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Abstract – In this paper, we explore the fundamental limits of a wireless sensor network’s lifetime under
the guarantee of both connectivity and k-coverage. We consider a wireless sensor network with n sensors
deployed independently and uniformly in a square region of unit area. Each sensor is active with probability
p, independently from the others, and can sense a disk of radius rs when active. Two active sensors can
communicate with each other if and only if the distance between them is less than communication radius rc.
However, due to the variation of the environment and sensors’ characteristics, we model the sensing radius rs as
a random variable with mean r0 and variance r2

0σ
2
s . We first derive the sufficient and necessary condition on the

sensing radius in order to maintain the k-coverage with probability one as the number of sensors goes to infinity.
Then, we introduce a new definition of network’s lifetime, namely α-lifetime, from a probabilistic perspective,
which is the expectation of the entire interval during which the probability of guaranteeing connectivity and
k-coverage simultaneously is at least α. Finally, we propose a near-optimal scheduling algorithm to maximize
the network’s α-lifetime, which is verified by simulation results.

I. INTRODUCTION

Recently, there has been an increase of interests in large-scale wireless sensor networks [1],
[2]. Each sensor in such a network is battery-powered and has a very limited amount of
energy. It is, therefore, critical to extend the battery operation time of individual sensors and,
consequently, the network’s lifetime. Operating each sensor in a low duty-cycle is naturally
an attractive idea to achieve this goal. Here, duty-cycle is defined as the fraction of time
that a sensor device is active. On the other hand, a wireless sensor network typically has
two major tasks: sensing and communication. It is always desirable to have all the active
sensors connected and, at the same time, to have the entire sensing region k-covered. The
connectivity of all active sensors is necessary if any active sensor wants to deliver its sensing
results back to the user. The reason for requiring k-coverage rather than just 1-coverage is
to increase the detection probability and accuracy of tracking.

Obviously, the lower the duty-cycles of individual sensors, the longer the wireless sensor
network’s lifetime, but at the same time, the smaller the number of active sensors at a given
time and, hence, more likely either the active sensors are not connected or the k-coverage
of the sensing region cannot be guaranteed. So, there are inherent tradeoffs, and the key
contribution of this paper is to present an integrated study on connectivity, k-coverage and
lifetime of a large-scale wireless sensor network.

Several researchers [3]–[7] have addressed the coverage and connectivity issues in wireless
sensor/ad hoc networks. Gupta et al. [3] studied scaling laws for asymptotic connectivity of
sensors placed at random over a unit area, and provided bounds on connectivity probability
for finite-size networks. In [7], authors studied the relation between k-coverage and k-
connectivity when the communication radius is at least twice of the sensing radius, where
the sensing radius is deterministic. However, no statistical properties of either k-coverage or
k-connectivity were given. In [4] and [5], the asymptotic coverage problem was addressed for
mostly-sleeping (unreliable) wireless sensor networks, where 1-coverage was studied in [4]
and k-coverage in [5]. In [6], authors presented the sufficient and necessary condition for
asymptotic k-coverage. However, none of above work considered the possible heterogeneity
of sensing radius due to the variation of the environment and sensors’ characteristics.

Recently, research efforts [6], [8] have also been made to analyze the lifetime of wireless
sensor/ad hoc networks with coverage requirements. The definitions of network’s lifetime
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in these literature are different from ours. In [8], the lifetime was defined as the time it
takes for the coverage — defined as the ratio of the area covered by working sensors
to the total area — to drop below a pre-defined threshold. In [6], the α-lifetime of a
wireless sensor network was defined as the interval during which at least α portion of the
sensing region is covered by at least one sensor node. Both [8] and [6] only studied the
relation between network’s lifetime and the coverage of the sensing region. However, the
connectivity is another prerequisite element for the network to function properly. Another
issue in optimizing the network’s lifetime is how to take connectivity and coverage into
consideration. Both of the above definitions of network’s lifetime are from the deterministic
point of view. Since the deployment and dynamics of wireless sensor networks are random,
the coverage of the sensing region and the connectivity of the whole network are also random
variables. Therefore, it is more reasonable to study the network’s lifetime from a probabilistic
perspective.

