1 + b2) · (np)(npas)ke−npas

)
= ln(b1 + b2) − k ln ln(np) − c1(np)

+ k · ln
(

ln(np) + k ln ln(np) + c1(np)
)

→ − ∞,

and consequently, P (Vk = 0) → 1. The first part is proved.
If c1(np) � C1 for some finite C1 > 0 as n → ∞, then for sufficiently large n,

4(k + 1)!(1 + σ2
s)(np)−1(npas)−kenpas = 4(k + 1)!(1 + σ2

s)ec1(np)

� 4eC1(k + 1)!(1 + σ2
s).

Therefore, by (4) and (5), we have

P (Vk = 0) <
4eC1(k + 1)!(1 + σ2

s)
1 + 4eC1(k + 1)!(1 + σ2

s)
< 1.

It means that P (Vk = 0) → 1 only if c1(np) → ∞ as n → ∞. This completes
the proof. �
Remark: The bounds obtained in Theorem 1 is valid for finite n. Therefore, they
can be used as performance criteria for designing finite-size sensor networks, as
will be shown in the next section.

4 ω-lifetime of Finite-Size Wireless Sensor Networks

In this section, we address the problem of finding optimal parameters for the
PIS scheme to maximize the ω-lifetime of a finite-size wireless sensor network.

Let A denote the event of the sensing field D being k-covered, and B denote
the event of the sensor network being connected. The probability of guaranteeing
simultaneously k-coverage of field D and connectivity of the network is Pc&c ≡
P (A ∩ B).
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Definition 1. ω-lifetime, denoted by Tω, of a sensor network is defined as the
expectation of the time interval during which the probability of guaranteeing si-
multaneously k-coverage of field D and the connectivity of the network is no less
than ω, i.e., Pc&c � ω, where 0 < ω < 1.

In order to study the ω-lifetime, we first introduce the energy consumption model
of each wireless sensor. We assume that inactive sensors do not consume energy
and the communication traffic is evenly distributed across the network.The energy
consumption of an active sensor consists of two parts: communication and sensing.
Thus, the power consumption P0 of each active sensor can be modeled as

P0 = Q · 1
rc

· rβ
c + Δ, (16)

where

– rβ
c is proportional to the communication energy consumption per bit, and

the typical values of β range from 3 to 4 for different propagation models [17];
– 1/rc is proportional to the average traffic rate of active sensors (we assume

that all active sensors have the same traffic rate, following the assumption
of evenly distributed traffic.);

– Δ is the power consumption for continuous sensing and listening;
– Q > 0 is a constant.

As the communication radius rc decreases, the average number of hops required
for packets transmitted from one point to another increases inversely. For this
reason, we incorporate the factor of 1/rc into the average traffic rate expression.
We further assume that all active sensors have the same communication radius
rc, which results in the same individual lifetime:

T0(rc) =
E′

0

P0
=

E0

rβ−1
c + η

, (17)

where E′
0 is the initial energy of each active sensor, E0 = E′

0
Q , and η = Δ

Q ,
respectively. This assumption is typical when analyzing the network’s lifetime,
e.g., in [10] and [18].

Next, we formally define the PIS scheme which can extend the ω-lifetime of
a wireless sensor network. Suppose that time is divided into rounds. At the be-
ginning of round i, there are n(i) alive sensors, and each alive sensor decides
independently whether to remain sleeping (with probability 1 − p(i)), or become
active (with probability p(i)). All active sensors choose the same communica-
tion radius of r

(i)
c . Both p(i) and r

(i)
c are chosen such that Pc&c � ω. Next,

all active sensors will operate continuously until batteries die out. Since we as-
sume that all active sensors have the same individual lifetime, they will die
out at the same time instant, which is defined as the end of this round. The
same procedure is repeated for the next rounds until there are not enough alive
sensors to satisfy the “Pc&c � ω” requirement, regardless of the choices of p
and rc.
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The major differences between PIS and RIS in [8] are as follows. In PIS, p
and rc are chosen for each round to satisfy both connectivity and k-coverage
requirements, and they may vary from round to round. The round duration is
the same as an individual sensor’s lifetime, i.e., within each round, all active
sensors operate continuously until batteries die out. In comparison, the round
duration of the RIS scheme is selected to be sufficiently-small, and the values of
p and rc in RIS are fixed throughout the network operation, where p is chosen
to satisfy the k-coverage requirement but with no optimization on rc. This way,
batteries of all sensors die out at approximately the same time around the end
of the network’s lifetime.

