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Abstract—Barrier coverage is a natural application of sensor
networks in which sensors are deployed to detect intruders or
protect crucial resources. In this paper, we consider a hybrid
sensor network with a two-phase deployment, in which less-
expensive static sensors are first randomly deployed in an
area, and then more-expensive mobile sensors are deployed to
fill coverage gaps. We use a probabilistic model to take into
account the practical constraints of detection probability and
false positives. We propose an iterative scheme that finds a
sensor deployment strategy that minimizes the total sensor cost.
Our scheme makes use of a graph transformation and includes
speed-up strategies. We present simulation results that verify
the correctness of the proposed scheme and demonstrate the
effectiveness of the speed-up strategies.

I. INTRODUCTION

Intruder detection and border surveillance are some of the
many applications of sensor networks. In these applications,
sensors are deployed in a monitored area to form a virtual
barrier, or provide barrier coverage. For example, buried
seismic sensors can be used to detect the vibrations of intruders
traversing a national border [1].

To achieve barrier coverage, sensors can be manually de-
ployed at desired positions, which is labor-intensive and may
be dangerous in some scenarios, such as a battlefield. Alter-
natively, sensors can be dropped from a plane or helicopter,
resulting in a random deployment that may have coverage
gaps. If the sensors are mobile, they can relocate themselves
to the desired positions to form a barrier. However, mobile
sensors typically cost more, and an all-mobile sensor barrier
would be expensive. A potential compromise is to deploy a
hybrid network, with both static and mobile sensors, to achieve
barrier coverage.

In our scenario, static sensors are first deployed, potentially
leaving coverage gaps. Then, mobile sensors are deployed to
fill the gaps and form a barrier. Our goal is to select a subset
of static sensors to use in the barrier, and then determine
the number of mobile sensors needed to fill any gaps. Our
objective is to minimize the total cost of the active sensors,
meaning those used to build the barrier. We leave the task
of optimizing the actual sensor movement to other work, e.g.
[2]–[4].

We consider strong barrier coverage, in which intruders
may take any path to cross the monitored region. Unlike pre-
vious work such as [5], we employ a probabilistic model that
allows us to consider the practical constraints of system de-
tection probability and false alarm probability in our solution.
However, this model also presents a challenge: the number of
active sensors affects the decision threshold required to meet
the false alarm probability constraint, which in turns affects the

density of sensors required to meet the detection probability
constraint.

Summarizing, this paper provides the following contribu-
tions:
• We define the min-cost strong barrier problem under a

probabilistic model, and transform the barrier construc-
tion problem with probabilistic constraints to a graph
problem.

• We propose an efficient iterative algorithm to solve the
problem, including speed-up strategies that skip some
iterations and prune the graph in each iteration.

The paper is organized as follows: Section II presents the
probabilistic model and the problem statement. Section III de-
scribes the proposed scheme. Section IV presents results from
our evaluation of the proposed scheme. Section V discusses
related work. Finally, Section VI concludes the paper.

II. MODEL AND PROBLEM STATEMENT

A. System Model
We consider a hybrid network of static and mobile sensors

deployed to monitor a rectangular region with length L and
width W , with the goal of detecting any intruders traversing
the width of the region. We consider strong barrier coverage,
meaning that an intruder, or target, may take any path to
traverse the width of the region.

B. Sensing Model
We use a probabilistic sensing model, in which sensor

readings are affected by randomly varying noise and sensor
nodes use a decision threshold to determine if an intruder
is present or not. Our model consists of a source model, a
detection model, and a false alarm model.

1) Source Model: We assume either the target or its motion
produces a physical signal, such as sound, electromagnetic
waves, or vibrations. We assume the strength of the signal
decays according to the power law, meaning that if the target
is at point t, the signal strength at the location of sensor si
is [6], [7]:

ωi(t) =
Ω

1 +
(
d (si, t)

)α , (1)

where Ω is the signal amplitude at the target, α is a known
decay exponent, and d(·, ·) is the distance between two points.

2) Detection Model: In our detection model, we assume
that background noise affects sensor readings. When a target
is present at point t, a sensor si observes a signal xi that
depends on (1) and the background noise n, as follows:

xi = ωi(t) + n. (2)

IEEE ICC 2017 Ad-Hoc and Sensor Networking Symposium

978-1-4673-8999-0/17/$31.00 ©2017 IEEE



When no target is present, xi = n. Let FN (n) denote the
cumulative distribution function of noise, and assume that it
is identical and independent for all sensors. We also assume
that FN is known by the base station.

