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Abstract—As wind energy continues to expand to new frontiers
in terms of the location, number, and size of wind turbines, the
industry has begun to seek smarter operations and management
solutions. Wireless sensing nodes could provide a low-cost plat-
form to support a variety of applications designed to reduce
the levelized cost of energy and increase the safety of wind
turbines. However, a wireless sensor node deployed on a wind
turbine blade would have an extremely limited energy supply.
To combat this limitation, we present BladeMAC, a new MAC-
layer protocol designed for sensor nodes deployed on rotating
wind turbine blades. BladeMAC overcomes a unique cyclical
channel problem to allow a sensor node attached to a rotating
blade to opportunistically and efficiently offload its data to a sink
node attached to the turbine tower. We have implemented and
evaluated BladeMAC using Contiki OS and the Cooja simulation
tool. We present results showing that BladeMAC effectively deals
with the cyclical channel problem at a wide range of data arrival
intervals, and that BladeMAC is insensitive to rotation speed and
rotation speed fluctuations.

I. INTRODUCTION

Renewable energy, and particularly wind energy, has seen
massive growth in the past few decades [1] due to factors
such as decreasing costs, government policies and incentives,
and increased concern about fossil fuels and their effects on
our planet. Wind turbines are continually growing in size, and
they are being deployed in larger numbers and in increasingly
remote locations, such as offshore. The challenge of operating
and maintaining large fleets of wind turbines is being met more
and more by digital, data-driven methods (e.g. [2]).

These methods rely in part on sensors deployed on the
wind turbine. Wind turbine blades are particularly difficult to
instrument, and current methods are costly [3]. For example,
fiber optic sensors can be embedded into the composite ma-
terial of the blades, but this requires expensive hardware and
integration into the blade manufacturing process. On the other
hand, small-size wireless sensor nodes attached to blades could
provide a low-cost, flexible data collection platform. However,
the challenge of powering these nodes over the multi-decade
lifespan of a wind turbine must first be overcome. Our research
takes on this challenge.

Emerging energy-harvesting techniques can help address
this challenge, but our approach comes from the opposite, but
complementary, direction: reducing energy consumption of the
nodes. Since the wireless radio hardware of a node consumes
a relatively large amount of power, we seek to reduce the
amount of time the radio is on, or to decrease the radio duty
cycle of the nodes. This is a hallmark task of wireless sensor

(a) The lab turbine, with nodes at-
tached to the tower and one of the
blades. The node on the blade is
encased in a rubber enclosure.
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(b) An RSS trace gathered using this
setup. Each point is an RSS sample
taken from a packet sent at a trans-
mission power of �21 dBm.

Fig. 1. A SpectraQuest (www.spectraquest.com) laboratory-scale wind turbine
with 1.4 m blades was used to observe the cyclical channel phenomenon. The
sensor nodes are TI CC2650-based Sensortags (www.ti.com/sensortag).

network (WSN) research, and is necessary even with energy-
harvesting, due to the dynamic and unreliable nature of the
available energy resources.

One method for deploying a WSN to monitor wind turbine
blades could be to place a base station, or sink, in the hub at the
center of the blades, and allow all sensing nodes, or sources,
to communicate directly with the sink. Another option could
be a multi-hop approach that uses relay nodes deployed along
the length of the blade. However, neither of these traditional
approaches are suited for the extremely low energy usage
required for this application.

We therefore propose a novel opportunistic single-hop ap-
proach. Instead of placing the sink at the hub, we attach it
to the tower. A source attached to a blade can then offload
its data in a single hop as the blade rotates past the tower.
The short distance between the nodes at this time allows
for reliable, low-power transmission. However, this approach
faces a cyclical channel problem, in which the received signal
strength (RSS) of the link between the nodes varies continually
in a periodic pattern. We observed this cyclical channel using
a laboratory-scale wind turbine and TI 2650-based Sensortags
(www.ti.com/sensortag), as shown in Fig. 1.

