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Abstract—This paper presents DiVA, a novel hybrid range-

free and range-based acoustic source localization scheme that

uses an ad-hoc network of microphone sensor nodes to produce

an accurate estimate of the source’s location in the presence

of various real-world challenges. DiVA uses range-free pairwise

comparisons of sound detection timestamps between local Voronoi

neighbors to identify the node closest to the acoustic source, which

then estimates the source’s location using a constrained range-

based method. Through simulation and experimental evaluations,

DiVA is shown to be accurate and highly robust, making it

practical for real-world applications.

I. INTRODUCTION

The continued prevalence of gun violence in public areas
has shown a need for more advanced methods for dealing with
such scenarios. An ad-hoc wireless acoustic sensor network
pre-deployed in an at-risk area could use a robust localization
scheme to provide authorities with critical information. Such
a system could provide shooter localization [1], [2] or, along
with a camera system, advanced surveillance [3]. With in-
network acoustic classification [4], such a system could also be
used for applications such as detailed wildlife monitoring [5].

Assuming that sensor nodes have known geographical po-
sitions, simple range-based localization methods, such as time
of arrival (TOA) and time difference of arrival (TDOA), would
work well for an ideal version of these scenarios. However,
these methods can be inaccurate in the presence of the real-
world challenges inherent in acoustic localization. These chal-
lenges include the imprecise nature of acoustic timestamping,
the imperfect clock synchronization between sensor nodes,
and the inaccuracies of outside systems, such as GPS, in
determining the positions of sensor nodes. Additionally, more
advanced schemes are needed to meet the challenges inherent
in low-power, mutlihop wireless sensor networks.

This paper presents DiVA, a distributed Voronoi-based
acoustic source localization scheme that addresses these is-
sues. DiVA is a unique hybrid of range-free and range-based
methods, making it accurate, robust to real-world conditions,
quick to converge, and lightweight in terms of communication
and computational complexity. More specifically, DiVA uses
range-free pairwise comparisons of sound detection time-
stamps of neighboring nodes, a process that is tolerant to
various sources of error, to produce a coarse estimate of the
target’s location. This coarse estimate is then refined using
TDOA and constrained optimization, reliably producing a

high-accuracy estimate even in the presence of harsh real-
world conditions. The remainder of this paper presents related
work, the baseline approach of DiVA, practical considerations
and extensions for DiVA, a simulation study, and an experi-
mental evaluation of DiVA.

II. RELATED WORK

Acoustic source localization systems can be classified based
on the acoustic feature used for localization, including TOA
[6]–[8], TDOA [2], [9]–[11], angle of arrival (AOA) [12],
[13], and acoustic energy [14]–[18]. Range-free methods also
exist [19]–[24]. Both TOA- and TDOA-based methods require
accurate time synchronization between sensor nodes, and are
highly sensitive to the relative positions and the position
errors of the sensor nodes used for localization. AOA-based
methods usually require additional hardware support, such
as multiple microphones on each sensor node. Energy-based
methods do not require time synchronization, but may suffer
from the energy-distance mismatch problem: louder does not
necessarily imply closer. Range-free methods mainly utilize
proximity information and rely on collaborations between
sensor nodes to produce an estimate of the source location.
These methods have high robustness and low system cost, but
suffer from decreased accuracy as the distance between nodes
increases. DiVA is a unique hybrid solution that combines the
robustness of range-free methods with the accuracy of TDOA.

Localization schemes can also be classified by system
architecture. Most research focuses on methods for processing
sensor data in a centralized architecture, where all nodes
report readings to a base station. These systems can be
highly accurate, but do not address practical issues for sensor
networks, such as scalability. For instance, transferring all data
to a base station can be time-consuming and lead to high
communication overhead.

A limited number of distributed or decentralized acoustic
source localization schemes have been proposed. The energy-
based DIG [15] uses a cycling mechanism to arrive at a final
estimate. C-DRASL [18], also energy-based, uses a distributed
consensus algorithm. Both methods require a number of iter-
ations, and therefore time and communication overhead, to
converge. Lightning [24] uses the difference between acoustic
and RF signal propagation to quickly identify the node closest
to the acoustic source. Lightning’s hard real-time requirement
and broadcast-based communications may not be robust under
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harsh conditions. The DSL family of schemes [22], [23],
uses a broadcast-based election process to identify the node
closest to the acoustic source, which then establishes a voting
grid centered on itself. Each nearby node uses timestamp
comparisons with the other nearby nodes to estimate the
source’s location and cast votes in the voting grid. The DSL
family relies heavily on one-hop broadcast communication,
limiting its scalability. Chen et al. [17] proposed a clustered
scheme that uses a Voronoi diagram to determine which cluster
head is the closest to the source, but the scheme requires a
backbone of higher-capability cluster head nodes.