In the rest of this section, we study the ω-lifetime with the proposed PIS
scheme and try to find the optimal parameters to maximize the ω-lifetime of the
network.

4.1 ω-Lifetime Study

Suppose that n sensors are deployed independently and uniformly within a unit-
area square field D, and the network can operate M rounds following the PIS
scheduling scheme. Then, the ω-lifetime of the wireless sensor network is

Tω = E

[
M∑
i=1

T0(r(i)
c )

]
= E

⎡
⎢⎣

M∑
i=1

E0(
r
(i)
c

)β−1
+ η

⎤
⎥⎦ , (18)

subject to both connectivity and k-coverage requirements, and the expectation
is with respect to M . Define n

(i)
eff = n(i)p(i), which is the expected number of

active sensors in round i. It is easy to verify that the probability mass function
(pmf) of M is

P (M = m) =
∑

· · ·
∑

n=n(1)�n(2)�···�n(m)

n(i)�n
(i)
eff , i=1,...,m

n
(m+1)
eff −1∑

n(m+1)=0

m∏
i=1

(
n(i)

n(i+1)

)(
1 − p(i)

)n(i+1) (
p(i)

)n(i)−n(i+1)

.

Thus, the problem of maximizing the ω-lifetime of the network can be expressed
as

T max
ω = max

r
(i)
c ,n

(i)
eff

Tω = max
r
(i)
c ,n

(i)
eff

E

⎡
⎢⎣

M∑
i=1

E0(
r
(i)
c

)β−1
+ η

⎤
⎥⎦ , (19)

subject to Pc&c = P (A ∩ B) � ω for each round. (20)

Using the union bound, we have

min{P (A), P (B)} � Pc&c � P (A) + P (B) − 1. (21)

Since it is hard to analyze Pc&c directly, we next focus on finding a lower bound
and an upper bound on the optimal ω-lifetime, T max

ω .
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Lower bound. Restricting the constraint in (20) by replacing it with the lower
bound in (21), and assuming that all n

(i)
eff and r

(i)
c ’s are the same for each round,

we can obtain a lower bound on T max
ω by solving the following optimization

problem:

max
neff,rc,ε

E[M ] · E0

rβ−1
c + η

, (22)

subject to P (A) � ω + ε, P (B) � 1 − ε for 0 < ε < 1 − ω. (23)

Using the result P (A) > Pl in Theorem 1, and the following result in [3]:

P (B) ≈ 1 − P (∃ isolated active sensors) > 1 − neffe−neffπr2
c ,

where the edge effects are avoided by the toroidal model assumption, we can
restrict the constraints in (23) as

Pl � ω + ε, rc �
√

[ln(neff/ε)]/(πneff) for 0 < ε < 1 − ω. (24)

Notice that the value of ω is usually larger than 90% in practice, then the Pl

defined in (6) can be approximated as

Pl ≈ 1 − g(neff) ≡ 1 − 2n2
effa′

se
−asneff

k−1∑
i=0

(asneff)i

i!
. (25)

Let Xi denote the number of active sensors in round i, then n(m) = n −∑m−1
i=1 Xi, and conditional on n(i), Xi is Binomial-distributed as BIN

(
n(i), p(i)

)
.

Next, we use the expectation of n(i) to obtain an approximation of p(i) as

p(i) =
neff

n(i) ≈ neff

n − (i − 1)neff
=

1
M0 + 1 − i

, (26)

where M0 ≡ n/neff. Using (26) and the central limit theorem, we can approxi-
mate n(m) as a Gaussian random variable with mean n−(m−1)neff and variance
A(m)neff, where A(m) =

∑m−1
i=1 (1 − p(i)). Then, we have

P (M � m) = P (n(m+1) < neff) = Q

(
n − (m + 1)neff√

A(m + 1)neff

)
,

P (M � m) = P (n(m) � neff) = Q

(
mneff − n√
A(m)neff

)
,

where Q(·) is complementary cumulative distribution function (CCDF) of Gaus-
sian distribution. Therefore,

P (M � 
M0� − 2) = Q

(
n − (
M0� − 1)neff√

A(
M0� − 1)neff

)
� Q

(√
neff

A(M0 − 1)

)
,
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and

P (M � 
M0� + 2) = Q

(
(
M0� + 2)neff − n√

A(
M0� + 2)neff

)
� Q

(√
neff

A(M0 + 1)

)
,

where the floor function 
x� denotes the largest integer that is not greater than x.
For m < M0 + 2, A(m) can be upper-bounded as

A(m) � (m − 1) −
∫ M0

M0+2−m

1
x

dx = (m − 1) − ln
M0

M0+2−m
.