To detect a target, sensors set a decision threshold T . When
a sensed reading xi exceeds T , the sensor generates an alarm
to report the presence of a target. Therefore, given T , the
probability that sensor si detects a target at point t is:

Pd(si, t) = 1− FN
(
T − ωi(t)

)
. (3)

Given a traversing path ϕ, we define PD(ϕ) as the max-
imum probability of detection, by any active sensor, for any
point along the path. In other words, PD(ϕ) is the detection
probability of the most well-monitored point in path ϕ. If we
use SA to denote the set of active sensors, then:

PD(ϕ) = max
t∈ϕ

max
si∈SA

Pd(si, t). (4)

Strong barrier coverage assumes that the target may take any
traversing path ϕ. Thus, the worst-case probability of detecting
any given intruder is PD(ϕ) of the least-monitored ϕ. We call
this worst-case probability the system detection probability,
PD, and define it as follows:

PD = min
ϕ
PD(ϕ) = min

ϕ
max
t∈ϕ

max
si∈SA

Pd(si, t). (5)

3) False Alarm Model: Due to excessive noise, a sensor
may generate an alarm and report the presence of a target
when no target is present. This type of alarm is called a false
alarm. The probability of false alarms should be bounded in
order to avoid burdening the end user. The probability of a
particular sensor generating a false alarm is:

Pf = 1− FN (T ) . (6)

We then define the system false alarm probability PF as the
probability that any sensor produces a false alarm, as follows:

PF = 1− (1− Pf )
|SA| , (7)

where |SA| is the total number of active sensors. This defini-
tion of PF is consistent with system false alarm probability
in [6] and [8] and network false alarm rate in [7].

C. Problem Statement
We define strong (Pmin

D , Pmax
F )-barrier coverage as a

barrier coverage that requires PD ≥ Pmin
D and PF ≤ Pmax

F
for any traversing path through the region. In this paper,
we consider a two-phase deployment strategy to achieve this
coverage. First, N total

s static sensors are randomly deployed in
the monitored region, potentially leaving some coverage gaps.
Then, mobile sensors are deployed to fill the coverage gaps
between static sensors, ultimately forming a barrier. Mobile
sensors usually are more expensive than static sensors, and
we use ν to represent the mobile-to-static sensor cost ratio
and we assume ν ≥ 1.

The goal is to minimize the overall cost of sensors used
to achieve strong (Pmin

D , Pmax
F )-barrier coverage. Any static

sensors not chosen to be active in the barrier are left in
the monitored region, and they can participate future barrier
constructions and are therefore not part of the barrier cost.
Let Ns be the number of static sensors selected to be active,

and Nm be the number of mobile sensors needed to fill the
coverage gaps between active static sensors. Formally, our
problem is to minimize (νNm +Ns), subject to PD ≥ Pmin

D ,
PF ≤ Pmax

F , and Ns ≤ N total
s .

III. PROPOSED SCHEME

A. Overview

To solve our min-cost barrier coverage problem, we propose
a scheme that iterates over the assumed number of active
sensors, NA. The basic idea is to first assume a value for NA,
which is used to set the decision threshold T and calculate
the sensing radius Rs. Then, we check whether the minimum
cost for strong (Pmin

D , Pmax
F )-barrier coverage can be achieved

with NA sensors. If not, we update our assumption for NA
and iterate.

The scheme is composed of four modules, shown in Fig. 1.
The initialization module determines the NA value for the
iteration and accelerates the scheme by skipping NA values
that will not produce a valid solution, meaning that Pmin

D
and Pmax

F will not be satisfied. The initialization module
also outputs the sensing radius corresponding to the value of
NA. The mapping module transforms the original problem
into a graph problem by generating, updating, and pruning a
weighted graph G, which is used in the next two modules.
The min-cost algorithm finds the cost lower bound Cl by
identifying the min-cost set of sensors, denoted by Sc. The
hop-restricted algorithm finds the cost upper bound Cu by
identifying the best strategy with exactly NA sensors, denoted
by Sh. S∗h represents the best feasible solution if the current
NA assumption is correct, and it is stored as a potential output.
The number of mobile sensors in S∗h is used to update Nu

m,
the upper bound on the number of mobile sensors for future
iterations. Nu

m is provided to the mapping module in order to
prune G in each iteration. If the upper and lower bounds on
cost meet (i.e., Cl ≥ Cu), the scheme terminates and outputs
a set of active sensors Sfinal as the final optimal deployment
strategy. Otherwise, NA is updated and iterations continue.
Next, we introduce each module in detail.