The focus of this paper is to explore the fundamental limits of a wireless sensor network’s
lifetime under the guarantee of both connectivity and k-coverage. First, asymptotic results
for k-coverage of the sensing region are presented. Under randomized independent sleeping
and random sensing radius model, we derive the sufficient and necessary condition on the
sensing radius in order to maintain the k-coverage with probability one as the number of
sensors goes to infinity. Then, we introduce a new definition of network’s lifetime, namely α-
lifetime, which is the entire interval during which the probability of guaranteeing connectivity
and k-coverage simultaneously is at least α. By solving two convex optimization problems,
we obtain a lower bound and an upper bound for the network’s maximum α-lifetime.
Furthermore, based on the lower bound, we propose a scheduling algorithm as a near-optimal
solution to maximize the network’s α-lifetime.

The rest of this paper is organized as follows. Section II describes our network model
and gives the problem formulation. In Section III, we derive the sufficient and necessary
condition for maintaining k-coverage with probability one as the number of sensors goes to
infinity. A scheduling algorithm is proposed in Section IV to maximize the α-lifetime for
finite-size wireless sensor networks. Section V presents and evaluates the simulation results
and, finally, the paper concludes in Section VI.

II. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model
We consider a square region D of unit area where n sensors are deployed independently

and uniformly. In order to extend the network’s lifetime, an appropriate duty cycle and
a sleeping schedule are required. Consider the following sleeping scheme, which we call
modified Randomized Independent Sleeping (mRIS): time is divided into rounds, and at the
beginning of a round, each alive sensor decides to be active with probability p, independently
from the others, or inactive (sleeping) with probability (1−p). Here, alive sensors refer to
the sensors with enough energy to operate. Note that the active probability (p) vary with
the round and may be determined by the specific performance criteria. The mRIS scheme is
based on the Random Independent Sleeping (RIS) scheme proposed in [5] and the details of
mRIS will be discussed in Section IV.

Two active sensors can communicate directly with each other if and only if the distance
between them is no more than rc. The radius rc is usually referred to as the communication
radius. For the purpose of simplicity, we assume that all active sensors have the same and
deterministic communication radii. The network is said to be connected if the underlying
graph composed of active sensors is connected. A random disc-based sensing model is
employed, where each active sensor has a sensing radius of rs, and any object within a
disc of radius rs centered at an active sensor can be reliably detected by the sensor. Due
to the variation of the environment and sensors’ characteristics, the sensing radius rs’s are
assumed to be independently identically distributed (i.i.d) with mean r0 and variance r2

0σ
2
s .

The underlying distribution is assumed unknown. A point in the region D is said to be k-
covered if it is within the sensing radius of at least k active sensors. The region D is said to
be k-covered if every point in D is k-covered. We assume torus convention (also known as



the toroidal model) [9], i.e., each disc (communication or sensing) that protrudes one side
of the region D enters D again from the opposite side. This eliminates the edge effects and
simplifies the problem.

Due to the randomness in sensor deployment and sleeping schedule, it is impossible
to guarantee the connectivity and k-coverage with probability one using finite number of
sensors, unless the communication disc and sensing disc of each active sensor can cover the
entire region. However, the physical limitations prohibit such large communication radius
and sensing radius. In other words, there is no deterministic guarantee of connectivity or
k-coverage for random networks in practice. Such facts motivate us to define the lifetime of
random networks from a probabilistic perspective. We define the α-lifetime of a wireless
sensor network as the expectation of the entire interval during which the probability of
guaranteeing k-coverage of region D and the connectivity of the network simultaneously is
at least α, where 0 < α < 1. For example, suppose that the mRIS scheduling scheme is
employed, the α-lifetime of a random network is said to be Tα = E

[∑M
i=1 Ti

]
, where Ti is

the duration of the i-th round, and M is the maximum number of rounds during which the
network can function properly. In other words, for any round i (i 6 M ), the probability of
guaranteeing both connectivity and k-coverage simultaneously, defined as Pop, is at least α,
but for round M + 1, Pop is smaller than α.

