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Abstract—This paper proposes TSKT-ORAM, a two-server k-
ary tree-based Oblivious RAM construction, to hide a client’s
access pattern to outsourced data. TSKT-ORAM is proved to
hide the access pattern with a failure probability of 2−λ, where
k = logN (N is the number of outsourced data items) and λ is a
security parameter. Under the same configuration, TSKT-ORAM
has an asymptotical communication cost of O( logN

log logN
·B) (B is

the size of a data block) if the number of recursion levels on meta
data is O(1), or O( log2 N

log logN
·B) if the number of recursion levels

is O(logN). Asymptotical analysis and detailed implementation-
based comparisons are conducted to compare the performance
of TSKT-ORAM with state-of-the-art ORAM schemes.

I. INTRODUCTION

Cloud storage services such as Amazon S3 and Dropbox

have been popularly used by business and individual clients to

host data. Before exporting sensitive data to the cloud storage,

clients can encrypt it if they do not trust the storage server.

However, data encryption itself is insufficient for data security,

because data secrecy can still be exposed if a client’s access

pattern to the data is revealed [1].

Oblivious RAM (ORAM) [2]–[12] is a well-known security-

provable approach for hiding a client’s access pattern to the

data stored in remote storage. In the literature, the most

communication-efficient ORAM construction is the constant

ORAM (C-ORAM) [13], which only requires O(1) blocks

to be accessed from the server for every query issued by

the client. However, C-ORAM incurs expensive computational

cost at the server. For example, to retrieve a block of 100 KB,

it takes 7 minutes and most of time is spent on computation;

the high computational cost results in high query delay,

which overshadows the improvement in bandwidth efficiency.

Among the constructions that do not incur high computational

cost, Path-ORAM [7] proposed by Stefanov et al. is the

most efficient one. Its communication cost is O(B · logN)
per query, when the total number of exported data blocks

is N and each data block is of size B ≥ N ε for some

constant 0 < ε < 1. Though Path-ORAM has achieved better

communication efficiency than prior works, further reducing

the communication and other costs is still desirable to make

the ORAM construction more feasible to implement in cloud

storage systems. In addition, some recent researchers studied

ORAMs from different perspectives. Bindschaedler et. al. pro-

posed an ORAM system, CURIOUS [14], to study the ORAM

performance for cloud application with O(B ·√N) client-side

storage and data block size of no more than 64KB. Later,

Sahin et. al. proposed a TaoStore [15] based on Path-ORAM

to further resolve the asynchronicity issue in CURIOUS.

In this paper, we propose TSKT-ORAM, in which data

blocks are outsourced to two independent servers where the

data blocks are stored in k-ary trees and evictions are delayed

and aggregated to reduce its cost. The design can further

reduce the costs of data access pattern protection and si-

multaneously accomplish the following performance goals: (i)

communication efficiency - O( logN
log logN ·B) communication cost

per query when the block size B ≥ N ε bits for some constant

0 < ε < 1; (ii) storage efficiency - O(B) storage space at the

client side and O(B · N) storage space at the cloud server

side; and (iii) computational efficiency - the server only needs

to perform simple XOR operations.

We have conducted detailed analysis to show the security

of the proposed TSKT-ORAM. We have also implemented

TSKT-ORAM and Path-ORAM in a system of remotely

connected servers and clients, and conduct experiments to

compare their performance. In the comparison, we have mea-

sured the actual communication costs per query and query

and access delay for each data query. The results show that the

communication cost of TSKT-ORAM is 25% to 33% of that of

Path-ORAM in real-world. In terms of the access delay which

includes the time for both a query and its follow-up eviction,

TSKT-ORAM also significantly outperforms Path-ORAM.

In the following, Section II defines the problem. Section III

describes our proposed TSKT-ORAM construction. The se-

curity analysis and Implementation-based comparisons are

reported in Section IV and V, respectively. Finally, Section VI

concludes the paper.