In contrast, DiVA uses a hybrid architecture in which nodes
first collaborate using a distributed, Voronoi-based, range-free
method to identify the node closest to the acoustic source.
This node then has enough information to act as a local base
station. It first uses a range-free method to determine a small
region that contains the source, then solves a constrained opti-
mization problem on TDOA estimates from a select group of
neighboring nodes to obtain a precise estimate of the source’s
location. With this architecture, DiVA achieves high accuracy
and robustness with low complexity and no assumptions about
topology or deployment conditions, making it practical for
real-world deployments.

III. BASELINE APPROACH

DiVA’s key idea is to divide the area covered by the
microphone nodes into local Voronoi cells and use pairwise
comparisons between neighbors to traverse the diagram to
the acoustic source. This is accomplished in four phases. In
the initialization phase, nodes determine their local Voronoi
neighbors (LVNs), defined in the following subsection. Then,
when a sound is heard, nodes collaborate with their LVNs
to identify the node closest to the source of the sound. This
node then uses information from its LVNs to narrow down
the location to a target subregion. Finally, TDOA estimates
from the surrounding nodes are processed with a constrained
optimization procedure to produce a final location estimate
within the target subregion. In this hybrid globally-distributed
and locally-centralized architecture, nodes communicate only
with their LVNs.

The baseline approach described in this section assumes
a 2D network of nodes with known positions (provided by
an outside system), and a single acoustic source that emits
a single beep. The extension of DiVA to 3D space, by
replacing 2D Voronoi cells with 3D Voronoi spaces, is fairly
straightforward; however, the details are omitted due to space
limitations. Analysis of practical issues is presented in Section
IV, along with an extension for localizing a series of beeps.

A. Phase I - Initialization
Nodes must first determine their LVNs using local neighbor

information and a Voronoi diagram. LVNs and the necessary
related concepts are defined as follows.

Voronoi neighbor: Applied to a sensor network, a Voronoi
diagram [25], [26] divides a region into cells, with one cell
per node, such that each point in the region belongs to the cell

of the node closest to that point. A Voronoi neighbor (VN) of
a node A is any node whose cell shares a border with A’s cell
in the Voronoi diagram of the deployment.

Communication neighbor: Any node that has a wireless
link with a node A is a communication neighbor (CN) of A.
For simplicity of analysis, all wireless links are assumed to be
symmetric.

Local Voronoi neighbor: Any node that is both a VN and
a CN of a node A is a local Voronoi neighbor (LVN) of A.
Specifically, if V

A

is the set of A’s VNs, C
A

is the set of A’s
CNs, and �

A

is the set of A’s LVNs, then �
A

= V
A

\ C
A

.
An example is shown in Fig. 1.

In DiVA, nodes interact only with their LVNs. LVNs are
used instead of VNs due to the practical limitation of com-
munication range. In an irregular deployment, a node may
not be able to communicate directly with some VNs; for
instance, in Fig. 1a, nodes A and B are outside each other’s
communication range. Consequently, the local Voronoi cells
of A and B overlap. In DiVA, an acoustic source in such an
overlapping area, such as N in Fig. 1, will generate results at
both nodes, and both results will be reported to the user for
post-processing, as discussed in Phase IV.
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(a) Voronoi diagram.
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(b) LVNs of A.

Fig. 1. LVN example. The dashed circles in (a) show the communication
ranges of A and B. The dotted lines in (b) show the local Voronoi cell of B.

When a node enters Phase I, it broadcasts a request to
discover its CNs and their positions. With this information,
the node can determine its set of LVNs by computing its local
Voronoi diagram. In order to maintain optimal operation of
DiVA, nodes must keep their sets of LVNs updated. This can
be achieved with periodic handshake messages.

B. Phase II - Target Cell Identification
1) Overview: With its LVNs determined, a node is ready

to participate in localization. In Phase II, nodes collaborate to
identify the node closest to the target acoustic source (N), a
process shown in Fig. 2. By definition, this node’s Voronoi
cell contains N.

In Phase II, each node that hears a sound matching the target
acoustic signature, called a beep, designates itself the leader
of its own localization instance, a unique execution of DiVA’s
localization process. This leader then probes its LVNs in a
circular pattern, looking for an LVN closer to N, determined
by comparing timestamps for the beep. If the leader finds an
LVN that is closer to N, it transfers leadership to that LVN.
Successive iterations of this process are shown in Figs. 2a–2c.
In this way, leadership is passed among the nodes until the



node closest to N becomes the leader. This node probes all of
its LVNs and finds none closer to N, as shown in Fig. 2d, so
this node’s local Voronoi cell contains N.

L P

(a) L probes until it finds a P closer
to N. L promotes P to leader.

L

P

(b) The new L sweeps in the other
direction to find a P closer to N.

L

P

(c) The process iterates, with the
sweep changing direction each time.

L

(d) Eventually an L sweeps a full
circle and finds no P closer to N.