B. Problem Formulation
The problems we study in this paper are the following:
1) What relation among n, p, r0 and σ2

s would be the sufficient and necessary condition
to guarantee that the probability of the entire region D being k-covered approaches 1
as n goes to infinity?

2) For a finite-size wireless sensor network, how to find the optimal parameters for the
mRIS scheme to maximize the α-lifetime of the network?

The first problem above is referred to as critical conditions for asymptotic k-coverage.
Although the answer to this problem can not be directly applied to practical wireless sensor
networks, such conditions may give us insights on designing large-scale wireless sensor net-
works. As a comparison, the second problem is a more realistic and the resulting scheduling
scheme may serve as a good guideline in deploying finite-size wireless sensor networks.

III. THE SUFFICIENT AND NECESSARY CONDITION FOR ASYMPTOTIC k-COVERAGE

In this section, we investigate the sufficient and necessary condition for asymptotic k-
coverage, i.e., the entire sensing region D is k-covered with probability one as the number
of sensors n goes to infinity.

We assume that n sensors are deployed independently and uniformly within the square
region D of unit area centered at the origin of R2, and each sensor is active with probability p,
independently from the others. It is well-known that n nodes, whose locations are distributed
independently and uniformly in the region D, form a stationary Poisson point process with
density n if n is large. This result is formally stated in Lemma 1 and its proof is given by
Hall in [9].
Lemma 1 Let n points distributed independently and uniformly in a square region D of unit
area, where D ⊂ R2, then these points form a stationary Poisson process with density n for
sufficiently large n.

Let P ≡ {ξi, i > 1} denote the set of active sensors, then it is shown in Lemma 2 that P
is also a stationary Poisson process with density np for sufficiently large n.
Lemma 2 Let n points distributed independently and uniformly in a square region D of unit
area, where D ⊂ R2. Each point is marked independently as active point with probability p,
where 0 < p < 1. Let P ≡ {ξi, i > 1} denote the set of active points, then P is a stationary
Poisson process with density np for sufficiently large n.
The proof details of Lemma 2 are omitted due to space limitation. Interested readers can
refer to the full version of this paper [10].



Let Si denote a random disc with radius rs,i centered at the origin of R2, which is defined
as Si ≡ {x ∈ R2 : |x| 6 rs,i}, where rs,i is the sensing radius of the i-th active sensor ξi.
Here, we assume all sensing radii are i.i.d random variables with mean r0 and variance r2

0σ
2
s .

Then, the sensing disc (abbreviated as disc) centered at active sensor ξi can be defined as:

Di ≡ ξi + Si = {ξi + y : y ∈ Si}. (1)

Let Ik(x) denote the indicator function of whether a point x is covered by at most (k − 1)
active sensors, i.e.,

Ik(x) =

{
1, if at most (k − 1) active sensors cover point x,
0, otherwise.

(2)

Then, the expectation of Bernoulli random variable Ik(x) is

E[Ik(x)] = P (x is at most (k − 1) covered) =
k−1∑

j=0

P (|{i : x ∈ Di}| = j)

=
k−1∑

j=0

P (|{i : ξi ∈ x− Si}| = j) =
k−1∑

j=0

P (|{i : ξi ∈ Si}| = j),

where |A| denotes the cardinality of set A. The last equality follows from symmetry and
homogeneity of the Poisson process and the assumption of toroidal model in Section II.