II. PROBLEM DEFINITION

Assume that a client selects two cloud storage servers (for

example Amazon S3 and Google Drive) which are independent

and do not collude with each other, and exports two identical

copies of N encrypted and equal-size data blocks to them.

Later on, the client may access the exported data every now

and then, and wishes to keep the pattern of her accesses private

from the servers.

The client’s private data request to the remote storage is one

of the following types: (i) read a data block D of unique ID i
from the storage, denoted as D = (read, i); (ii) write/modify

a data block D of unique ID i to the storage, denoted as

(write, i,D). For simplicity, we also denote the type of each

request as (op, i,D) where op is either read or write.
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Figure 1. An example TSKT-ORAM scheme with a quaternary-tree storage
structure.

To accomplish a private data request, the client needs to

access some location(s) of the remote storage. Each location

access, which is observable by the server, is one of the

following types: (i) read a data block D from a location l
at the remote storage, denoted as D = (read, l); (ii) write a

data block D to a location l at the remote storage, denoted as

(write, l,D). For simplicity, we also denote the type of each

request as (op, l,D) where op is either read or write.

Following the threat models of existing ORAM construc-

tions [7], [9], we also consider each remote storage server

to be honest but curious; i.e., it stores data and serves the

client’s requests according to our defined ORAM protocol,

but it may attempt to figure out the client’s access pattern. We

assume the network connection between the client and server

is secure; in practice, this can be achieved using techniques

such as SSL [16].

We define the security of our proposed ORAM as follows.

Definition Let �x = 〈 (op1, i1, D1), (op2, i2, D2), · · · 〉 denote

a sequence of the client’s private data requests, where each

op is either a read or write operation. Let A(�x) = 〈
(op′1, l1, D

′
1), (op

′
2, l2, D

′
2), · · · 〉 denote the sequence of the

client’s location accesses to the remote storage (observed

by the server), in order to accomplish the client’s private

data requests. An ORAM system is said to be secure if (i)

for any two equal-length private sequences �x and �y, their

corresponding observable access sequences A(�x) and A(�y)
are computationally indistinguishable; and (ii) the probability

that the ORAM system fails to operate is no greater than 2−λ,

where λ is a system parameter.

III. THE PROPOSED TSKT-ORAM CONSTRUCTION

This section presents the details of TSKT-ORAM in terms of

storage organization, system initialization, data query process,

and data eviction process.

A. Server-side Storage

At each server, the data storage is organized as a special
k-ary tree of height Hk = � logN+1

log k �+1, where the root node

only stores one data block and has only two children nodes,

while each of the other nodes stores 3c(k−1) data blocks and

can have up to k child nodes. We call each node on this k-ary

tree as k-node. For simplicity, we set the system parameter k
to a power of two. As shown in Figure 1, each non-root k-node

can be mapped to a binary subtree with k−1 binary tree nodes

(called b-nodes); hence, a whole k-ary tree can be mapped to

a binary tree. Each k-node ul,i (where l = 0, · · · , Hk−1) has

the following components:

• Data Array (DA): a data container with the capacity of

either 1 (for root k-node) or 3c(k− 1) (for any non-root

k-node) data blocks, where c = 7 is a default system

parameter.

• Encrypted Index Block (EI): a metadata block with 1
or 3c(k − 1) entries recording the information for each

block stored in the DA. Specifically, each entry is a tuple

of format (ID, lID, bnID), which records the following

information of each block: (i) ID - ID of the block; (ii)

lID - ID of the leaf k-node that the block is mapped

to; (iii) bnID - ID of the b-node (within ul,i) that the

block logically belongs to. In addition, the EI has a ts
field which stores a timestamp indicating when this k-

node was accessed last time.

B. Client-side Storage

At the client side, the following storage structures are

maintained:

• A client-side index table I: a table of N entries, where

each entry i records the ID of the leaf k-node that data

block Di is mapped to (i.e., block Di is stored at some

node on the path from the root to this k-node). This table

can be exported to the server, just as in T-ORAM [17], P-

PIR [18], Path ORAM [7], etc. To simplify presentation

of the design in this section, however, we assume the

table is maintained locally at the client side. Note that,

outsourcing the index table of O(N logN) bits with a

uniform block size of B = N ε bits can ensure the

metadata recursion to be of O(1) depth (0 < ε < 1).