Fig. 2. Example of Phase II - Target Cell Identification. N is the target acoustic
source. The arrows indicate probing sweeps, and hatched cells indicate nodes
that L has probed or nodes that L knows have already been probed.

Since the node closest to N should hear the beep and initiate
probing first, leadership passes should rarely be necessary in
practice, but this well-defined process is still needed to be
robust to uncertainty in the timing of distributed activities.

2) Details: The details of the Phase II process are outlined
in the flowcharts in Fig. 3. Fig. 3a shows the actions of the
leader node during this phase. A node can become the leader
L of a localization instance by hearing a beep and starting the
localization process. L records the time of the beep as t

beep,L

.
L populates ⇤

L

, its set of unprobed LVNs, with all members
of �

L

, its set of LVNs. L also empties X
L

, the set of probed
LVNs. As LVNs are probed, they are removed from ⇤

L

and
added to X

L

. To begin probing, L chooses a random node
from ⇤

L

as the first P , the node being probed.
A node L can also become the leader by being promoted by

some previous leader node A. In this case, L uses information
passed from A to initialize X

L

= (X
A

\ �
L

) [ {A} and
⇤
L

= �
L

� X
L

. The first P chosen by L is then determined
by a sweeping process, called nextInSweep in Fig. 3a, that
uses L’s knowledge of the positions of �

L

to determine the
next P 2 ⇤

L

in a circular sweep around L. The direction of
the sweep changes when leadership is passed, sweeping away
from the already-probed common LVNs of A, to minimize
the number of probed nodes. The nextInSweep process is also
used to find the next P if the previous P was not closer to N.

Regardless of how L became the leader, once it has chosen
the next P , it begins probing. To probe P , L unicasts P a
probe message containing t

beep,L

. As shown in Fig. 3b, if P

Probe P with [t
beep,L

]
(4b)

P = nextInSweep(⇤
L

)

X
L

= (X
A

\ �
L

) [ {A}
⇤
L

= �
L

�X
L

L promoted to leader
by A, with t

beep,L

corresponding to t
beep,A

L hears beep at t
beep,L

⇤
L

= �
L

X
L

= ?
P = random(⇤

L

)

P responds?
(1b)

t
beep,P

= 1
Notation

L: leader node
P : node being probed
A: previous leader
�

i

: i’s set of LVNs
X

i

: i’s probed LVNs
⇤
i

: i’s unprobed LVNs
t
beep,i

: timestamp of
beep at i

�t
L,P

: clock offset
between L and P

(1a) Calculate �t
L,P

t
beep,P

+�t
L,P

< t
beep,L

?

(2b)
X

L

= X
L

[ {P}
⇤
L

= ⇤
L

� {P}

(2a) P
has started

handling beep?
⇤
L

= ??

(3b) Promote P
to leader with
[t
beep,L

, X
L

]

(3a) Stop
localization process

(4a)
Begin Phase III

yes

no

yes

no

yes

no

no

yes

(a) Flowchart for a leader node L.

P receives probe from L P finds t
beep,P

? t
beep,P

= 1

Reply to L with [t
beep,P

]
and whether P has

started handling beep

yes

no

(b) Flowchart for a probed node P .

Fig. 3. Flowcharts for Phase II - Target Cell Identification. Lightly shaded
shapes indicate entry points and darkly shaded shapes indicate exit points.

has a corresponding t
beep,P

, it is sent back to L in a reply
message. If not, t

beep,P

= 1 is reported instead. P also
informs L of whether or not it has started handling the beep.

If L receives a reply from P , it calculates the clock offset
between L and P , �t

L,P

, as shown in Case 1a in Fig. 3a.
�t

L,P

is discussed in the following subsection. L compares
its beep timestamp with P ’s beep timestamp corrected with
�t

L,P

. If t
beep,P

+ �t
L,P

< t
beep,L

(Case 2a), then P is
closer to N than L. If P has not already started handling the
beep (Case 3b), L sends a promotion packet to P that contains
t
beep,L

and X
L

. On the other hand, if P is closer and has
already begun handling the beep (Case 3a), L stops acting as
a leader, ending this instance of the localization process. Most
localization instances are expected to end in this manner.

If P is farther away from N than L (Case 2b), then L moves
P from ⇤

L

to X
L

. If ⇤
L

is not yet empty (Case 4b), L uses
nextInSweep to determine the next P 2 ⇤

L

. L then probes the
new P . However, if ⇤

L

is empty after removing P (Case 4a),
then L must be the closest node to N. Therefore, the target
cell has been identified, so L proceeds to Phase III.

A final case is that L may not receive a reply from P after
probing it (Case 1b). This could happen if channel conditions
have changed, or if P has failed. In this case, after a timeout,



L may retry the probe a number of times up to a retry limit. If
the probe continues to fail, L assumes t

beep,P

= 1, updates
the probing sets, and chooses the next P .