Suppose that for some r1 > 0, and with probability 1, |x| 6 r1 for each x ∈ Si. Let the
regionA be at least as large as the disc of radius r1 centered at the origin. If a point ξi is placed
randomly into A, then the probability that the point lies within Si equals E[‖Si‖/‖A‖] =
as/‖A‖, where

as ≡ E[‖Si‖] = πr2
0(1 + σ2

s). (3)

If N points ξi, . . . , ξN are placed independently and uniformly into A, then (conditioned on
N ) the chance that for some j (j 6 N ) indices i, ξi ∈ Si, and for all other indices i, ξi /∈ Si,
equals

(
N
j

)
(as/‖A‖)j(1 − as/‖A‖)N−j . If ξ1, . . . , ξN are from a stationary Poisson process

with density np, then

P (|{i : ξi ∈ Si}| = j) = E

[(
N

j

)
(as/‖A‖)j(1− as/‖A‖)N−j

]
= e−npas

(npas)
j

j!
, (4)

where the expectation is with respect to the Poisson distributed random variable N with
mean np. Since the active sensors {ξi, i > 1} form a stationary Poisson process with density
np, we have

E[Ik(x)] = e−npas
k−1∑

j=0

(npas)
j

j!
. (5)

Let the k-vacancy Vk denote the area that is covered by at most (k − 1) active sensors,
then the random variable Vk can be expressed as

Vk =

∫

D
Ik(x)dx. (6)

Using Fubini’s theorem [11] and exchanging the order of integral and expectation, we obtain
the expected value of the k-vacancy:

E[Vk] = E

[∫

D
Ik(x)dx

]
=

∫

D
E[Ik(x)]dx = e−npas

k−1∑

j=0

(npas)
j

j!
. (7)

K-coverage of the sensing region D means that each point in D should be covered by
at least k active sensors, which implies Vk = 0. As sensors are deployed independently and
uniformly within D, it cannot guarantee P (Vk = 0) = 1 with finite n for as < 1 regardless



of the value of n. However, if np → ∞ as n → ∞, it is possible that P (Vk = 0) → 1
as n → ∞. Before studying the asymptotic behavior of P (Vk = 0), we first give an upper
bound and a lower bound of P (Vk = 0) for finite n.
Theorem 1 For n > 1, 0 < p 6 1, and as < 1

Pl < P (Vk = 0) < Pu, (8)

in which

Pu =
4(k + 1)!(1 + σ2

s)(np)
−1(npas)

−kenpas

1 + 4(k + 1)!(1 + σ2
s)(np)

−1(npas)−kenpas
, (9)

and

Pl = 1− 2e−npas
(

1 + (n2p2a′s + 2npr)
k−1∑

i=0

(npas)
i

i!

)
, (10)

where a′s ≡ πr2
0(1 + σ2

s/2).
The proof of this theorem is similar to the one in [6] and Chapter 3.7 of [9], and the

major difference is to take the randomness of rs into consideration. Again, the proof details
are omitted due to space limitation. Interested readers can refer to the full version of this
paper [10]. Following the similar procedure in [6], we establish the sufficient and necessary
condition on the statistics of the sensing radius for asymptotic k-coverage.
Theorem 2 Assume np→∞ as n→∞ and let

πr2
0(1 + σ2

s) =
log(np) + k log log(np) + c1(np)

np
, (11)

then the entire unit square region D is k-covered with probability one as n → ∞, if and
only if c1(np)→∞ as n→∞.

Proof: As n → ∞, the fact that region D is k-covered with probability one means
P (Vk = 0)→ 1. First, we prove if c1(np)→∞ as n→∞, P (Vk = 0)→ 1. From Eqs. (8)
and (10) in Theorem 1, we have

P (Vk = 0) > Pl > 1− 2e−npas − (b1 + b2) · (np)(npas)ke−npas

where b1 ≡ 2k 1+σ2
s/2

1+σ2 > 0 is independent of n, and b2 ≡ 4k
πr(1+σ2

s)np
. Let npas = log(np) +

k log log(np) + c1(np), then npas → ∞, e−npas → 0, and b2 → 0, as n → ∞. Since when
c1(np)→∞,

log
(

(b1 + b2) · (np)(npas)ke−npas
)

= log(b1 + b2) + k · log
(

log(np) + k log log(np) + c1(np)
)

+ log(np)− log(np)− k log log(np)− c1(np)

→−∞,
we have P (Vk = 0)→ 1. The first part is proved.