• A temporary buffer: a buffer used to temporarily store

blocks downloaded from the server-side storage.

• A small permanent storage for secrets: a permanent

storage to store the client’s secrets such as the keys used

for the encryption and decryption of data and EIs.

• C: a counter counting the number of queries that the client

has issued to the server.

C. System Initialization

To initialize the system, the client first encrypts each real

data block di to Di, assigns it to a randomly-selected leaf k-

node at each server, and constructs dummy data blocks to fill

the rest space on the tree.

The client initializes the root node to empty. For each k-

node, the client initializes its EI entries to record the informa-

tion of blocks stored in the node. Specifically, for each real

data block, its ID field records the block ID, its lID field

records the ID of the leaf k-node that the block is assigned to,

and its bnID field records the ID of an arbitrary leaf b-node

of the binary subtree that the k-node of ID lID maps to; for
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each dummy data block, its block ID is marked as “−1”, while

its lID and bnID fields are filled with arbitrary values. The

ts field of the EI is initialized to 0.

For the client-side storage, the client intializes the index

table I to record the mapping from each real data block to

the leaf k-node that it is assigned to, stores the keys for data

and index table encryption in the permanent storage space, and

initializes the counter C to 0.

D. Data Query

The client queries data block Dt of ID t as follows.

• The client increments the counter C, and checks the index

table to find out the leaf k-node (denoted as uHk−1,f )

which Dt maps to. Hence, a path from the root to

uHk−1,f on the k-ary tree is identified. For simplicity,

we denote the path as −→u = (u0, · · · , uHk−1).
• For each k-node ul (1 ≤ l ≤ Hk − 1) on −→u , the client

retrieves the EI, and checks if Dt is in the node. Note

that the root k-node never stores a real block at the query

time. Then, the client constructs two 3c(k− 1)-bit query

vectors, denoted as
−→
Q l

1 and
−→
Q l

2. If Dt is on certain

position m of the node, the client sets the two bit vectors

as follows:
−→
Q l

1 = (r0, r1, · · · , rm, · · · , r3c(k−1)−1),−→
Q l

2 = (r0, r1, · · · , 1− rm, · · · , r3c(k−1)−1),
(1)

where each ri is a bit randomly selected from {0, 1}. If

Dt is not in the node,

−→
Q l

1 =
−→
Q l

2 = (r0, r1, · · · , rm, · · · , r3c(k−1)−1). (2)

Then, the client sends
−→
Q l

1 to S1 and
−→
Q l

2 to S2.

• Each server Sj , where j ∈ {0, 1}, computes D̂j as

⊕
1≤l≤Hk−1

⎛
⎜⎜⎝

⊕

∀D∈{D on pos i of ul|0≤i≤3c(k−1)−1,Ql
j
[i]=1}

D

⎞
⎟⎟⎠ ,

(3)

and sends D̂j back to the client, who computes D̂0

⊕
D̂1

to get Dt.

After Dt has been accessed, the client randomly maps the

block to a leaf k-node, re-encrypts the block, and then uploads

it to the root node of each server.

E. Data Eviction

In each server, to prevent a k-node from overflowing its DA,

real data blocks should be gradually evicted towards leaf k-

nodes. Similar to T-ORAM and P-PIR, a data eviction process

is launched in TSKT-ORAM immediately after each query.