3) Clock Offset Correction: Since each node in the network
maintains its own clock, an offset �t

L,P

may exist between
the clocks of nodes L and P . Beep timestamps must be
corrected for this clock offset, as in Fig. 3a, before they can
be compared. Since only the current clock offset is needed,
clock drift is not a factor. To find this clock offset with
minimal overhead, DiVA integrates a simple and well-known
pairwise local synchronization method [27] into the probing
process. This method uses the four timestamps shown in
Fig. 4: t

probe,L

, t
probe,P

, t
reply,P

, and t
reply,L

.

Probe

εp

Reply
L

P

tprobe,L

tprobe,P treply,P

treply,L

Fig. 4. Timestamps used for calculating the clock offset between L and P .

With these timestamps, �t
L,P

can be calculated as follows:

�t
L,P

=
(t

probe,L

� t
probe,P

)� (t
reply,P

� t
reply,L

)

2
. (1)

Using this method, in a sensor network, �t
L,P

can be deter-
mined with an error of around 44 µs or less [27]. As previously
noted, �t

L,P

is used for correcting beep timestamps, as shown
in the flowchart in Fig. 3a. �t

L,P

is also used when localizing
a series of beeps, discussed in Section IV-B.

C. Phase III - Target Subregion Identification
Let L⇤ be the node that is closest to N, as determined in

Phase II. In Phase III, shown in Fig. 5a, L⇤ uses pairwise
timestamp comparisons to narrow down the location of N to a
target subregion, denoted by S, of its local Voronoi cell. First,
L⇤ cuts its cell into subregions by drawing a perpendicular
bisector between each pair of its LVNs. Then, for each cut,
L⇤ determines which side of the cut contains N by comparing
t
beep

for the corresponding LVNs. L⇤ discards all subregions
on the side of the cut without N. After cutting and discarding
for each pair of LVNs, only the subregion S containing N
remains. If this target subregion is open on any side, then it is
bounded by the sensing range of L⇤’s acoustic sensor on that
side. The target subregion is used to constrain the final target
location estimation in Phase IV.

D. Phase IV - Constrained Target Location Estimation
In Phase IV, shown in Fig. 5b, L⇤ uses a range-based

method to produce a final estimate of the target’s location. The
target subregion S identified in Phase III is trusted to contain
N, so S is used as a constraint to reduce the search area.
The following is proposed as a simple range-based method
suitable for computing on a sensor node, but other range-based
methods may be applicable as well.

First, L⇤ calculates TDOA estimates of the location of N
using all combinations of three nodes in L⇤ [ �⇤, where �⇤

A

B

C

D

E

L∗

AB

AC

AD
AE

BC

BD

BE

CD

CE

DE

(a) Phase III. The dashed lines are
cuts, labeled with the pair of LVNs
that generate that cut.

A

B

C

D

E

L∗

(b) Phase IV. The TDOA estimates
are marked � and t̂ is marked as .

Fig. 5. Examples of Phase III - Target Subregion Identification and Phase IV
- Constrained Target Location Estimation. L⇤’s local Voronoi cell is lightly
shaded and contains N. The identified target subregion S is darkly shaded.

is the set of L⇤’s LVNs. The set of TDOA location estimates
is denoted by T , and the total number of location estimates
|T | is:

|T | =
✓

|�⇤|+ 1
3

◆
=

(|�⇤|+ 1)(|�⇤|)(|�⇤|� 1)

6
. (2)

L⇤ then performs a simple Grubbs’ test [28] on these esti-
mates, with a significance level of ↵ = 0.05, to remove the
outliers from T . Let T 0 denote the set of TDOA estimates
remaining after the Grubbs’ test. The final location estimate t̂
is the point in S that minimizes the mean squared error (MSE)
for t

i

= (x
i

, y
i

) 2 T 0, as follows:

t̂ = (x⇤, y⇤) = argmin
(x̂,ŷ)2S

1

|T 0|
X

ti2T

0

⇥
(x

i

� x̂)2 + (y
i

� ŷ)2
⇤
.

(3)
Finally, L⇤ reports t̂ and its MSE to the user. Due to the pos-

sible overlap of local Voronoi cells discussed in Section III-A,
and the possibility of false local minimums in the presence of
time error, as discussed in Section IV-A3, multiple nodes may
reach Phase IV, resulting in multiple estimates for the same
beep. The user can then select the t̂ with the smallest MSE as
the final estimate.

If L⇤ only has one LVN, no TDOA estimates are possible.
In this case, L⇤ reports the center of gravity of the target subre-
gion as t̂, and reports a high associated MSE so that estimates
made with more information are given higher priority.