Then, for n and neff in the range of our interests, we have

P (M � 
M0� + 2) � Q

(√
neff

A(M0+1)

)
� Q

(√
neff

M0−lnM0

)
≈ 0.

Similarly, we have P (M � 
M0� − 2) ≈ 0. Thus, the pmf of M are mostly
concentrated at 3 points:

⌊
n

neff

⌋
−1,

⌊
n

neff

⌋
, and

⌊
n

neff

⌋
+1. Monte Carlo simulation

results also verify this conclusion. Therefore, we have the lower bound on E[M ]
as

E[M ] �
⌊n − neff

neff

⌋
. (27)

Since E0/(rβ−1
c + η) is a decreasing function in rc, using (24), (25) and (27), we

obtain a new lower bound on T max
ω as

T L
ω = max

neff
T1(neff) ≡ max

neff

⌊
n − neff

neff

⌋
· E0(

1
πneff

ln neff
1−ω−g(neff)

)(β−1)/2
+ η

,

subject to neff > g−1(1 − ω),

where g−1(·) is the inverse function of g(neff). By temporarily removing the floor
function 
·�, we have the following convex optimization problem (given β > 3):

max
neff

E0(n − neff)

neff

(
1

πneff
ln neff

1−ω−g(neff)

)(β−1)/2
+ η · neff

,

subject to neff > g−1(1 − ω).

(28)

The verification of the concavity of the objective function is omitted due to space
limitation.

The convex optimization problem defined in (28) can be solved easily by
numerical methods. Suppose that the solution of such problem is n̄eff, then

T L
ω = max{T1(n1

eff), T1(n2
eff)},
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where n1
eff = n

/⌊
n

n̄eff

⌋
, n2

eff = n
/⌈

n
n̄eff

⌉
, and �x� denotes the smallest integer

that is equal to or greater than x. We can also obtain the corresponding nL
eff and

rL
c as

nL
eff = arg max

n1
eff,n

2
eff

T1(neff), rL
c =

√
[ln(nL

eff/(1 − ω − g(nL
eff)))]/(πnL

eff). (29)

Upper bound. Next, we present an approximate upper bound on Tmax
ω . Relax-

ing the constraint in (20) with the upper bound in (21), we obtain the relaxed
constraints as

P (A) � ω, P (B) � ω. (30)

Then, we use the lower bounds to approximate P (A) and P (B) as

P (A) ≈ Pl ≈ 1 − g(n(i)
eff), P (B) ≈ 1 − n

(i)
effe−n

(i)
eff π

(
r(i)

c

)2
. (31)

Next, we assume that the number of active sensors in round i is approximately
equal to n

(i)
eff . Then the maximum number of rounds, M , is a deterministic quan-

tity, and satisfies the constraint
∑M

i=1 n
(i)
eff � n. Using (30) and (31), we obtain

an approximate upper bound on T max
ω by solving the following optimization

problem:

max
n

(i)
eff

M∑
i=1

E0(
1

πn
(i)
eff

ln n
(i)
eff
ω

)(β−1)/2

+ η

,

subject to n
(i)
eff � g−1(1 − ω),

M∑
i=1

n
(i)
eff � n.

(32)

It is easy to verify that, given M , (32) is a convex optimization problem. By
Lagrange multiplier, we obtain a new upper bound on Tmax

ω as

T U
ω = max

neff
T2(neff) ≡ max

neff

⌊
n

neff

⌋
· E0(

1
πneff

ln neff
1−ω

)(β−1)/2
+ η

,

subject to n
(i)
eff � g−1(1 − ω).