1) Overview: Data eviction in TSKT-ORAM is conducted

over its logical binary tree, and a sketch of the process is

as follows. First, one or two nodes from each layer of the

logical binary tree are randomly selected. Specifically, if a

layer has only one node, the node is selected; otherwise, two

nodes are randomly selected. In each of the selected b-nodes,

if there is a real data block, the block will be evicted to one of

its child b-nodes according to the block’s path (i.e., the path

from the root to the leaf k-node whose ID is stored at lID
field of the EI entry corresponding to this block); otherwise,

the client performs a dummy eviction. Note that, immediate

execution of all of these binary-tree evictions would require

the client to access O(logN) blocks. To reduce the cost, we

delay and aggregate certain evictions, and execute them later

in a more efficient manner. The idea is developed based on

the observation that there are two types of evictions between

b-nodes: intra k-node evictions and inter k-node evictions.

Intra k-node Evictions vs. Inter k-node Evictions An

eviction is called an intra k-node eviction if the data block is

evicted between b-nodes that belong to the same k-node; else

it is called an inter k-node eviction. For example in Figure 2,

the eviction from v3,3 to its child nodes is an intra k-node

eviction, as v3,3 and its child nodes belong to the same k-

node u2,3. On the other hand, the eviction from v2,0 to its

child nodes is an inter k-node eviction, as v2,0 and its two

child nodes belong to different k-nodes.

As b-nodes within the same k-node share the same DA space

for storing data blocks, an intra k-node eviction only requires

an update of the EI to reflect the change of bnID field for the

evicted block. Therefore, such an eviction does not incur any

communication overhead and thus could be performed more

efficiently than inter k-node evictions.

Figure 2. An example data eviction process in TSKT-ORAM with a
quaternary-tree storage structure. The b-nodes selected to evict data blocks are
circled. The k-node scheduled with delayed evictions (i.e., u2,3) is highlighted
with bold boundaries.

Opportunities to Delay Intra k-node Evictions During

a data eviction process, a k-node may not be involved in any

inter k-node evictions, i.e., its root b-node is not a child of

any evicting b-node meanwhile its own leaf b-nodes are not

selected to evict any data blocks. In Figure 2, u2,3 is an

example of such a k-node. If intra k-node evictions should

occur in such a k-node, they can be delayed to perform (i.e.,

to update the EI) later when the k-node is next accessed during

a query process or an inter k-node eviction. This is possible

because the EI of the k-node is not accessed until the k-node

is next accessed. Moreover, since the client has to download
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the EI of the k-node anyway during a query process or an inter

k-node eviction, updating of the EI to complete delayed intra

k-node evictions does not cause any additional communication

overhead, thus reducing the eviction cost. For example, as

shown in Figure 2, evictions from b-nodes v3,3 can be delayed.

Later on, when u2,3 is accessed, the delayed evictions shall

be executed before any other updates.

More specifically, the eviction process is composed of the

following three phases.

2) Phase I: Selecting k-nodes for Eviction: At the be-

ginning of an eviction process, the client uniform randomly

selects two b-nodes from each binary-tree layer l (l ∈
{log k, 2 log k, · · · , (� logN+1

log k � − 1) · log k}). These layers are

the bottom binary subtree layers inside non-bottom k-nodes.

Therefore, evicting data blocks from the b-nodes on these

layers to their child b-nodes are inter k-node evictions and

shall be executed immediately. The k-nodes that contain these

selected b-nodes or their child b-nodes shall be processed as

specified in Phases II and III. For example, in Figure 2, b-

nodes v2,0 and v2,2, which are on the bottom-layer of k-nodes

u1,0 and u1,1 respectively, are selected for binary tree eviction;

hence, k-nodes u1,0, u1,1, u2,0, u2,1, u2,4 and u2,5, which

contain either the selected b-nodes or their child b-nodes, shall

be processed in the follow-up phases.

Note that, we delay the selection of evicting b-nodes on

other layers, as their evictions are intra k-node evictions and

can be delayed.

3) Phase II: Execution of Delayed Intra k-node Evictions:
For each b-node selected in Phase I, the three k-nodes that

contain this selected b-node or its child b-nodes shall execute

their delayed intra k-node evictions in this phase. Also, each

k-node downloaded during the query process, as elaborated

in Section III-D, shall also execute its delayed intra k-node

evictions as follows.