E. Complexity Analysis

The complexity analysis of DiVA is divided into three parts:
network-wide communication, Phase II convergence time, and
single-node computation in Phases III and IV. Communication
in the network occurs primarily during Phase II, when nodes
are probed and leadership is passed. Every probe and pass
crosses one edge in the Voronoi diagram, and by design, edges
are not recrossed in a single localization instance. It is well
known that the maximum number of edges in a Voronoi dia-
gram with n nodes is 3n�6. Therefore, if n

detect

is the number



of sensors in the network that can detect the beep, the network-
wide communication complexity from probing is O(n

detect

).
Since communication generally consumes the most energy in
a sensor network, and the amount of communication depends
on the localization scheme, this also serves as a metric for
DiVA’s energy use. The LVN maintenance process also leads
to communication overhead, depending on the rate of change
in the network topology. This overhead is minimal for a static
network, and can be further reduced by piggybacking LVN
maintenance information on other traffic.

Assuming that the node L⇤ closest to N hears the beep
and begins localization first, the convergence time of Phase II
depends only on the number of LVNs of L⇤, which is no more
than k, the number of L⇤’s communication neighbors. Since
each LVN is probed once, the convergence time is O(k).

Finally, the nodal computational complexity is dominated by
Phases III and IV, when L⇤ computes perpendicular bisecting
cuts, TDOA estimates, outliers, and MSEs to estimate the
location of N. A cut is computed for every pair of LVNs, so
the number of cuts computed is no more than

�
k

2

�
= k(k�1)

2 .
The number of TDOA estimates is |T |, obtained in Eq. (2),
with |�

L

|  k, yielding O(k3). The complexity of outlier
detection and the MSE estimates also depends on |T |. Since
these operations are performed sequentially, the overall com-
putational complexity for L⇤ is O(k3). This is a loose bound,
because the number of LVNs is expected to be small and may
be much smaller than k. Nodes not associated with a target
cell do not perform significant computations.

IV. PRACTICAL CONSIDERATIONS & EXTENSIONS

A. Robustness

DiVA is designed to be highly robust to node failure, packet
loss, microphone position error, beep measurement error, clock
synchronization error, and obstacles.

1) Node Failure: Node failure, including power loss and
hardware or sensor malfunction, could occur either at a node
expected to start the localization process, or at a node expected
to be part of the target cell identification process in Phase II.
DiVA is robust to both cases. The first case has a minimal
effect on DiVA because all nodes that hear a beep initiate a
localization instance, so DiVA does not depend on one partic-
ular node. However, most of these localization instances are
expected to terminate early in Phase II, when they encounter a
node closer to N that has already handled the beep. Therefore,
the overhead from this redundancy is small, while the gain in
robustness is large.

For the second case, DiVA’s Phase II is capable of detouring
around a node P that has failed, missed the beep, or is
reporting excessively large timestamps, such as during a sensor
malfunction. In these cases, a leader L may not promote P to
leader, even though P may be closer to N than L. However,
if a second route exists, the transfer of leadership will detour
around the malfunctioning node. The detour can cause extra
iterations before the target cell is found, but the correct target
cell will still be identified.

2) Packet Loss: DiVA is also robust to packet loss. The
leader controls the unicast probing process, so a probe may
be retried if a response is not received. This contrasts with
schemes based on broadcast messages, such as the DSL
family [22], [23], in which the process of sharing data is
undirected and the amount of data that should be received
is uncertain. This also contrasts with centralized solutions, for
which the process of gathering data from all nodes becomes
more burdensome under poor channel conditions.

3) Input Error: One of DiVA’s design goals is robustness
to various sources of error not in control of the scheme, called
input error. Such error includes the following:

Microphone position error: Inaccuracy in the geographical
coordinates provided by an external system or node localiza-
tion service.

Beep measurement error: Inaccuracy in the recorded time
of the beep, t

beep

. This may be caused by hardware delays or
the indeterministic nature of audio feature extraction.

Clock synchronization error: Inaccuracy in the calculated
clock offset between two nodes L and P , �t

L,P

. This may
be caused by hardware delays or the indeterministic nature of
message timestamping and channel access.

Position error does not affect the range-free process of
Phase II, so the network can still find L⇤, the node closest
to N, in the presence of position error. The position error of
L⇤ and its LVNs � 2 �⇤ may skew the target subregion in
Phase III, and this position error also affects the range-based
estimation in Phase IV. However, since DiVA constrains the
final estimate to the local Voronoi cell of L⇤, the effect of
position error is also constrained to this area.

The other two input error types, beep measurement error and
clock synchronization error, are collectively referred to as time
error. Time error affects t

beep

and the pairwise comparisons of
t
beep

in Phases II and III. Time error also affects the TDOA
estimates in Phase IV. Therefore, time error can have more
complex effects than microphone position error.

Specifically, time error affects Phase II if it causes incorrect
results in pairwise t

beep

comparisons, making the wrong node
appear to be closer to N. This possibility is examined in detail
using the following three cases:

1) Time error at L⇤, the node closest to N. As shown in
Fig. 6a, if L⇤ reports a small t

beep

, then L⇤ is still
identified correctly in Phase II. But if L⇤ reports a t

beep

OK One-cell error

tbeep,L∗

tbeep,φ−

(a) Time error at L⇤. tbeep,�� is the smallest beep timestamp of all
� 2 �⇤. If tbeep,L⇤  tbeep,�� , then the effect of error is mitigated. If
tbeep,L⇤ > tbeep,�� , a one-cell error is produced.