Initialization Module
Mapping Module

Min-cost Algorithm

- update lower bound

Cl = cost(Sc)

- generate Sc

Hop-restricted Algorithm

- generate Sh with

- update upper bound on cost :

S∗
h = cost(Sh)<cost(S∗

h)?Sh : S∗
h

Cu = cost(S∗
h)

Y

weighted graph G

Input: NA = 1, Pmax
F , Pmin

D , static sensors and their positions

Pmax
F , Pmin

D

NA, Rs

NA = 1

Nu
m

Output : Sfinal = S∗
h

C
l
<
C

u
?

N
Y

NA = NA + 1

- update the lower bound on NA

NA active sensors

- update upper bound on mobile sensors
in future iterations :

- update best solution :

Nu
m = min{Nu

m, Nm(S∗
h)− 1}

on cost :

C
l
<
C

u
?

N

static sensors

- calculate the sensing radius Rs

Fig. 1. Overview of proposed scheme. The solid lines indicate iteration flow
and the dashed lines indicate parameter flow.
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B. Initialization Module

The initialization module, shown in Fig. 2, initializes each
iteration. It determines the assumption of NA to use for the
iteration. The initialization module accelerates the scheme by
skipping NA values which will not produce a valid solution.
The module takes a tentative NA as input, and outputs the
next value of NA that has a valid solution.

NA Rs NA < ⌈ L
2Rs

⌉?

NA = ⌈ L
2Rs

⌉

Pmax
F , Pmin

DNA = 1

NA = NA + 1

updated NA, RsN

Y

Fig. 2. Initialization module.

As shown in Fig. 2, when entering this module, NA is
set to one for the first iteration, and NA + 1 in subsequent
iterations. Given NA, Pmin

D , Pmax
F and other sensing model-

related parameters, this module performs the following steps.
1) Calculate the sensing threshold T . A sensed reading

greater than T shall trigger an alarm. From (6) and (7),
to satisfy PF ≤ Pmax

F , T is calculated as:

T ≤ F−1
N

�
(1− Pmax

F )1/NA

�
. (8)

To maximize the coverage region, we choose the maxi-
mum value for T .

2) Calculate the sensing radius Rs. Intruders within this
radius of a sensor shall be detected by that sensor with
probability Pmin

D . Combining (1) and (3), we obtain:

Rs =

�
Ω

T − F−1
N (1− Pmin

D )
− 1

�1/α

. (9)

3) Compute the minimum number of sensors required to
achieve barrier coverage, d L

2Rs
e.

4) If d L
2Rs
e is larger than NA, then NA = d L

2Rs
e and

repeat the above steps; otherwise, the module outputs
the current NA.

The first three steps may need to be repeated because the
value of NA affects T , which affects Rs. When d L

2Rs
e > NA,

the potential values of NA between NA and d L
2Rs
e are skipped

because they will not lead to valid solutions, as proved in
Theorem 1.

THEOREM 1. If d L
2Rs
e > NA, then for any N ′A ∈ [NA, d L

2Rs
e),

all deployment strategies with the assumption of N ′A active
sensors would yield a PF larger than Pmax

F , making them
invalid solutions.

Proof: Since N ′A ≥ NA, we have R′s ≤ Rs, because Rs
is a decreasing function of NA according to (9). This leads to
d L

2R′
s
e ≥ d L

2Rs
e. Let T ′ denote the sensor decision threshold

and S′A denote the set of active sensors in any deployment
strategy corresponding to N ′A. Since |S′A| ≥ d L

2R′
s
e, we have

PF = 1− FN (T ′)
|S′

A| ≥ 1− FN (T ′)
d L
2R′

s
e

≥ 1− FN (T ′)
d L
2Rs
e
> 1− FN (T ′)

N ′
A = Pmax

F .