Specifically, for each of these k-nodes, say, ul,i, the follow-

ing operations shall be conducted. First, the client retrieves and

decrypts the EI of this k-node to obtain the ts stored there.

The difference between the client’s current counter C and the

value of the ts, i.e., C − ts, is the number of eviction rounds

for which this k-node has delayed its intra k-node evictions.

Then, for each of these delayed eviction rounds, two b-

nodes are uniform randomly picked from each layer l′ (l′ ∈
{l · log k, l · log k + 1, · · · , (l + 1) · log k − 2}) of the whole

logical binary tree that the k-ary tree is mapped to. For each

selected b-node vl′,i′ belonging to the binary subtree that k-

node ul,i is mapped to, eviction from this b-node to its child

nodes is executed. Specifically, a real data block d is randomly

selected from vl′,i′ if the b-node has a real data block; then,

according to the lID of block d, the block is logically evicted

to one of its child b-nodes, say, vl′+1,j′ , which is done by

changing the bnID of block d to the ID of vi′+1,j′ .

After all the delayed intra k-node evictions have been

executed, the ts of k-node ul,i is updated to C.

4) Phase III: Execution of Inter k-node Evictions: For each

b-node selected in Phase I, after the k-nodes containing this

b-node or its child b-nodes have executed their delayed intra k-

node evictions in Phase II, the inter k-node eviction from this

b-node to its child b-nodes shall be executed in this phase.

To facilitate data eviction, each k-node partitions its DA

space into three logical parts, denoted as P1, P2 and P3, each

of which can store c · (k − 1) data blocks.

• P1 stores the c ·(k−1) data blocks that have been evicted

to this k-node most recently.

• The rest space is evenly divided into two logical parts,

P2 and P3, and all the real data blocks belong to P2.

As we prove in Section IV, when system parameters are

properly configured, each k-node stores at most c ·(k−1)
real blocks with the probability of 1 − 2−λ; hence, the

division fails (and thus the eviction scheme fails) with

only a probability of 2−λ.

Note that, the server knows P1, but does not know the scopes

of P2 and P3.

Let vl,x denote the selected evicting b-node inside k-node

ul′,x′ , and vl+1,y and vl+1,z denote the two child b-nodes of

vl,x. Also, let ul′+1,y′ and ul′+1,z′ denote the two k-nodes

where b-nodes vl+1,y and vl+1,z reside. The procedure for

data eviction from vl,x to vl+1,y and vl+1,z is elaborated as

follows.

First, the client needs to obliviously retrieve an evicting

data block, denoted as D, from vl,x. To accomplish this, the

client retrieves the EI of k-node ul′,x′ which contains vl,x, and

checks if vl,x contains a real data block. Suppose one real data

block D of vl,x is stored at position m of the DA of ul′,x′ ,

the client constructs two 3c(k− 1)-bit query vectors, denoted

as
−→
Q1 and

−→
Q2. The client sets the two bit vectors as follows:

−→
Q1 = (r0, r1, · · · , rm, · · · , r3c(k−1)−1),−→
Q2 = (r0, r1, · · · , 1− rm, · · · , r3c(k−1)−1),

(4)

where each ri is a bit randomly selected from {0, 1}. Then,

the client sends
−→
Q1 to S1 and

−→
Q2 to S2. Each server Sj ,

where j ∈ {0, 1}, computes D̂j as
⊕

∀D′∈{D′ on pos i of u
l′,x′ |0≤i≤3c(k−1)−1,Qj [i]=1}

D
′
, (5)

and sends D̂j back to the client, who computes D̂0

⊕
D̂1 to

get D.

Second, the client applies the following rules to evict a data

block D from vl,x to vl+1,2x (the eviction of D to vl+1,2x+1

follows the same rule):

• If D is a real data block, there are two sub-cases:

– D is intended to be evicted to vl+1,2x. Thus, the data

block that will be evicted to vl+1,2x+1 is a dummy

block. In this case, each position w ∈ P3 will have

equal probability to be selected such that D will be

evicted to w.