(33)

Similarly, we temporarily remove the floor function 
·�. It is easy to verify that
the resulting optimization problem is a convex problem. Suppose that the solu-
tion of such problem is ñeff, then

T U
ω = max{T2(n1

eff), T2(n2
eff)}, nU

eff = argmax
n1

eff,n
2
eff

T2(neff), and

rU
c =

√
[ln(nU

eff/(1 − ω))]/(πnU
eff),

where n1
eff = n

/⌊
n

ñeff

⌋
and n2

eff = n
/⌈

n
ñeff

⌉
.
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As an example, we let E0 = 1, β = 3.5, η = 0.001, ω = 0.92, and k = 1.
Numerical results show that the relative difference between the lower bound
(T L

ω ) and the upper bound (T U
ω ) is at the level of 10% for n from 10000 to

40000, which suggests that the derived lower bound is a good approximation of
the optimal ω-lifetime of the sensor network.

4.2 PIS Scheme Design

We propose to choose the operational parameters for the PIS scheme according
to the derived lower bound on the optimal ω-lifetime, i.e., choosing p(i) and r

(i)
c

for round i as
p(i) = min

{
nL

eff
/
n(i), 1

}
, r(i)

c = rL
c , (34)

where n(i) is the number of alive sensors at the beginning of round i (i � 1), and
nL

eff and rL
c are given in (29). Obviously, (34) provides a centralized solution, since

n(i) is a global information. At the beginning of each round, such information is
required for each alive sensor to calculate p(i) online.

In resource-constrained wireless sensor networks, we always prefer distributed
solutions. In our case, distributed solutions mean that the choices of p(i)’s should
be independent of n(i). As shown in Section 4.1, the expected number of active
sensors in each round, n(i)p(i), is the key parameter to determine whether the
network satisfies the “Pc&c � ω” requirement or not. According to the lower
bound on the optimal ω-lifetime, we define outage of round i as the event that
n(i)p(i) < nL

eff, which means that the “Pc&c � ω” requirement can not be satisfied
at round i. The probability that an outage occurs at round i is denoted by
P

(i)
out. For the centralized solution in (34), P

(i)
out is always 0 for the rounds that

n(i) � nL
eff.

As an approximation to (34), we propose a distributed solution as follows:

p(i) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

nL
eff

(
1+ε(i)

)
n−nL

eff

∑ i−1
l=1

(
1+ε(l)

) 1 � i < M

1 i = M

, r(i)
c = rL

c , (35)

where M is the maximum number of rounds, ε(1) = 0, and for 1 < i < M , ε(i)’s
are chosen such that

P
(i)
out = P

(
n(i)p(i) < nL

eff

)
= δ, (36)

where δ > 0 is a pre-defined small quantity.
With the choice of p(i) in (35), where 1 < i < M , we can approximate n(i) as

a Gaussian random variable by the central limit theorem:

n(i) ∼ N
(

n − nL
eff

i−1∑
l=1

(
1 + ε(l)

)
, nL

eff

i−1∑
l=1

(
1 + ε(l)

)(
1 − p(l)

))
.
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Then, ε(i)’s in (35) can be calculated recursively according to

ε(i) =

⎧
⎪⎨
⎪⎩

0 i = 1

Q−1(δ)
a(i)−Q−1(δ) 1 < i < M

, (37)

and

a(i) =
n − nL

eff
∑i−1

l=1

(
1 + ε(l)

)
√

nL
eff
∑i−1

l=1

(
1 + ε(l)

) (
1 − p(l)

) , (38)

where Q−1(·) is the inverse function of Q(·). The maximum number of rounds
(M) is defined as

M = argmax
i>1

{
a(i) > 0

}
.

The idea of this distributed solution is to use the expected number of alive
sensors to replace n(i) in (34), and increase the expected number of active sensors
slightly by nL

effε(i) such that the outage probability (P (i)
out) can be controlled at

a given level (δ). In fact, this algorithm sacrifices the total number of rounds,
equivalently network’s lifetime, to achieve the distributed property.

5 Simulation Results

In this section, we use simulation results to demonstrate the performance of the
proposed PIS scheduling schemes. The performance criterion is the ω-lifetime
of the network. As a comparison, we include the results of a PIS-like scheme
that simply fixes the communication range to be twice the mean of the sensing
radius (rc = 2r0), and n

(i)
eff to be nA

eff, regardless of i. Here, nA
eff is obtained by

solving the following equation: P (A) = ω, where P (A) is given in (31). We call
this scheme the PIS-naive scheme.