If c1(np) ≤ C1 for some finite C1 as n→∞, then for sufficiently large n

4(k + 1)!(1 + σ2
s)(np)

−1(npas)
−kenpas

=4(k + 1)!(1 + σ2
s)e

npas−log(np)−k log(npas)

=4(k + 1)!(1 + σ2
s)e

c1(np) 6 4eC1(k + 1)!(1 + σ2
s).

Therefore, by Eqs. (8) and (9) we have

P (Vk = 0) < Pu 6
4eC1(k + 1)!(1 + σ2

s)

1 + 4eC1(k + 1)!(1 + σ2
s)
< 1.

It means that P (Vk = 0)→ 1 only if c1(np)→∞ as n→∞. This completes the proof.
�

Remark: Since the bounds obtained in Theorem 1 is valid for finite n, they can be used as
performance criteria for deploying finite-size wireless sensor networks.



IV. α-LIFETIME OF FINITE-SIZE WIRELESS SENSOR NETWORKS

The second problem addressed in this paper is how to find optimal parameters for the
mRIS scheme to maximize the α-lifetime of a finite-size wireless sensor network. To study
the α-lifetime, we first introduce the energy consumption model for each wireless sensor.

We assume that inactive sensors do not consume energy and the communication traffic is
evenly distributed across the network. The energy consumption by an active sensor consists
of two parts: communication and sensing. Thus, the power consumption P0 of each active
sensor can be modeled as:

P0 = Q · 1

rc
· rβc + ∆, (12)

where
• rβc is proportional to the energy consumption per bit, and the typical values of β range

from 3 to 4 for different propagation models [12];
• 1/rc is proportional to the average traffic rate of active sensors (here, we assume all

active sensors have the same traffic rate, i.e., bits per second, following the assumption
of evenly distributed traffic.);

• ∆ is the power consumption for continuous sensing;
• Q > 0 is a constant.

As the communication radius rc decreases, the average number of hops required for packets
transmitted from one point to another increases proportionally. For this reason, we incorporate
the factor of 1/rc into the average traffic rate expression. We further assume that all active
sensors choose the same communication radius rc. Hence, all active sensors have the same
individual lifetime:

T0(rc) =
E ′0
P0

=
E0

rβ−1
c + η

, (13)

where E ′0 is the initial energy of each active sensor, E0 =
E′0
Q

and η = ∆
Q

, respectively. This
assumption is typical when analyzing the network’s lifetime, e.g., in [13] and [6].

Next, we formally define the mRIS scheme which can extend the α-lifetime of wireless
sensor networks. Suppose that time is divided into rounds. At the beginning of round i, there
are n(i) alive sensors, and each alive sensor decides independently whether to remain sleeping
(with probability 1−p(i)), or become active (with probability p(i)). All active sensors choose
the same communication radius of r(i)

c . Both p(i) and r
(i)
c are chosen such that Pop > α.

Next, all active sensors operate continuously until batteries die out. Since we assume all
active sensors have the same individual lifetime, they will die out at the same time instant,
which is defined as the end of this round. The same procedure is repeated for the next rounds
until there are not enough alive sensors to satisfy the “Pop > α” requirement, regardless of
the choices of p and rc.

The major differences between the proposed mRIS scheme and the original RIS scheme
in [5] are as follows. In mRIS, p and rc are determined at the beginning of each round to
satisfy both connectivity and k-coverage requirements, and they may vary from round to
round. Within each round, all active sensors continuously operate until batteries die out. In
contrast, the values of p and rc in RIS are fixed throughout the rounds, where p is chosen to
satisfy only the k-coverage requirement, but there is no optimization on rc. And in average,
no sensor’s battery dies out before the end of network’s lifetime.