One-cell error OK

tbeep,φ
tbeep,L∗

(b) Time error at any � 2 �⇤. If tbeep,� > tbeep,L⇤ , then the effects are
minimal. If tbeep,�  tbeep,L⇤ , a one-cell error is produced, similar to (a).

Fig. 6. Analysis of time error.



larger than any of its LVNs, L⇤ will pass leadership to
that LVN, and Phase II will falsely identify that node as
L⇤, a one-cell error. Any localization instance for this
beep will encounter the same problem and produce the
same result.

2) Time error at any � 2 �⇤, the set of L⇤’s LVNs.
As shown in Fig. 6b, this is essentially the dual of the
previous case. If � reports a large t

beep

, then leadership
will still be passed to and kept by L⇤ in Phase II,
yielding correct results. But if � reports a t

beep

smaller
than L⇤’s, then � will maintain leadership. Phase II
will identify � as the node closest to N, resulting in
a one-cell error. Any localization instance for this beep
will encounter the same problem and produce the same
result.

3) Time error at a node A at least two cells away from N.
Excessive time error at A can cause either A or one of
its LVNs, depending on the sign of the error, to appear
to be the node closest to N. Such a node is called a
false local minimum. A false local minimum executes
Phases III and IV, producing an inaccurate final location
estimate. However, due to the constrained nature of
Phase IV, this estimate will have a high associated
MSE. A localization instance that does not involve A
in Phase II can still correctly identify L⇤, and in most
cases, L⇤’s estimate will have a much lower MSE than
A’s estimate. Therefore, the false local minimum can be
detected and ignored.

In summary, position error and reasonable time error cause
a minimal amount of output error. Excessive time error can
cause a one-cell output error, which can be managed by the
user. Thus, DiVA’s design mitigates the effects of input error,
as has been observed in both simulation and experiments.

4) Obstacles: DiVA is also robust to physical obstacles
and various acoustic effects. An obstacle may cause reflection
or scattering of the acoustic waves, but these effects do not
interfere with DiVA’s operation because the reflected and scat-
tered signals arrive after the original signal, and generally with
lower amplitude, so a node can distinguish the original signal
and still accurately timestamp the beep. An obstacle may also
cause acoustic diffraction, in which the sound waves propagate
in a polygonal line. If a node only hears the diffracted beep,
it may appear farther away from N than it actually is. This
can be thought of as a special case of measurement error, for
which the previous discussion on time error applies. Finally,
if a node misses the beep due to an obstacle, the neighboring
nodes act as though the node has failed, and the discussion on
node failure applies.

B. Localization of a Series of Beeps
In order for DiVA to localize the source of a series of beeps,

collaborating nodes must be able to identify and communicate
which specific beep is being localized. To aid in this, a beep
search window is defined. A beep search window is the time
interval in which P searches for beep b corresponding to
t
beep,L

(b) received from L in a probe. A beep search window

is defined by its center point and its width. To find the center
point t

win

(b), P simply corrects t
beep,L

(b) for �t
L,P

, the
clock offset between L and P , as follows:

t
win

(b) = t
beep,L

(b)��t
L,P

. (4)

Since time error can cause the beep timestamp to vary
between nodes, the window width should be as large as
possible to account for as much error as possible. If the beeps
occur no more frequently than a known interval I

min

, this
value can be used as the window width. P then searches for
t
beep,P

(b) within I
min

/2 of either side of t
win

(b).
This method of determining the beep search window as-

sumes that the difference in beep timestamps between L and P
caused by the acoustic propagation delay is less than I

min

/2.
This assumption imposes a new requirement for how a node’s
LVNs are determined: any LVN P of L must be no more than
a maximum distance |LP |

max

from L, calculated as follows:

|LP |
max

=
I
min

v
s

2
. (5)

If |LP |
max

is greater than the communication range of L,
then this LVN requirement has no effect. But if I

min

is very
small, this requirement could be restrictive. Therefore, when
designing a deployment to localize a particular source of a
series of beeps, Eq. (5) should be used to verify that the
deployment is dense enough for the given I

min

.

V. SIMULATION STUDY

MATLAB simulations were used to evaluate the effects
of input error, sensor density, communication range, and
deployment irregularities on DiVA’s performance. The sim-
ulations compared DiVA to DSL [22], [23] implemented with
a dynamically-sized voting grid area and an 8 ⇥ 8 resolution.
The simulations also implemented simple TOA and TDOA
to provide a baseline comparison. Finally, a version of DiVA
without Phase IV, called DiVA Basic, was also implemented.
DiVA Basic uses the center of mass of the subregion identified
in Phase III as the final location estimate.