We simulate a square sensing field D of unit area in which n sensors are
deployed independently and uniformly. The sensing radius rs is assumed to be
a uniformly distributed random variable on [0.0384, 0.1216], which corresponds
to r0 = 0.08 and σs = 0.3. Let E0 = 1, β = 3.5, η = 0.001, ω = 0.92, and
k = 1, i.e, we considerer 1-coverage as an example. With this network setup,
the centralized and distributed PIS schemes select p(i) and r

(i)
c according to (34)

and (35), respectively. For the distributed PIS scheme, the outage probability
threshold (δ) is set to 10−2. The PIS-naive scheme selects p(i) according to (34)
with nL

eff replaced by nA
eff.

First, we simulate the operation of a network with n = 10000 using different
scheduling schemes. We divide the field D into a grid of size 62 × 62, and ap-
proximate that the field D is k-covered if all grid points are k-covered. For the
connectivity, we approximate that the network is connected if there is no isolated
active sensors. The torus convention is also employed for simulations to avoid
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scheduling schemes

edge effects. Then, Pc&c at each round of the network operation is estimated as
follows: given a deployment, the network is operated according to the particular
scheduling scheme until the batteries of all sensors die out. Repeat this experi-
ment 2500 times with the same deployment. For round i of experiment j, define
δi
j = 1 if the field D is k-covered and active sensors are connected, 0 otherwise.

Then, Pc&c of round i can be estimated as P i
c&c = 1

2500

∑2500
j=1 δi

j .
Fig. 1 shows three snapshots of the network operation using PIS-naive scheme,

centralized and distributed PIS scheduling schemes, respectively. It is seen that
all scheduling schemes can guarantee that the network satisfies the connectivity
and k-coverage requirements as long as the expected number of active sensors
is no less than nL

eff. Therefore, in the simulation of the network’s ω-lifetime, we
only need to simulate how many rounds a network can operate properly following
a particular scheduling scheme. Notice that the PIS-naive scheme can operate
more rounds than the PIS schemes. However, each round is shorter in the PIS-
naive scheme, since rc is not optimally selected. As seen in the next simulation,
the PIS schemes have longer ω-lifetime than the PIS-naive scheme.

Second, we compare the ω-lifetime of a network using different scheduling
schemes with n from 10000 to 40000, and the results are plotted in Fig. 2. The
derived lower bound and upper bound for the PIS scheme are also shown in the
figure. The estimate of the ω-lifetime is calculated as:

T̂net =
1
N

N∑
j=1

Mj · T0(rc), (39)

where N is the number of Monte Carlo realizations (we set N to 1000 in this simu-
lation), T0(rc) is the duration of each round defined in (17), and Mj is the number
of rounds the network can operate properly at the j-th Monte Carlo realization.
At each Monte Carlo realization, the network is said to operate properly at round
i if the expected number of active sensors at round i is at least nL

eff, i.e.,

n(i)p(i) � nL
eff.
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We observe that for the centralized PIS scheme, the simulation result is very
close to the theoretical lower bound, T L

ω , which was derived in Section 4. By
comparing the PIS schemes and the PIS-naive scheme, we clearly see that the
ω-lifetime’s of both centralized and distributed PIS schemes are much longer
than that of the PIS-naive scheme, and the differences become larger with more
deployed sensors. Such fact demonstrates the importance of joint optimization
of lifetime, connectivity, and coverage. We also see that the ω-lifetime of the
distributed PIS scheme is close to that of the centralized one, which suggests
that the distributed PIS scheme is a good choice for real applications.

6 Conclusions and Future Work

In this paper, we investigate the fundamental limits of a wireless sensor network’s
lifetime under connectivity and k-coverage constraints. The contributions of the
paper are twofold. First, we study the lifetime of a wireless sensor network from
a novel probabilistic perspective and introduce a new concept, called network’s
ω-lifetime, which is defined as the expectation of the time interval during which
the probability of guaranteeing connectivity and k-coverage simultaneously is
at least ω. Second, we propose PIS (Pre-planned Independent Sleeping) as a
near-optimal scheduling scheme to maximize the ω-lifetime of a finite-size wire-
less sensor network, describe a possible distributed implementation of the PIS
scheme, and demonstrate the PIS performance by simulation results.

Future work includes extending the analysis to more generic and realistic
scenarios such as when only a portion of the sensing field needs to be k-covered,
or when the sensing field is of irregular shape, or when the communication radius
is also a random variable.
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