In the rest of this section, we will study the α-lifetime for the mRIS scheme and try to find
the optimal parameters to maximize the α-lifetime of the network. Suppose that n sensors are
deployed independently and uniformly within a unit-area square region D, and the network
can operate M rounds following the mRIS scheduling scheme. Then, the α-lifetime of the
wireless sensor network is

Tα = E

[
M∑

i=1

T0(r(i)
c )

]
= E

[
M∑

i=1

(
E0

/((
r(i)
c

)β−1
+ η
))]

, (14)



subject to both connectivity and k-coverage requirements, and the expectation is with respect
to M . Define n(i)

eff = n(i)p(i), which is the expected number of active sensors in round i. It is
easy to verify that the probability mass function (pmf) of M is

P (M = m) =
∑
· · ·
∑

n=n(1)>n(2)>···>n(m)

n(i)>n(i)
eff , i=1,...,m

n
(m+1)
eff −1∑

n(m+1)=0

m∏

i=1

(
n(i)

n(i+1)

)(
1− p(i)

)n(i+1) (
p(i)
)n(i)−n(i+1)

, (15)

Let A denote the event that the sensing region D is k-covered, and let B denote the event that
the wireless sensor network is connected. The probability of guaranteeing simultaneously k-
coverage of region D and connectivity of the network is Pop = P (A∩B). Thus, the problem
of maximizing the α-lifetime of the network can be expressed as

Tmax
α = max

r
(i)
c ,n

(i)
eff

Tα = max
r
(i)
c ,n

(i)
eff

E

[
M∑

i=1

(
E0

/((
r(i)
c

)β−1
+ η
))]

, (16)

subject to Pop = P (A ∩B) > α for each round. (17)

Using the union bound, Pop can be bounded as

min{P (A), P (B)} > Pop > P (A) + P (B)− 1. (18)

Since it is hard to analyze Pop directly, we next focus on finding a lower bound and an upper
bound of the optimal α-lifetime, Tmax

α .
First, consider the lower bound. Restricting the constraint in Eq. (17) by replacing it with

the lower bound in Eq. (18), and assuming all n(i)
eff and r

(i)
c ’s are the same for each round.

Then, we obtain a lower bound of Tmax
α by solving the following optimization problem:

max
neff,rc,ε

E[M ] · E0

/(
rβ−1
c + η

)
, (19)

subject to P (A) > α + ε, P (B) > 1− ε, 0 < ε < 1− α. (20)

Using the result P (A) > Pl in Theorem 1, and the following result in [3]:

P (B) ≈ 1− P (there exist isolated active sensors) > 1− neffe
−neffπr

2
c , (21)

where the edge effects are avoided by the toroidal model assumption, we can rewrite the
constraints in Eq. (20) as:

Pl > α + ε, rc >
√

[log(neff/ε)]/(πneff), 0 < ε < 1− α. (22)

Notice that the value of α is usually larger than 90% in practice, then the Pl defined in
Eq. (10) can be approximated as

Pl ≈ 1− g(neff) ≡ 1− 2n2
effa
′
se
−asneff

k−1∑

i=0

(asneff)
i/i!. (23)

Due to the complicated expression of E[M ], it is extremely difficult to optimize Eqs. (19)
and (20) directly. Monte Carlo simulation results showed that the pmf of M are mostly
concentrated at 3 points:

⌊
n
neff

⌋
− 1,

⌊
n
neff

⌋
, and

⌊
n
neff

⌋
+ 1, for n and neff in the range of our

interests, where the floor function bxc denotes the largest integer that is equal to or smaller
than x. Therefore, we have the lower bound of E[M ] as

E[M ] >
⌊n− neff

neff

⌋
. (24)

The rigorous proof of this result is omitted due to space limitation. Interested readers can
refer to the full version of this paper [10]. Since E0/(r