As an example of how the initialization module works,
suppose we want to build a barrier in an area of length
L = 14 m. The signal amplitude emitted by the target, Ω,
is 30 mW and the standard deviation of the environmental
noise is σ = 1 mW. Given Pmax

F = 0.05, Pmin
D = 0.95, and

NA = 1, we obtain Rs = 2.85 m in Step 2 and d L
2Rs
e = 3 in

Step 3. Since d L
2Rs
e > NA, we return to Step 1 with NA = 3.

In the following steps, we obtain Rs = 2.64 m and d L
2Rs
e = 3.

Now d L
2Rs
e = NA, so we output NA = 3 and Rs = 2.64 m.

C. Mapping Module
The mapping module maps the sensor network to an undi-

rected weighted graph G to allow our scheme to use graph-
based algorithms for optimization. G is initialized during the
first iteration, and updated and pruned during the following
iterations. Initially, G is constructed as follows.
• Vertices: There is a vertex for each static sensor. Two

additional vertices, sl and sr, represent the left and right
boundaries of the region, respectively.

• Edges: There is an edge between any two vertices.
• Weight: The weight of an edge is the cost of mobile

sensors required to fill the gap between them, plus the
cost of the static sensor at one end of the edge. In detail,
the weights are listed below. Rs is the coverage radius
corresponding to the NA assumed for this iteration.

– Between two physical, static sensors si and sj :

wi,j = dmax{dist(si, sj)− 2Rs, 0}
2Rs

e ∗ ν + 1. (10)

– Between a physical sensor si and a boundary:

wsl,i = dmax{xi −Rs, 0}
2Rs

e ∗ ν + 1. (11)

wi,sr = dmax{L− xi −Rs, 0}
2Rs

e ∗ ν. (12)

– Between the left and right boundaries:

wsl,sr = d L

2Rs
e ∗ ν. (13)

Continuing with the example from the previous section, let
the input to the mapping module be NA = 3 and Rs = 2.64 m,
with the static sensors shown in Fig. 3(a). The graph G is then
constructed as shown in Fig. 3(b).
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s2

s3

s4

(a) Sensor deployment. The circles
are the coverage regions of the static
sensors with NA = 3.
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S1
S3
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1

1

1

1
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3v
v+1

2v+1

v+1

2v

2v

1

(b) Weighted graph G. sl and
sr represent the left and right
boundaries. Edges are labeled with
weights.

Fig. 3. The graph initially constructed by the mapping module.

We have two observations regarding G. First, any path from
sl to sr in G represents a possible deployment strategy, and
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the sum of the weights of the edges in the path is the cost
of the corresponding strategy. However, if this corresponding
strategy requires more than NA active sensors, then it is not
necessarily valid with respect to Pmax

F and Pmin
D .

For instance, in Fig. 3(b), {sl, s1, s2, s3, s4, sr} is a possible
deployment strategy that uses one mobile sensor between s4

and sr. But this strategy uses five sensors in total, which
violates the assumption of NA = 3, so this strategy may not
be a valid solution. As another example, {sl, s1, sr} is a valid
strategy with three sensors and a cost of 1 + 2ν; it uses two
mobile sensors between s1 and sr.

The second observation is that G initially is constructed
as a fully connected graph. This is necessary because, in the
optimal solution, mobile sensors may be deployed to fill the
gap between any pair of static sensors, and not necessarily the
smallest gap between two static sensor clusters. Although a
barrier built by only filling the shortest gaps between static
sensor clusters may use fewer mobile sensors, it also may
use many more static sensors, possibly at a higher cost. To
increase efficiency, our scheme prunes edges from the graph
in future iterations. This pruning process will be discussed in
Section III-F.

D. Min-cost Algorithm to Update Cost Lower Bound
The goal of the min-cost algorithm is to find the solution that

minimizes the active sensor cost. We achieve this by finding
a minimum cost path from sl to sr on G using Dijkstra’s
algorithm. The output of this algorithm is a set of active sensor
nodes, Sc, that correspond to the vertices in the path, plus any
mobile sensors that need to be added.

As an example, Fig. 4(a) shows the min-cost path Sc
from the example in Fig. 3(b) when ν = 3. This path is
{sl, s1, s3, s4, sr}. Three static sensors, s1, s3, and s4, are
used. One mobile sensor is required to fill the gap between s4

and the right boundary sr. The total cost of Sc is cost(Sc) = 6.