On our lab turbine, the nodes stay within range of each
other throughout the rotation. But on a utility-scale turbine
with 40 m blades or longer, the link between the nodes may
be broken during the upper part of the rotation. This creates a
unique scenario that existing duty-cycled MAC protocols are
not designed to handle efficiently: instead of the traditional
two-way rendezvous between the sender and receiver, the
protocol must arrange a three-way rendezvous between the
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sender, the receiver, and the channel cycle. To address this
challenge, we present BladeMAC.

In the following section, we examine related work. In Sec-
tion III, we present possible baseline solutions for our prob-
lem scenario. The shortcomings of these baseline solutions
motivate the design of BladeMAC, presented in Section IV.
In Section V, we detail our implementation of BladeMAC in
Contiki OS [4], our experimental methods, and our evaluation
results. Finally, we present our conclusions in Section VI.

II. RELATED WORK

Duty-cycled MAC protocols have been a popular research
topic among researchers attempting to minimize the energy
consumption of WSN nodes. When a node’s radio is off,
it cannot receive packets; therefore, one challenge for duty-
cycled MAC protocols is to efficiently arrange for a time
when the sender and the receiver can communicate, known
as a rendezvous. This rendezvous is arranged in either a
synchronous/scheduled or an asynchronous manner. In syn-
chronous/scheduled protocols such as T-MAC [5], nodes track
the wakeup schedules of their neighbors and thus know when
to wake to listen for packets. These protocols are not suited
for our cyclical channel problem because scheduled wakeups
would need to consider the channel’s “schedule,” which, due
to rotation speed fluctuations, would be constantly changing.

In asynchronous protocols, rendezvous are not scheduled
and occur only as needed. These protocols are generally
characterized as either sender-initiated or receiver-initiated. In
sender-initiated protocols, such as B-MAC [6], X-MAC [7]
and ContikiMAC [8], the sender indicates its desire to send by
jamming or strobing the channel until the receiver wakes and
responds. In receiver-initiated protocols such as RI-MAC [9],
the sender silently listens until the receiver announces its avail-
ability with a beacon packet. Receiver-initiated protocols oc-
cupy the channel less, particularly when the ratio of senders to
receivers is large. Asynchronous protocols exhibit the flexible,
dynamic behavior required for our cyclical channel problem;
however, existing protocols are not designed to efficiently
arrange a three-way rendezvous between the sender, receiver,
and channel. For example, if we directly apply RI-MAC to
our scenario, a sender could need to wait for many channel
cycles before the receiver wakes and beacons when the link is
available. We have designed BladeMAC to solve this problem.

As part of our solution, BladeMAC uses the RSS and
RSS trend to predict future RSS. This takes advantage of the
cyber-physical characteristics of the system. Cyber-physical
systems [10] have been a popular research topic in recent
years. To the best of our knowledge, BladeMAC is the first
research to consider the physical rotation of a wind turbine’s
rotating blades in designing a monitoring system for those
blades. Problems similar to our cyclical channel problem have
received limited attention in the past, such as for energy-saving
in body area sensor networks [11] and in Wi-Fi [12]. Our
problem is distinct because the link between nodes may be
broken entirely, the window for sending is very small, and the
period may be constantly fluctuating.

III. EVOLUTION OF BLADEMAC

In this section, we invent two new baseline solutions for
our problem. These solutions represent naive adaptations of
existing duty-cycled MAC protocols to the cyclical channel
problem. The shortcomings of these baselines motivate the
design of BladeMAC and further illustrate the problem and
why BladeMAC is needed.