β−1
c + η) is a decreasing function in



rc, using Eqs. (22), (23) and (24), we obtain a new lower bound of Tmax
α as

TLα = max
neff,ε

T1(neff, ε) ≡ max
neff,ε

⌊n− neff

neff

⌋
· E0

/(( 1

πneff
log

neff

ε

)(β−1)/2
+ η
)
, (25)

subject to 0 < ε 6 1− α− g(neff). (26)

Then, we temporarily remove the floor function b·c, and have the following convex opti-
mization problem (given β > 3)

max
neff

E0 · (n− neff)
/(
neff
( 1

πneff
log

neff

1− α− g(neff)

)(β−1)/2
+ η · neff

)
, (27)

subject to neff > g−1(1− α), (28)

where g−1(·) is the inverse function of g(neff). The verification of the concavity of the
objective function is omitted here due to space limitation.

The above convex optimization problem can be solved easily by numerical methods.
Suppose the solution is n̄eff, then

TLα = max{T1(n1
eff, 1− α− g(n1

eff)), T1(n2
eff, 1− α− g(n2

eff))},
nLeff = arg max

neff

T1(neff, 1− α− g(neff)),
(29)

where n1
eff = n

/⌊
n
n̄eff

⌋
, n2

eff = n
/⌈

n
n̄eff

⌉
, and dxe denotes the smallest integer that is equal to

or larger than x. We can also obtain the corresponding nLeff and

rLc =
√

[log(nLeff/(1− α− g(nLeff)))]/(πn
L
eff). (30)

Next, we present an approximated upper bound of Tmax
α . Relaxing the constraint in Eq. (17)

with the upper bound in Eq. (18), we obtain the relaxed constraints as

P (A) > α, P (B) > α. (31)

Then, we use the lower bounds to approximate P (A) and P (B) as

P (A) ≈ Pl ≈ 1− g(n
(i)
eff ), P (B) ≈ 1− n(i)

effe
−n(i)

eff π
(
r
(i)
c

)2

, (32)

Next, we assume that the number of active sensors in round i is approximately equal to
n

(i)
eff . Then the maximum number of rounds, M , is a deterministic quantity, and satisfy the

constraint
∑M

i=1 n
(i)
eff ≤ n. Using Eqs. (31) and (32), we obtain an approximated upper bound

of Tmax
α by solving the following optimization problem

max
n

(i)
eff

M∑

i=1

(
E0

/(( 1

πn
(i)
eff

log
n

(i)
eff

α

)(β−1)/2
+ η
))

, (33)

subject to n
(i)
eff > g−1(1− α),

M∑

i=1

n
(i)
eff 6 n. (34)

It is easy to verify that this is a convex optimization problem. By Lagrange multiplier, we
obtain a new upper bound of Tmax

α as

TUα = max
neff

T2(neff) ≡ max
neff

⌊ n

neff

⌋
· E0

/(( 1

πneff
log

neff

1− α
)(β−1)/2

+ η
)
, (35)

subject to n
(i)
eff > g−1(1− α). (36)



Similarly, we temporarily remove the floor function b·c. It is easy to verify that the resulting
optimization problem is a convex problem, and suppose the solution of such problem is ñeff,
then

TUα = max{T2(n1
eff), T2(n2

eff)}, nUeff = arg max
neff

T2(neff), (37)

where n1
eff = n

/⌊
n
ñeff

⌋
and n2

eff = n
/⌈

n
ñeff

⌉
.

With E0 = 1, β = 3.5, η = 0.001, α = 0.92, and k = 1, the numerical results show that
the relative difference between the lower and upper bounds is at the level of 10% for n is
from 10000 to 40000, which suggests that the derived lower bound is a good approximation
of the optimal α-lifetime.

Finally, we propose to choose the operational parameters for mRIS scheme according to
the lower bound of the optimal α-lifetime, i.e., choosing p(i) and r(i)

c for round i as

p(i) = nLeff/n
(i), r(i)

c = rLc , (38)

where n(i) is the number of alive sensors at the beginning of round i.