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

s1 s3

s2
s4

sl

sr

(a) Output of the min-cost algorithm
when NA = 3 and ν = 3.

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

s1

s2

s3

s4

sl sr

(b) Output of the hop-restricted algo-
rithm when NA = 3 and ν = 3.

Fig. 4. Example outputs of the graph algorithms. An edge between two
sensors means that both sensors are active. A solid edge means their coverage
regions overlap, requiring no mobile sensors. A dashed edge means mobile
sensors are needed to fill the coverage gap between the sensors. In (a), one
mobile sensor is required between s4 and sr , and in (b), two are required
between s1 and sr .

Sc is the min-cost solution on G, but if |Sc| > NA,
the Pmax

F requirement may not be satisfied by this solution.
Therefore, Sc may be an invalid solution. However, even in
this case, cost(Sc) can still serve as a valid lower bound on the
cost for future iterations. This is because, in future iterations,
(1) the assumed number of active sensors increases, the sensor
coverage radius decreases, and the edge weights on G increase;
(2) the edge set of G is smaller because it is pruned in each
iteration. Thus, any solution found in future versions of G
would yield a higher cost than that of the current Sc.

Accordingly, the lower cost bound Cl is updated to
cost(Sc). The updated Cl is then compared to the cost upper
bound, Cu. If Cl < Cu, a better solution may be found in
future iterations, so the scheme continues to the hop-restricted
algorithm. Otherwise, the scheme terminates and outputs the
best valid solution yet found (from the hop-restricted algorithm
in a previous iteration). Cu is initialized to infinity, so in the
example in Fig. 4(a), Cl = cost(Sc) = 6 < Cu = ∞ and we
continue to the hop-restricted algorithm.

E. Hop-restricted Algorithm to Update Cost Upper Bound

The hop-restricted algorithm identifies the best path Sh
from sl to sr that has exactly NA physical sensors. This
restriction ensures that Sh is a valid solution, distinguishing
the hop-restricted algorithm from the min-cost algorithm in
the previous module, which does not restrict hops and thus
may not find a valid solution. The hop-restricted algorithm
tracks the best valid solution found so far, and updates the cost
upper bound Cu, terminating the scheme if the termination
criterion is met. This algorithm also outputs the upper bound
on the number of mobile sensors, Nu

m, which is used for graph
pruning in the next iteration.

1) Hop-restricted Path Sh and Cost Upper Bound Cu:
Sh is obtained by running a dynamic programming-based
algorithm on G. For the algorithm, two sets of weights are
needed:
• wi,j : the cost of active sensors to fill the gap between si

and sj , as defined in Section III-C, and
• wti,j : the number of active sensors to fill the gap between
si and sj , obtained by setting the cost ratio ν in wi,j to
one.

Let cki denote the minimum cost of the path from sl to si
with k physical sensors. For k ≥ 1,

cki = min
j∈Γi

{ck−w
t
i,j

j + wi,j}, for i = [1, 2, ..., sr], (14)

where Γi is si’s neighborhood set. For k ≤ 0, we define:

c0sl = 0, (15)

c0i =∞, for si 6= sl, (16)

cki =∞, for any i if k < 0. (17)

The hop-restricted algorithm iterates over k and terminates
when cNA

sr is obtained. Sh is then the path that reaches sr
with cost cNA

sr . We define S∗h as the best solution found so
far. If cost(Sh) is less than cost(S∗h), we store Sh as S∗h and
update the cost upper bound Cu to cost(S∗h).

Fig. 4(b) shows the hop-restricted path Sh for the example
in Fig. 3(b). With NA = 3 and ν = 3, Sh is {sl, s1, sr}. One
static sensor, s1, is used. Two mobile sensors are needed to fill
the gap between s1 and the right boundary. The cost of Sh is
7, which is less than cost(S∗h) =∞ (as no S∗h has previously
been stored). Sh is then stored as S∗h, and Cu is updated to 7.

Once Cu is updated, it is compared with Cl. If Cl < Cu, the
scheme continues to the next iteration, with NA = NA + 1 as
the input to the initialization module. Otherwise, the optimal
solution has been found, and the scheme terminates and
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outputs S∗h. In the above example, after executing the hop-
restricted algorithm with NA = 3, Cl = 6 < Cu = 7. There-
fore, we continue with the next iteration and pass NA = 4 to
the initialization module.