A. CC-MAC

Our first baseline solution, illustrated in Fig. 2a, is a
receiver-initiated scheme that we call Cyclical Channel MAC
(CC-MAC). A receiver-initiated MAC is chosen because it
prevents nodes from occupying the channel when a link is
not even available, allowing other nodes to communicate. In
CC-MAC, the sink sends beacon packets at a fixed interval
TB, which is chosen to be small enough to guarantee that at
least one beacon per cycle is sent when the RSS of the link
is above the receive sensitivity threshold  SEN. The source
sleeps, with its radio off, until it has data to send. It then
wakes and listens until it hears a beacon, at which point it
engages in an exchange of data and acknowledgement (Ack)
packets with the sink. We emphasize that, in CC-MAC, the
source and sink have separate behaviors. The source does not
periodically wake and beacon, meaning that it does not expend
energy on communications unless it has data to send. If the
sink needs to communicate with the source, it can piggyback
command and control information on beacon or Ack packets.
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(a) CC-MAC
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(b) CPCC-MAC

Fig. 2. Example traces for CC-MAC and CPCC-MAC, taken from Cooja
simulations. An RSS plot is shown with an ideal RSS curve, drawn using
a log-distance path loss model.  SEN is the sensitivity threshold. Dots show
the source’s RSS samples gathered from received packets. Event timelines are
shown for the source and sink, and the shaded areas represent radio on-time.

CC-MAC works well enough for infrequent data arrival,
but more frequent data leads to a high percentage of time
spent idly listening. Additionally, since CC-MAC transmits
data when any beacon is received, an excessive number of
retries may be required, as the link may be in a weak state.
The pros and cons of CC-MAC are summarized as follows.

• Pros: (a) CC-MAC is simple; (b) CC-MAC is sufficient
if the interval between data arrivals is very long.

• Cons: (a) CC-MAC is sensitive to the data arrival inter-
val; (b) CC-MAC may transmit data while the channel is
still in poor condition, requiring excessive retries.
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B. CPCC-MAC

To improve on CC-MAC when data arrival is frequent,
we now outline a version of CC-MAC with cycle prediction,
which we call CPCC-MAC (Fig. 2b). In CPCC-MAC, the
source tracks the cycle period and phase, allowing it predict
when the channel will be present. The source then wakes at
this time and idly listens until a beacon is heard. If the cycle
prediction is accurate, the idle listening time is very short.

However, estimating the period is non-trivial. For example,
if a data transaction occurs at t = 0 and t = 20, the period
could be any integer division of 20 s, depending on how
many cycles elapsed between transactions. The period range
may be known, but since the period may be changing even
during the estimation process, the problem of period estimation
remains difficult. We therefore suggest that CPCC-MAC per-
form period estimation by time-stamping consecutive cycles.
To do this, CPCC-MAC performs an initial data exchange as
in CC-MAC. After the exchange, the source wakes up and
listens at the known interval TB until it has heard a beacon in
the next cycle. The time elapsed between this beacon and the
previous data exchange is used as the period estimate.

For future data arrivals, the source uses the period estimate
and the last data exchange timestamp to predict when it should
wake. If the beacon arrives more than TB after the predicted
time, the period estimation process is repeated. For example, in
Fig. 2b, data arrives around 129 s. The predicted wakeup time
is 129.5 s, but this prediction is inaccurate, and the source idly
listens for about four seconds (represented by the shaded area
on the source’s timeline) before a beacon finally arrives. Thus,
the period estimation process is reinitiated after the Data/Ack
exchange, at around 134 s. During this process, the source
repeatedly wakes to listen for beacons, until it hears a beacon
close to 139 s. This produces a period estimate of around
139�133.5 = 5.5 s. To predict a future wakeup time, CPCC-
MAC would use the period estimate to extrapolate out from
133.5 s, the timestamp of the most recent data exchange.

CPCC-MAC is effective if the period is stable and the period
estimation is accurate. However, the period estimation will
always be slightly inaccurate if the sink’s beacon interval is not
a divisor of the channel’s period. Dropped beacons can cause
more severe inaccuracies in the estimation. Additionally, in an
application such as a wind turbine, the period is expected to
change over time, because the blade rotation speed is related
to the wind speed. An inaccurate or outdated period estimate
leads to increased idle listening from poorly predicted wakeups
and increased overhead from redoing the period estimate.
Additionally, poor wakeup predictions can lead to increased
delay, if the source wakes too late and misses a communication
opportunity. Therefore, CPCC-MAC becomes less efficient as
period changes become more frequent and larger in magnitude.
The pros and cons of CPCC-MAC are summarized below.