Except those noted otherwise, each simulation randomly
distributed 1000 microphone nodes in a 100 ⇥ 100 m area.
Each data point is the average of results from 1000 dif-
ferent random acoustic source locations. The geographical
distance between the actual acoustic source location and the
estimate given by a localization method is referred to as
the output error. Input error was simulated by randomly
choosing a value between zero and the specified maximum
amount, with position error taking a random geographic di-
rection and beep measurement error randomly being either
positive or negative. The average distance from a node to
its nearest neighbor, d, is used to normalize both input and
output error. Using a well-known formula, d is calculated as
d = (2

p
1000/(100⇥ 100))�1 ⇡ 1.58 m. The speed of

sound, v
s

, was taken to be 340 m/s. The clock synchronization
error for all schemes was taken to be 44 µs [27].



A. Effect of Input Error

The four schemes were compared in terms of output error
versus the amount of position error and the amount of beep
measurement error, with a communication range of 6d. The
results for the two types of input error are nearly identical. The
averaged results for position error, with zero beep measure-
ment error, are shown in Fig. 7a, and the averaged results for
beep measurement error, with zero position error, are shown in
Fig. 7c. Since the results of TOA and TDOA depend on which
nodes’ measurements are used, the average 40th percentile
(denoted as K = 0.4) and 80th percentile (K = 0.8) are
shown in these figures.

As expected, DiVA performs the best, matching TOA’s
accuracy at low levels of input error and decreasing slower
than either TOA or TDOA as input error increases. DiVA
Basic also performs well, converging with DiVA at higher
levels of input error, when the range-based estimates are not
as accurate. DSL performs worse than the other schemes at
low input error, since it is a range-free method, though it is
consistently outperformed by the range-free DiVA Basic.

A CDF of the output error when the position error is
0.2d is shown in Fig. 7b, and the corresponding CDF for
measurement error is shown in Fig. 7d. Nearly all of DiVA’s
output errors are less than d. DiVA Basic continues to show the
strength of DiVA’s range-free components, performing better
than DSL. Also, DiVA Basic intersects with TOA at the 90th
percentile, validating DiVA’s hybrid approach. Range-based
methods work well at low levels of input error, and range-free
methods work well at high levels of input error, but the hybrid
method performs the best at all levels of input error.
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(a) Output error vs. microphone posi-
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Fig. 7. The effects of input error, with d ⇡ 1.58 m and d/vs ⇡ 4.65 ms.

B. Effect of Sensor Density
Simulations were conducted to find the relationship between

sensor density and output error for the distributed schemes.
These simulations randomly distributed n microphone nodes
in a 100 ⇥ 100 m area, with n = 500, 1000, and 2000. For
each case, d = (2

p
n/(100⇥ 100))�1. Fig. 8 shows both

normalized results, when the amount of input error varies with
d, and absolute results, when the amount of input error stays
constant.

From Fig. 8a, if input error changes proportionally with
d, normalized output error remains essentially the same. In
other words, the output error scales with d. But when the
input error remains constant, as in Fig. 8b, the output error
increases as the number of sensors decreases. This trend is
intuitive: a denser network yields better results because the
nodes are closer together. However, the slope of DiVA’s output
error in Fig. 8b is very small, especially compared to DSL
and DiVA Basic. This shows that DiVA is highly scalable and
can perform well in much sparser networks than the other
solutions, leading to lower cost.
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(a) Normalized output error vs. n,
with 0.1d position error and 0.1d/vs
beep measurement error.
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(b) Absolute output error vs. n, with
0.158 m position error and 0.465 ms
beep measurement error.

Fig. 8. The effects of sensor density.

C. Effect of Communication Range
Simulations were used to test the effect of communication

range, and therefore average node degree, on DiVA and
DSL with 0.1d position error and 0.1d/v

s

measurement error.
Fig. 9a shows the resulting output error and the number of
nodes involved in the final localization step, including the
closest node L⇤, the LVNs of L⇤ for DiVA (and DiVA Basic),
and the nodes within a one-hop range of L⇤ for DSL. DiVA
performs better than DSL, but all schemes suffer in accuracy as
the communication range decreases. DiVA reaches a saturation
point in terms of output error with a communication range of
around 5d. After this point, the number of nodes involved
for DiVA stays constant, due to its use of LVNs, suggesting
that DiVA is highly scalable. However, the number of nodes
involved for DSL continues to grow. In short, DiVA achieves
better accuracy while utilizing fewer nodes.

D. Effect of Deployment Irregularities
The effect of deployment irregularities was tested by re-

moving nodes from the deployment to create circular voids
with a 10 m radius. The output error versus the number
of voids, with a communication range of 6d and the same
input error as before, is shown in Fig. 9b. The value of d
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(b) Output error vs. number of voids
in the deployment.