2) Upper Bound on the Number of Mobile Sensors Nu
m:

Another output of the hop-restricted algorithm is Nu
m, the

upper bound of the number of mobile sensors for any solution
in future iterations that has a lower cost. Nu

m is set as follows:

Nu
m = min{Nu

m, N
∗
m − 1}, (18)

where N∗m is the number of mobile sensors in S∗h, shown as
Nm(S∗h) in Fig. 1. For a solution Sh in any future iteration,
we have

THEOREM 2. cost(Sh) > cost(S∗h) if Nm ≥ N∗m.

Proof: Since NA increases as the scheme iterates, we
have |Sh| > |S∗h|, where |Sh| and |S∗h| are the number of
active sensors on Sh and S∗h, respectively. Then, we have

Nm +Ns > N∗m +N∗s =⇒ Ns > N∗m +N∗s −Nm.

Further,

cost(Sh) = νNm +Ns > νNm +N∗m +N∗s −Nm
= (ν − 1)Nm +N∗m +N∗s
≥ (ν − 1)N∗m +N∗m +N∗s
= νN∗m +N∗s = cost(S∗h).

Theorem 2 shows that a solution Sh in future iterations with
N∗m or more sensors will have a higher cost than the current
best solution S∗h. Therefore, N∗m−1 is the upper bound of the
number of mobile sensors in any solution in future iterations
that has a lower cost.

F. Mapping Module Revisited

In the mapping module, after the first iteration, G only needs
to be updated and pruned. G’s vertex set remains the same for
all iterations, while G’s edge weights are updated and the edge
set is pruned, using the following procedure:

1) Update: With the updated NA and Rs in a new iteration,
the number of mobile sensors needed to fill the gaps
between static sensors is recalculated, and the edge
weights of G are updated correspondingly.

2) Prune: After updating the weights of G, the edges of
G that need more than Nu

m mobile sensors to fill the
coverage gap are pruned.

Returning to the example, the solution shown in Fig. 4(b)
was stored as S∗h and Nu

m was updated to Nu
m = N∗m−1 = 1.

Fig. 5 shows the sensor deployment and graph of this example
in the following iteration, with NA = 4. Comparing with
Fig. 3, we can see that the weights of some edges have been
updated. For example, a coverage gap has appeared between
s3 and s4 due to the decreased Rs, and the weight of the
edge has increased by ν to reflect that a mobile sensor is now
required. Additionally, several edges have been pruned, such
as the edge from s3 to sr.
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s1

s2
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s4

(a) Sensor deployment. Rs is calcu-
lated with NA = 4.
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(b) Pruned weighted graph with
Nu

m = 1.

Fig. 5. The graph updated and pruned by the mapping module.

G. Terminating Condition
The scheme terminates when the upper and lower bounds

for the cost meet or cross, meaning Cl ≥ Cu. This
can occur in either the min-cost algorithm or the hop-
restricted algorithm. In our example, the min-cost algo-
rithm is run on the newly pruned G in Fig. 5(b). The
min-cost path in G is {sl, s1, s2, s4, sr}, shown in Fig. 6.

0 2 4 6 8 10 12 14
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7

s1

s2

s3

s4

sl

sr

Fig. 6. Output of the min-cost al-
gorithm and hop-restricted algorithm
when NA = 4 and ν = 3. The
output consists of three static sensors
(s1, s2, and s4) and one mobile sensor
to fill the gap between s4 and the right
boundary.

Its cost is 6, so Cl is updated
to 6. Since Cl is still less
than Cu, the hop-restricted
algorithm is run on G, pro-
ducing the same path. This
path is saved as S∗h. The
cost upper bound Cu is then
updated to 6 and now equals
Cl, so the scheme termi-
nates and outputs Sfinal =
S∗h = {sl, s1, s2, s4, sr}.
This solution consists of
three static sensors (s1, s2,
and s4) and one mobile sen-
sor to fill the gap between s4 and the right boundary.