• Pros: CPCC-MAC is efficient for frequent data arrivals if
the period estimation is accurate and the period is stable.

• Cons: (a) CPCC-MAC becomes less efficient as the
period changes more rapidly and more frequently;

(b) CPCC-MAC requires accurate period estimation,
which is difficult; (c) CPCC-MAC may introduce addi-
tional delay due to incorrect period estimation.

C. BladeMAC
From consideration of our baseline schemes CC-MAC and

CPCC-MAC, and their shortcomings, we propose BladeMAC.
Built on the foundations of our CC-MAC baseline scheme,
BladeMAC defines a set of opportunities for either sleeping or
transmitting. On each wakeup, BladeMAC uses RSS readings
and trends to identify which opportunity is applicable. Using
this framework, BladeMAC makes intelligent decisions about
when to sleep and when to transmit while waiting for the
channel to become favorable. BladeMAC boasts the following
features:

• BladeMAC is efficient at both low and high data arrival
rates, alleviating the main drawback of CC-MAC.

• BladeMAC is robust to changes in the cycle period,
alleviating the main drawback of CPCC-MAC.

• BladeMAC adapts to channel variation, making it robust
to real-world conditions.

IV. BLADEMAC
This section presents the details of BladeMAC’s design. We

first present an overview of BladeMAC’s operation, then we
separately detail the behaviors of the sink and the source.

A. Overview
Fig. 3 illustrates our cyclical channel problem. As the wind

turbine rotates, the distance between the source deployed on
the blade and the sink deployed on the tower periodically
increases and decreases. Mapping this distance to a theoretical
RSS curve produces a cyclical channel. BladeMAC makes use
of the observation that the channel’s cycle can be divided into
different intervals based on RSS thresholds.

TFAV

TSEN

Source node

Sink node

Fig. 3. Illustration of the cyclic
channel caused by the rotation of the
blades. We define the intervals TFAV
and TSEN based on  FAV and  SEN.

Sleep opportunity
Nap opportunity

Transmit opportunity

Hibernate opportunity

Fig. 4. Sample trace of BladeMAC’s
operation, from a Cooja simula-
tion. The opportunities used by
BladeMAC are labeled.

We here define two such intervals of the RSS curve for use
in discussing BladeMAC. The first interval is when RSS values
are above a threshold  FAV that is empirically determined to
correspond to a favorable channel. This interval is called the
favorable interval and is of length TFAV. A packet sent by the
source during the favorable interval has a high probability to be
received by the sink. Therefore, to minimize retransmissions
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and wasted energy, the source node should attempt to always
send data during this interval. The second interval of interest
is when RSS values are above the receive sensitivity level of
the radio hardware,  SEN. We call this interval the sensitivity
window and denote its length TSEN. The sensitivity window
encompasses the favorable interval, and the two may vary in
relative size with the conditions of the channel.

In BladeMAC, the source uses RSS values from the bea-
con and Ack packets it receives to identify the appropriate
opportunity for the situation. In some cases, the appropri-
ate opportunity for the source depends on the RSS trend.
BladeMAC obtains the RSS trend by measuring the RSS of
successive packets. With these tools, BladeMAC dynamically
makes decisions about when to send data and when to sleep,
allowing it to minimize idle listening and ensure that data is
sent when the channel is favorable.