– D is not intended to be evicted to vl+1,2x. Hence, the

data block that will be evicted to vl+1,2x+1 is the real

data block. In this case, one position w ∈ P2 will be

uniformly randomly selected and D will be evicted

to w.
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• If D is a dummy data block, each position w ∈ P2 ∪ P3

will have equal probability to be selected such that D
will be written to.

After the above operations, w is transferred to P1. Meanwhile,

the oldest position w′ ∈ P1 becomes a member of P2 or P3

depending on if it contains a real block or a dummy block.

We prove in Section IV that, each position in P2 ∪ P3 has

the same probability to be selected to access during an eviction

process; thus, the eviction process is oblivious and does not

reveal the access pattern.

IV. SECURITY ANALYSIS

In the security analysis which can be found in our technical

report [19], we first show that with proper setting of param-

eters, TSKT-ORAM construction fails with a probability of

2−λ through proving the DA of each k-node overflows with a

probability of 2−λ. Then, we show that both query and eviction

processes access k-nodes independently of the client’s private

data request. Based on the above steps, we finally present the

main theorem.

Lemma 1: In TSKT-ORAM, if each DA stores 3c(k − 1)
data blocks, given N ≥ 216, k = logN and c = 7, the

probability for the DA of any k-node in the k-ary tree to

overflow is 2−λ, where λ > 2k.

Lemma 2: Any query process in TSKT-ORAM accesses k-

nodes from each layer of the k-ary tree, uniformly at random.

Lemma 3: Any eviction process in TSKT-ORAM accesses

a sequence of k-nodes independently of the client’s private

data request.

Lemma 4: For any k-node ni with k-node np as its parent,

each position in P2

⋃
P3 of ni has the equal probability of

1
2c logN to be selected to access.

Theorem 1: TSKT-ORAM is secure under Definition II, if

N ≥ 216, k = logN and c = 7.

Due to page limit, please refer to [19] for the proofs of the

above lemmas and theorem.

V. PERFORMANCE COMPARISON

This section compares TSKT-ORAM with state-of-the-

art ORAMs including B-ORAM [5], T-ORAM [17], G-

ORAM [10], Path ORAM [7], SCORAM [12], and P-PIR [18].

A. Asymptotical Results

Table I shows the asymptotical comparison between TSKT-

ORAM and existing ORAM schemes. We consider two sce-

narios: the index structure is exported and accessed in O(1)
recursion levels or in O(logN) recursion levels. From the

table we can see that, TSKT-ORAM is the most communi-

cation efficient among the schemes, and can achieve a factor

of O(log logN) improvement in efficiency compared to the

most communication-efficient state-of-the-art schemes such as

P-PIR and Path-ORAM. Meanwhile, TSKT-ORAM requires

smaller server-side storage than T-ORAM and P-PIR, and on

the same level as other compared ORAM schemes.

For fairness, the system parameters of the compared

schemes have been set carefully to make the schemes to have

the same or similar levels of failure probability: specifically,

TSKT-ORAM fails with probability 2−λ, T-ORAM and P-PIR

fails with probability O(N−c) (c > 1), Path-ORAM fails with

probability O(N−ω(1)).

B. Implementation Results

Experiments have been conducted based on our implemen-

tations of TSKT-ORAM and Path-ORAM to compare the com-

munication performance between them. Both implementations

are written in Java and each of them runs on a Linux PC with

an Intel Core i5 Processor of 2.4GHz and dual cores. Three

metrics are used to measure the communication performance:

(i) communication cost, i.e., the amount of data transferred

between the server and the client per query; (ii) query delay,

i.e., the time elapsed from when the client issues a query for

a data block till when the client can access the plaintext of the

queried data block; (iii) access delay, which is defined as the

time elapsed from when the client issues a query for a block

till when the server finishes both the query and the follow-

up eviction processes. We use the similar settings as in the

simulations: In each round of experimentation, the number

of exported data blocks N varies from 216 to 220, and 215

sequential and random data queries are conducted. We also

vary the network bandwidth between the client and the server

from 1 MB/s to 10 MB/s to evaluate the impact of network

bandwidth on the performance.