H. Complexity Analysis
Now let us do a complexity analysis. The total number

of iterations will not be more than |Sfinal|, since we skip
some NA values in the initialization module. In an itera-
tion with the assumed number of sensors as NA, the min-
cost algorithm has a worst-case complexity of O((N total

s )
2
),

the hop-restricted algorithm has a worst-case complexity of
O(NA|E|) = O(NA(N total

s )
2
) where |E| is the number of

edges on the weighted graph G. Sum up all the iterations,
the worst-case complexity should be O(|Sfinal|2(N total

s )
2
). In

practice, the scheme performs far more better than the worst-
case due to the skipping of NA and the graph pruning strategy
which is verified by simulation.

IV. EVALUATION

We evaluate the performance of the proposed scheme by
varying the mobile-to-static sensor cost ratio (ν), the total
number of deployed static sensors (N total

s ), and the Pmax
F and

Pmin
D parameters. We also demonstrate the effectiveness of NA

skipping and the graph pruning strategy. In our simulations,
sensors are randomly deployed in a 100 × 10 m rectangu-
lar region. The default simulation parameters are shown in
Table I, which are chosen according to the real-world data
mentioned in [6]. All the simulation results are an average of
50 experiments.
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TABLE I
DEFAULT SIMULATION PARAMETERS

Parameter Meaning Default Value
Pmin
D Minimum system detection probability 0.95
Pmax
F Maximum system false alarm probability 0.05

Ω Source signal strength 30 mW
α Source signal decay exponent 2
FN CDF of noise distribution Gaussian
µ Noise mean 0 mW
σ Noise standard deviation 1 mW
ν Mobile-to-static sensor cost ratio 5
N total

s Total number of deployed static sensors 100

A. Effect of Cost Ratio
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Fig. 7. Effect of cost ratio.

Fig. 7 demonstrates the
effect of cost ratio on the
number of active mobile
and static sensors. When the
cost ratio is one, meaning
mobile sensors and static
sensors have the same cost,
the scheme only uses mo-
bile sensors. This is be-
cause, in this case, a barrier
between the left and right
boundaries can be formed at minimum cost with a horizontal
line of mobile sensors. At higher cost ratios, meaning more
expensive mobile sensors, the scheme favors static sensors
over mobile sensors. Additionally, as the cost ratio increases,
the total number of active sensors also increases. This is
because the scheme must seek out solutions that are more
indirect and winding, requiring more static sensors, in order
to reduce coverage gaps and the number of mobile sensors.

B. Effect of the Total Number of Deployed Static Sensors
Fig. 8(a) shows the effect of the total number of deployed

static sensors on the number of active mobile and static
sensors. As more static sensors are deployed, fewer mobile
sensors are utilized, because the static sensor deployment is
better able to form a barrier at less cost on its own. When the
number of deployed static sensors reaches a threshold (in this
case 200), mobile sensors are no longer needed. Above this
threshold, deploying more static sensors slowly reduces the
total number of active sensors required. This is because more
static sensors leads to more possible strategies that satisfy the
barrier coverage requirements, and some of these additional
strategies may use fewer active static sensors.
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(a) Number of active sensors vs. total
number of deployed static sensors.
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ployed static sensors.

Fig. 8. Effects of the total number of deployed static sensors.
Fig. 8(b) shows sensor costs as the total number of deployed

static sensors increases. Two costs are evaluated. “Cost of

active sensors” is the total cost of the active sensors, both
mobile and static. “Cost of deployed sensors” is the total cost
of all deployed sensors, both active and inactive. Note that the
mobile sensors are deployed as needed and hence all of them
are active.

In Fig. 8(b), the cost of deployed sensors first decreases and
then increases. In the scenario demonstrated in Fig. 8(b), the
minimum cost is reached on average when deploying 30 static
sensors. When the number of deployed static sensors is below
30, more mobile sensors must be used, increasing the cost.
When the number of deployed static sensors is higher than
30, the increased cost of deployed static sensors outweighs the
decreased number of mobile sensors. Overall, we observe that
the total number of deployed static sensors should be carefully
chosen to minimize the total cost. On the other hand, the cost
of active sensors, which is minimized by the proposed scheme,
strictly decreases with the number of deployed static sensors.
This aligns with the results in Fig. 8(a).

C. Effects of Pmin
D and Pmax

F

Fig. 9 shows the number of active sensors and their costs
with different values of Pmin

D . The higher Pmin
D is, the more

sensors are needed to reach the required coverage level. The
cost increases correspondingly.
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(a) # active sensors vs. Pmin
D .
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Fig. 9. Effect of Pmin
D .
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(a) # active sensors vs. Pmax
F .
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Fig. 10. Effect of Pmax
F .