V. SIMULATION RESULTS

In this section, we use simulation results to demonstrate the performance of the proposed
mRIS scheduling scheme. The performance criterion is the α-lifetime of the network. As a
comparison, we also include the result of another mRIS-like scheme, namely scheme A. The
difference from the proposed mRIS scheme is that scheme A chooses communication radius
rc = 2r0, twice of the mean sensing radius, and chooses neff according to Eq. (32) such
that P (A) > α. This scheme is based on the strategy in [6] that ignores the connectivity
requirement by choosing sufficiently large rc, and chooses the smallest n(i)

eff to satisfy the
coverage requirement.

We simulate a square sensing region D of unit area in which n sensors are independently
and uniformly deployed. The sensing radius rs is assumed to be a uniformly distributed
random variable on [0.0384, 0.1216], which corresponds to that r = 0.08 and σs = 0.3. Let
E0 = 1, β = 3.5, η = 0.001, α = 0.92, and k = 1, i.e, we considerer 1-coverage as an
example. With this network setup, the proposed mRIS scheme selects rc and neff according
to Eqs. (29) and (30), and scheme A selects the smallest neff according to P (A) ≈ Pl = α.
The corresponding p(i)’s are chosen according to Eq. (38).

First, we simulate the operation of a network with n = 10000 using different scheduling
schemes. We divide the region D into a grid of size 62×62, and approximate that the region
D is k-covered if all grid points are k-covered. For the connectivity, we approximate that
the network is connected if there is no isolated active sensor. The torus convention is also
employed for simulations to avoid edge effects. Then, the Pop at each round of the network
operation is estimated as follows: given a deployment, the network is operated according
to the particular scheduling scheme (p(i) and rc) for M rounds until the batteries of all
sensors die out. Repeat this experiment 2500 times with the same deployment. For round i
of experiment j, define δij = 1 if the region D is k-covered and active sensors are connected,
0 otherwise. Then, Pop of round i can be approximated as P i

op = 1
2500

∑2500
j=1 δ

i
j .

Fig. 1 shows two snapshots of the network operation with n = 10000 using the mRIS
scheduling scheme and scheme A, respectively. It is seen that both scheduling schemes can
guarantee that the network satisfies the connectivity and k-coverage requirements as long as
the number of alive sensors is greater than neff. Therefore, in the simulation of the network’s
α-lifetime, we only need to simulate how many rounds a network can operate properly
following a particular scheduling scheme. Note that the lifetimes of each round are different
for these two scheduling schemes.

Fig. 2 shows the α-lifetime of a network using different scheduling schemes versus the total
number of deployed sensors. In addition to the α-lifetime of different scheduling schemes,
the derived lower bound and upper bound for the mRIS scheme are also shown in Fig. 2. We
observe that for mRIS scheme, the simulation result is very close to the theoretical result,
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Fig. 1. Two snapshots of the network operation.
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TLα , which was derived in Section IV. By comparing mRIS scheme and scheme A, we clearly
see that mRIS scheme’s α-lifetime is much longer than that of scheme A, and the difference
becomes larger with more deployed sensors. Such fact demonstrates the importance of joint
optimization of lifetime, connectivity, and coverage.

VI. CONCLUSIONS

In this paper, we have investigated the fundamental problems of connectivity, coverage and
lifetime in large-scale wireless sensor networks. We first derive the sufficient and necessary
condition on the sensing radius for asymptotic k-coverage of the sensing region. Then, we
introduce the concept of α-lifetime of wireless sensor networks from probabilistic point of
view, which is defined as the entire interval during which the probability of guaranteeing
connectivity and k-coverage simultaneously is at least α. Next, we propose a scheduling
scheme to maximize the α-lifetime of finite-size wireless sensor networks. Finally, we
demonstrate the validity of theoretic results by simulations.

One promising direction of future research is to extend the results to more generic scenarios
when only a portion of the sensing region needs to be k-covered. Another possible direction
is to design practical distributed networking protocols to maintain the desired connectivity
and sensing coverage based on the observations in this paper.
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