Fig. 9. The effects of communication range and deployment irregularities for
0.1d position error plus 0.1d/vs beep measurement error, with d ⇡ 1.58 m.

remains constant across the number of voids for consistency.
Both DiVA and DiVA Basic are more accurate than DSL,
and both also show a slower growth rate in output error
as the number of voids increases. These results support the
conclusion that DiVA remains functional in the presence of
deployment irregularities.

VI. EXPERIMENTAL EVALUATION

DiVA was implemented on custom wireless microphone
nodes as shown in Fig. 10a. The nodes were based on the
Texas Instruments CC2530 chip, which integrates an IEEE
802.15.4 wireless radio with an 8051 microcontroller and
8 kB of RAM. The software modules of DiVA are shown
in Fig. 10b and were implemented in the C language. The
audio detection module also used an audio chip that generates
an interrupt in the microcontroller when the amplitude of
the microphone signal reaches a threshold, set by adjusting
the gain on the audio chip. This was sufficient for proof-of-
concept testing, and both the hardware and software of the
audio detection module could be modified or replaced to meet
different application requirements.

(a) Wireless microphone node.
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(b) DiVA software modules.

Fig. 10. DiVA implementation platform.

Two experiments are reported here: a laboratory experiment
in an open indoor room, and a more challenging experiment
in an outdoor area. A cap gun was used as the acoustic
source. Any measurement or position error in the system
occurred naturally. With simple benchmarking experiments,
discrepancies in beep timestamps due to time error were
estimated to be within the range of ±200 µs.

A. Laboratory Experiment
The purpose of the laboratory experiment was to test the

performance of DiVA in an ideal environment. The deploy-
ment consisted of 32 microphone nodes in an 18 ⇥ 12 m
area of an indoor gymnasium, yielding d ⇡ 1.30 m. There
were no obstacles or voids in the deployment. Positions for the
nodes and acoustic sources were determined using measuring
tapes. Beeps were generated at 187 locations in the area, and
the results are shown in Fig. 11a. Fig. 11b shows a CDF of
the error in terms of d.

(a) Lab experiment results for DiVA.
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Fig. 11. Results of the lab experiment, with d ⇡ 1.30 m. In (a), node positions
are marked as �, acoustic source locations are marked as M, and estimates
are marked as ⇥. A blue line connects each estimate to the corresponding M.

As expected, the estimates are distributed around, but gen-
erally close to, the actual locations. The larger errors are
found near the edge of the deployment, such as in the lower
right and left corners. The CDF shows a similar shape and
better results than the simulation CDFs shown in Figs. 7b
and 7d, with an error for DiVA of 0.1d or less for around
80% of all estimates. This suggests that the lab environment
generated little input error, as desired. The conclusions from
the laboratory experiment are that DiVA performs well in ideal
conditions, and that the implementation of DiVA is sound.

B. Outdoor Experiment
To test DiVA’s performance in a more challenging environ-

ment, an experiment was performed in an 11 ⇥ 11 m outdoor
area that features trees, vegetation, and large rocks, as shown
in Fig. 12a and marked in Fig. 12b. Positions for the nodes
were determined using a high-accuracy ComNav Technology
GPS system, and positions for the acoustic sources were
determined using measuring tapes, introducing the possibility
of position error between the two methods. The obstacles in
the area increased the probability of beep measurement error.
Uncontrolled background noises, such as a nearby road and the
buzz of cicadas, were also present. The deployment consisted
of 26 microphone nodes, and a total of 68 acoustic source
positions were each tested twice, with the averaged results
shown in Fig. 12b. A CDF is shown in Fig. 12c.

Overall, DiVA performs well. Less accurate results are
found in the areas with few LVNs, such as the narrow area
above the large rock in Fig. 12b. Still, the results suggest
that DiVA can work well in challenging environments, making
it suitable for real-world applications. To further demonstrate
this, a field trial in a larger area, with a specific monitoring
goal, is considered for future work.



(a) Outdoor experiment area.

rock

tree

tree

tree

(b) Outdoor experiment results.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

 Output Error (meters)

 C
D

F
 

 

 

 DiVA

 DiVA Basic

(c) CDF of output error.

Fig. 12. Outdoor experiment. In (b), node positions are marked as �, acoustic
source locations are marked as M, and estimates are marked as ⇥. A blue line
connects each estimate to the corresponding source location.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents DiVA, a new distributed acoustic source
localization algorithm for wireless sensor networks that is
robust and suitable for use in real-world environments. DiVA
uses range-free pairwise comparisons of the sound detection
timestamps of neighboring microphone nodes to traverse the
Voronoi diagram and find the node closest to the acoustic
source, which then estimates the source’s location using a
constrained range-based method. Simulation and experimental
results demonstrate the accuracy and robustness of DiVA’s
hybrid range-free and range-based approach when facing prac-
tical challenges such as position and time error, obstacles, and
deployment irregularities. DiVA was also shown to be scalable
to different sensor densities and communication ranges. Future
work includes a large-scale field trial and extensions for
handling multiple sources and underwater scenarios.
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