Fig. 10 shows the number of active sensors and their costs
with different values of Pmax

F . The higher Pmax
F is, the fewer

mobile and static sensors are needed. This is intuitive, as
increasing Pmax

F relaxes the constraint.

D. Effectiveness of NA Skipping and Graph Pruning

Table II shows the number of iterations of different setups,
compared with the number of sensors in the final solution
|Sfinal|. As we can see, the number of iterations is less than
|Sfinal| since we skip some NA values in the initialization
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module. The simulation results demonstrate the effectiveness
of the skipping strategy.

TABLE II
NUMBER OF ITERATIONS WITH DIFFERENT L AND N TOTAL

s (W = 10 M)

L = 100 m L = 250 m L = 500 m
N total

s 50 100 200 50 100 200 50 100 200
|Sfinal| 26.6 28.9 27.1 61.3 66.2 73.7 118.3 124.7 135
# Iterations 8.7 10.9 9.1 10.4 15.3 22.8 10.3 16.9 27.1
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Fig. 11. Number of edges in graph G, nor-
malized to the initial, fully-connected graph,
vs. iteration.

Fig. 11 shows the
number of edges in G
throughout the itera-
tions of the scheme, a
measure of the effec-
tiveness of the prun-
ing process. Results
are shown for 50 and
200 deployed static
sensors. The number
of edges is normal-
ized to the number of
edges in the initial,
fully-connected graph. As the scheme iterates, the edges in
G are gradually pruned. When the number of deployed static
sensors is higher, more edges are pruned because fewer mobile
sensors are used in the solutions, providing a tighter upper
bound on the number of mobile sensors that can be included
in an edge. Overall, the graph pruning process is shown to
be effective. This helps expedite the scheme by reducing the
computational complexity as the scheme runs.

V. RELATED WORK

Early works on barrier coverage assumed a simple coverage
model, but later works have proposed probabilistic coverage
models to better capture sensing behavior. In [6] and [9],
the authors analyzed the coverage region of sensors and
studied the area coverage problem under a probabilistic model.
Yang [8] proposed a scheme to achieve weak barrier coverage
with a constraint on system false alarm probability under a
probabilistic model. All of these papers agree that the coverage
region under the probabilistic model must consider the con-
straint on false alarm probability. This brings new challenges
to coverage schemes that utilize probabilistic models.

Hybrid networks have been used in many sensor network
applications. In [10] and [11], the authors studied the tradeoff
of deploying static and mobile sensors, and proposed schemes
to achieve area coverage with a hybrid network. For barrier
coverage, Wang [5] considered how to achieve k-barrier cov-
erage with the minimum number of mobile directional sensors
filling the gaps between static ones. This problem is similar
to the problem studied in this paper, but instead of k-barrier
coverage under the disk model, we consider strong barrier cov-
erage under a probabilistic model with constraints on system
detection probability and false alarm probability. Additionally,
we consider a more general sensor cost instead of minimizing
only the number of mobile sensors. In [12], Kim studied
the problem of achieving max-lifetime barrier coverage by
scheduling mobile sensors to move around barriers composed
of static sensors, focusing on the scheduling problem with

a fixed number of mobile sensors. Xu [13] investigated the
problem of allocating mobile sensors to fortify weak points
in a barrier, which intruders may have a higher probability
of visiting. The objective was to provide a minimum level of
coverage, instead of minimizing the cost.

Many papers focus on how to achieve barrier coverage with
only mobile sensors [2], [3], [14], [15], instead of a hybrid
network. These papers propose schemes to relocate mobile
sensors to construct a barrier with various objectives, such
as minimizing the maximum moving distance of sensors or
minimizing the sum of moving distances of sensors. Our work
complements these works; we focus on determining where
to form the barrier, while these works generally assume the
barrier location is known and focus on how to move mobile
sensors to the barrier.

VI. CONCLUSION

In this paper, we proposed a scheme to solve the min-cost
barrier coverage problem in a hybrid sensor network with
static and mobile sensors. Our scheme takes into account
the practical constraints of system detection probability and
false alarm probability. Simulation results show the proposed
scheme can effectively choose the deployment strategy that
achieves strong barrier coverage at a minimum cost.
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