The following sections describe the opportunities and be-
havior of BladeMAC in detail, but for a high-level introduc-
tion, Fig. 4 shows an example trace of BladeMAC’s operation.
As in CC-MAC, the sink beacons at a fixed interval. In this
example, the MAC layer of the source is handed data to be
sent (an event called data arrival and marked ) while the
RSS is below  SEN, at around 303.5 s. The source listens for
a period of time but does not hear a beacon packet, resulting
in a sleep opportunity. At around 304.25 s, the source wakes
and listens again. This time it receives a beacon (marked 4),
but with RSS below  FAV, resulting in a nap opportunity. The
source wakes for the next two beacons, but does not hear
them due to packet loss in the still-weak channel. The first
missed beacon is a nap opportunity, and the second is a sleep
opportunity. Finally, the source receives a beacon with RSS
above  FAV at around 305.5 s. In BladeMAC, this is called
a transmit opportunity, and the source immediately engages
in a Data/Ack exchange with the sink until all data is sent.
Then, the source listens for additional beacons in order to
estimate the sensitivity window size; details of this estimation
process are omitted due to space limitations. When the beacon
at around 306.5 s is not heard, the source has a hibernate
opportunity, allowing it to sleep until the next data arrival.

B. Sink Behavior
1) Overview: Due to the asymmetric nature of the source

and sink in terms of purpose, physical conditions, and energy
supply, the behavior of BladeMAC is different for the two
nodes. The behavior of the sink node is straightforward. The
sink spends most of its time inactive, with its radio off. Every
interval TB, the sink turns its radio on and sends a beacon
packet. The sink populates the beacon with the value of TB to
inform the source of the beacon interval length.

After sending a beacon, the sink listens for a period of time
equal to the TX/RX turnaround time plus the time required to
send a beacon. This gives the source time to respond with a
data packet. If the sink does not receive a data packet during
this time, it sleeps until the beginning of the next beacon
interval. If it does receive a data packet, it responds with an
Ack packet and then listens for any additional data packets.

2) Beacon Interval: A key issue for the sink is the determi-
nation of TB. A smaller TB is generally better for the source
because it leads to less idle listening and a lower duty cycle.
However, we assume the sink also needs to duty cycle its radio
to some extent to satisfy its own energy budget. Therefore,
to strike a balance between energy efficiency for the source
and duty cycling for the sink, we choose an upper bound of
TB  0.5TFAV, and we design the source’s behavior such that
the source cannot sleep through more than half of the favorable
interval. With this design, the source is able to hear at least
one beacon in each favorable interval.

3) Favorable Interval: The above choice for TB means that
TFAV must be known. Using empirical results and theoretical
analysis, a lower bound for TFAV can be estimated for a
particular application.

C. Source Behavior
The source node’s behavior is more complex than the sink.

At a high level, the source’s behavior is divided into three
states: the hibernation state, the wait state, and the send state,
as shown in Fig. 5. In the hibernation state, the MAC layer
has no data to send, so the source remains inactive. When data
arrives, the source enters the wait state. During the wait state,
the source attempts to minimize idle listening while waiting
for suitable channel conditions that will ensure reliable data
transmission. When these conditions are detected, the source
enters the send state and attempts to transmit all data packets
before the channel degrades. If all data packets are sent, the
source transitions to the hibernation state. But if the channel
degrades before all the data can be sent, the source must revert
to the wait state and wait for the next transmit opportunity.

Hibernation 
State Wait State Send State

Data arrival Transmit Opportunity

Nap or Sleep 
Opportunity

Transmit or
Retransmit 

Opportunity

Hibernate 
Opportunity

Sleep 
Opportunity

Fig. 5. Diagram of the source’s state machine.

1) Hibernation state: In the hibernation state, the source
keeps its radio off as long as its data queue is empty. Thus,
the source remains completely inactive in the network until it
has data to send. When data packets are added to the queue, the
source enters the wait state. During the wait state, additional
packets may be added to the queue.

2) Wait state: In the wait state, the source makes decisions
about when to sleep and when to send based on the RSS of
the packets it receives (or does not receive) from the sink.
Specifically, when entering the wait state, the source wakes
and listens for up to TB for a beacon from the sink. If TB is
unknown, such as when the source is first turned on, it is set
to 1. When a beacon packet is received, TB is extracted from
it and stored for future use.