Table II compares the communication costs between TSKT-

ORAM and Path-ORAM. Specifically, it shows the actual

number of data blocks transferred between the client and the

server per query. As we can see, the communication cost of

TSKT-ORAM is 25% to 33% of that of Path-ORAM.
Table II

COMMUNICATION COST COMPARISONS BETWEEN TSKT-ORAM AND

PATH-ORAM. THE COMMUNICATION COST IS MEASURED IN THE UNIT OF

DATA BLOCK.

Comm Cost B = 4KB B =
16KB

B =
64KB

B =
256KB

Path-ORAM
(N = 216)

170 170 170 170

TSKT-
ORAM
(N = 216)

43.1 37.8 36.4 36.1

Path-ORAM
(N = 220)

210 210 210 210

TSKT-
ORAM
(N = 220)

52.8 46.2 44.6 44.1

Figure 3 compares the query and access delays between

TSKT-ORAM and Path-ORAM in two scenarios, i.e., the

client-server network bandwidth is 1MB/s or 10MB/s. As we

can see from the figures, TSKT-ORAM has much shorter

query delay than Path-ORAM. This is due to the following

reasons: During a data query process, only one data block is

retrieved from each of the two servers; while in Path-ORAM,

10 logN data blocks are retrieved from the server. Hence,

TSKT-ORAM spends less time for data transmission than

Path-ORAM. The retrieved data blocks should be decrypted

before the target data block can be accessed; therefore, TSKT-

ORAM also spends less time for decryption than Path-ORAM.
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Table I
ASYMPTOTICAL COMPARISONS. N IS THE TOTAL NUMBER OF DATA BLOCKS AND B IS THE SIZE OF EACH BLOCK IN THE UNIT OF BITS. k = logN AND

c = 7 FOR TSKT-ORAM, AND k = logN FOR G-ORAM.

ORAM Communication Cost with
O(logN) Recursion Levels

Communication Cost with
O(1) Recursion Levels

Client-Side Storage
Cost

Server-Side Storage
Cost

B-ORAM [5] Ω(log3 N ·B) for N ≤ 237; Same as the left column O(B) O(N ·B)

T-ORAM [17] O(log3 N ·B) O(log2 N ·B) O(B) O(N logN ·B)

G-ORAM [10] O( log3 N
log logN

·B) O( log2 N
log logN

·B) O(log2 N ·B) O(N ·B)

Path ORAM [7]
SCORAM [12]

O(log2 N ·B) O(logN ·B) O(logN ·B) O(N ·B)

P-PIR O(log2 N ·B) O(logN ·B) O(B) O(N logN ·B)

TSKT-ORAM O( log2 N
log logN

·B) O( logN
log logN

·B) O(B) O(N ·B)
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Figure 3. Performance comparison of query and access delays between
TSKT-ORAM and Path-ORAM. Query delay is measured as the time elapsed
from when a client issues a request to when the user can access the decrypted
data. Access delay is measured as the time elapsed from when a client issues
a request to the time when the server finishes eviction. Settings: the block
size B ranges from 4KB to 256KB; the client-server network bandwidth is
1MB/s or 10MB/s.

TSKT-ORAM also has shorter access delay than Path-ORAM,

because it incurs lower communication cost.

VI. CONCLUSION

This paper proposes TSKT-ORAM, which exports data

blocks to two servers each using a k-ary tree to store the data

blocks. It also adopts a novel delayed eviction technique to

optimize the eviction process. TSKT-ORAM is proved to hide

the data access pattern with a failure probability of 2−λ, where

k = logN (N is the number of exported data itmes) and λ
is the security parameter. Implementation-based comparisons

have also been conducted to compare its performance with

state-of-the-art ORAM schemes.
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