After either receiving a beacon b (with RSS  b) or listening
for TB and not hearing a beacon ( b , ?), the source applies
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the rules summarized in Table I.  b and the current RSS trend
(determined by comparing  b to  b�1) are used to match one
of a number of cases. In the wait state, each case results in
one of three opportunities: transmit, nap, or sleep.

TABLE I
SOURCE’S BEHAVIOR IN THE WAIT STATE.

Opportunity RSS ( b) Trend ( b vs.  b�1 ) Action

Transmit  b �  FAV Any Enter
 b <  FAV Descent ( b <  b�1) send state

Nap
 b <  FAV Ascent ( b �  b�1)

Nap for TB b <  FAV  b�1 = ?
 b = ?  b�1 6= ?

Sleep  b = ?  b�1 = ? Sleep
for 0.5TSEN

• Transmit opportunity: The source transitions into the
send state. This opportunity occurs when the channel is favor-
able, meaning  b �  FAV, or when the channel is degrading,
meaning  b <  b�1. In the latter case, this opportunity allows
the source to transmit data, even though the channel is not
favorable, in order to avoid having to wait for the next transmit
opportunity, which would increase delay and energy use.

• Nap opportunity: The source naps (turns its radio off
for a short time) for TB and remains in the wait state. This
opportunity occurs when the link is present and the channel is
not favorable but getting better, meaning  b <  FAV and either
 b �  b�1 or  b�1 = ?. Also, a nap opportunity occurs if no
beacon is received this wakeup, but the previous beacon was
received. This last case accounts for packet loss, acting as a
“second chance” mechanism by allowing the source to listen
for one more beacon when a beacon is missed unexpectedly.

• Sleep opportunity: The source sleeps for an extended
length of time and remains in the wait state. This opportunity
occurs when the source listens for TB but does not hear a
beacon, and furthermore did not hear the previous beacon
( b =  b�1 = ?). This opportunity arises when the channel
is too weak for communication. The length of time to sleep
is chosen to be half of the sensitivity window (0.5TSEN). This
length guarantees that, even in the worst case where the source
goes to sleep just before the first beacon transmission during
the sensitivity window, it will still be able to hear the second
beacon during the sensitivity window after it wakes up again.

The sleep opportunity requires the source to estimate TSEN, a
quantity that may change over time due to external conditions
such as changing rotation speed. In brief, to estimate TSEN,
the source examines the RSS from packets received during
the sensitivity window. By comparing the timestamps of key
packets, such as the first packet, the last packet, and the
packet with the highest RSS, the source is able to obtain a
conservative estimate of TSEN, which it updates using a moving
average. We specifically design our estimation process to avoid
overestimation of TSEN, as overestimation can lead to missed
transmit opportunities. Our simulations have shown that, as
long as TSEN is not overestimated, performance of BladeMAC
remains robust to rotation speed changes. This contrasts
sharply with the full period estimation of CPCC-MAC, which

is highly sensitive to speed changes. Due to space restrictions,
further details of our TSEN estimation process are omitted here.

3) Send state: In the send state, the source engages in a
Data/Ack exchange with the sink until either the data queue
is empty, or the channel degrades to the point that the link
disappears, which is signified by R consecutive transmission
failures of a data packet. In our implementation of BladeMAC,
we set R = 3.

V. EVALUATION

In this section, we present our evaluation methods and
results for BladeMAC. We use simulations in Cooja [13],
Contiki OS’s [4] simulation tool, for our evaluation. We first
discuss our implementation of BladeMAC and our simulation
methods. Then, we evaluate BladeMAC against our CC-
MAC and CPCC-MAC baseline protocols, at different rotation
speeds, different data arrival intervals with a static rotation
speed, and different amounts of rotation speed variation.

A. Method
We implemented BladeMAC by inserting it into Contiki’s

Rime network stack [14], as shown in Fig. 6. BladeMAC
was implemented at the radio duty-cycling (RDC) layer,
which is responsible for interfacing with the radio hardware.
BladeMAC uses Contiki’s 802.15.4 packet framer to build
802.15.4-compliant packets. We implemented a packet queu-
ing mechanism at the MAC layer, which interfaces the RDC
layer with the upper layers. Using this framework, BladeMAC
enters the wait state when the first packet arrives. If additional
packets arrive while waiting for a transmit opportunity, these
packets are added to the queue, and all queued packets are
sent during the Data/Ack exchange. As comparison points for
BladeMAC, we implemented our CC-MAC and CPCC-MAC
baseline schemes, described in Section III, under the same
framework.

BladeMAC

R
DC

BladeMAC Packet Queue

M
A
C

Rime Stack Upper Layers

N
ET

Test ApplicationA
PP

Wireless Radio

PH
Y

802.15.4 
Framer

send_list()

Sleep/TX 
Controller

RX 
Handler

Window 
Estimation 

Engine

send() input()

input()

Data Control and Info

sent_callback()

Fig. 6. BladeMAC as it fits into the Contiki network stack.

We used Cooja, Contiki OS’s simulation tool, for our
evaluations. To produce the cyclical channel phenomenon in
Cooja, we used the Mobility Cooja plugin1 to simulate blade
rotation with a 50 m radius [15], and we implemented the
popular lognormal shadowing propagation model to obtain
distance-based RSS. We used a path loss exponent of 3.0 and
a standard deviation of 3 dB for the random component. To
translate RSS into probability of reception, we set a static noise

1http://anrg.usc.edu/contiki/index.php/Mobility of Nodes in Cooja
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floor of �100 dBm and used an empirically-derived function
from TOSSIM [16] to obtain the probability of reception from
the signal-to-noise ratio.

From this channel model, we obtained a favorable threshold
of  FAV = �90 dBm and a beacon interval of TB = 250 ms
for our evaluation. These choices result in TB ⇡ TFAV/4, which
satisfies our requirement that TB  TFAV/2. We used simula-
tions to verify this requirement; as expected, a beacon interval
larger than TFAV/2 produces a large drop in performance, and
smaller beacon intervals lead to a lower duty cycle for the
source. Therefore, in practice, the smallest beacon interval that
is sustainable by the sink should be chosen; if the sink cannot
sustain TB  TFAV/2, then its energy budget must be increased
before BladeMAC can be effective.

For evaluation metrics, we include duty cycle (a proxy for
energy consumption), delay, and the number of transmissions
per packet. In the simulation’s application layer, the source
queues a small data packet every data arrival interval, with a
small amount of random variation. Each simulation runs until
250 packets are successfully sent. The aggregate results shown
here are averaged over at least 20 simulations per protocol,
using the same random seeds for each protocol.

B. Rotation speed

We evaluated the protocols with static rotation speeds of
7–12 RPM [15], with a data arrival interval of 25 s. The
results are shown in Fig. 7. For all metrics, CPCC-MAC
shows significant sensitivity to rotation speed. This is due
to an interaction of the rotation period and the data arrival
interval that is aggravated by CPCC-MAC’s reliance on period
estimation. BladeMAC and CC-MAC are much less sensitive
to rotation speed. BladeMAC’s duty cycle, shown in Fig. 7a,
is nearly constant with rotation speed, and is generally the best
of the three protocols. CC-MAC’s duty cycle decreases with
rotation speed because the quicker rotation means it listens for
less time before a beacon is heard.

Fig. 7b shows delay normalized to the period of rotation.
BladeMAC and CC-MAC display a constant trend with small
fluctuations due to the rotation period’s interaction with the
data arrival interval. CC-MAC has the shortest delay be-
cause it always responds to the first possible beacon, while
BladeMAC’s slightly higher delay is the price of its much
lower duty cycle. CPCC-MAC’s normalized delay shows a
slowly increasing trend with rotation speed. This is because
CPCC-MAC’s delay depends on the error of its period estima-
tion process, and the same amount of error becomes relatively
larger at a faster rotation speed.

Fig. 7c shows transmissions per packet, which is constant
for BladeMAC, and is very low due to BladeMAC’s deliberate
attempts to send when the channel is strongest. For CC-
MAC, transmissions per packet decreases with rotation speed
because a faster speed means the channel spends less time in
a transitional state, so a response to the first beacon is more
likely to be heard. CPCC-MAC’s transmissions per packet
shows high sensitivity to rotation speed.

We choose 10.5 RPM as the default rotation speed for
the rest of the evaluation because, at 10.5 RPM and a 25 s
data arrival interval, BladeMAC and CPCC-MAC have similar
performance in terms of duty cycle.

C. Data arrival interval
We evaluated the protocols at different data arrival intervals

with a static rotation speed of 10.5 RPM. The results are
plotted in Fig. 8. In terms of duty cycle, CC-MAC performs
poorly at small data arrival intervals, where CPCC-MAC
excels. BladeMAC performs the best for data arrival intervals
larger than 25 s. Above this point, CPCC-MAC’s period
estimation is not accurate enough to be worth the overhead.

In general, we find that CPCC-MAC’s performance worsens
as the data arrival interval increases. CPCC-MAC shows
predictable performance at lower data arrival intervals, but
above 75 s, its performance begins to oscillate. CPCC-MAC’s
sensitivity to the ratio between rotation period and data arrival
interval does not completely explain these oscillations. We
believe these oscillations are evidence of another interaction,
between the rotation period and the error in the period es-
timation process. If the data arrival interval is long enough
that the wakeup prediction is off by an entire period, then
the prediction may become relatively accurate again. The
combination of these two interactions makes CPCC-MAC’s
performance difficult to predict.

D. Dynamic rotation speed
To evaluate BladeMAC’s resilience to changing rotation

speeds, simulations were run with a dynamic rotation speed.
The results are shown in Fig. 9. In these simulations, the
rotation speed fluctuates between set points that are chosen
uniformly from the given range, centered at 10.5 RPM. A
new set point is reached every 10 s. The transition between
set points is divided into discrete intermediate points with a
resolution of 0.1 RPM. This scenario is intended to loosely
mimic the effect of fluctuating wind speeds, but does not
directly simulate all of the complex effects of the wind
turbine’s rotor blade system, such as inertia. More realistic
dynamic scenarios are left to future work.

As expected, CPCC-MAC and BladeMAC have a similar
duty cycle at zero variation (a constant speed of 10.5 RPM,
which matches the previous figures). However, even the small-
est amount of variation begins to tilt the scales in BladeMAC’s
favor. Above a range of ±0.1 RPM, which is a variation of less
than 2% of the rotational speed, BladeMAC performs better
than CPCC-MAC. Overall, BladeMAC is shown to be insen-
sitive to rotation speed variation in all metrics, while CPCC-
MAC’s reliance on period estimation causes its performance
to suffer in these dynamic scenarios. Since CC-MAC does
not track the rotational speed in any way, its performance is
consistent.

VI. CONCLUSION

We have presented BladeMAC, a radio duty-cycling MAC
protocol designed specifically for wireless sensor nodes de-
ployed on rotating wind turbine blades. BladeMAC addresses
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Fig. 7. Evaluation for different static rotation speeds, with a 25 s data arrival interval.
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Fig. 8. Evaluation for different data arrival intervals, with a static 10.5 RPM rotation speed.
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Fig. 9. Evaluation with a 25 s data arrival interval and dynamic rotation speed. The x-axis is the range of speeds allowed, in an interval centered on 10.5 RPM.

the cyclical channel problem created by this scenario in a
way that has been shown to be effective regardless of rotation
speed, data arrival interval, and rotation speed variation. Future
work includes experiments on hardware, and extensions of
BladeMAC to consider multiple sources and to take advantage
of wakeup prediction when the rotation speed is stable.
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