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Abstract—Barrier coverage is a fundamental application for
wireless sensor networks. In this paper, we consider a practical
probabilistic sensing model and propose an iterative scheme,
called BaCo, to provide strong barrier coverage under this model,
with the objective of minimizing the number of active sensors.
Moreover, we build the barrier under practical constraints
of minimum detection probability and maximum false alarm
probability. We use simulations to show that BaCo converges
quickly and achieves better results than previous work while
also bounding the system false alarm probability.

I. INTRODUCTION

Intruder detection and border surveillance are intuitive ap-
plications of sensor networks. In these applications, sensors
are deployed in a long belt region such that no intruder can
cross the belt without being detected, a scenario referred to as
barrier coverage in sensor networks.

The barrier coverage problem has attracted great interest
from researchers in the last decade [1]–[8]. Kumar defined
weak and strong barrier coverage in [1]. In weak barrier
coverage, an intruder is assumed to only follow the shortest
straight paths to cross the belt. In strong barrier coverage,
an intruder can take any path. Since strong barrier coverage
produces a more complete barrier, many works [2], [3], [5]–
[8], including this paper, focus on strong barrier coverage.

The majority of the work on barrier coverage has adopted
the simple disk sensing model [1]–[3], [6]–[8], in which a
target is considered detected simply if it enters a detection
radius. This model makes the barrier coverage problem easier,
but it does not reflect the sensing behavior of many real-
world sensors. In contrast, in the probabilistic sensing model
proposed in [9]–[11], a target is detected by a sensor with
a probability between 0 and 1, depending on factors such
as distance and noise. This approximates real-world sensing
behavior much better. In this paper, we adopt the probabilis-
tic model.

Another benefit of the probabilistic model is that it allows
data fusion among sensors [9], [12]–[14]. When data fusion is
employed, the detection probability for a target is calculated
by either fusing the raw readings (value fusion) or decisions
(decision fusion) of sensors. Data fusion can increase the
detection probability of a target, or, from another perspective,
it can expand the coverage region of sensors [12], [13]. We
employ decision fusion, because it is relatively light-weight
compared to value fusion. In addition to fusing the decisions
of different sensors, we also fuse the decisions at a sequence
of sampling points along the intruder’s path.

We also define and consider a system false alarm probability
for our practical setup. This consideration of false alarm
probability distinguishes our work from other works such
as [5], where only the probability of detecting a target is

considered. Dealing with the detection probability without
considering the false alarm probability makes little sense under
the probabilistic sensing model, as we can simply lower the
alarm threshold of sensors to get a higher detection probability,
which may result in an unacceptable false alarm probability.

To maximize cost-effectiveness and energy efficiency, we
seek the minimum number of sensors for building a barrier.
Given this goal, to address the strong barrier coverage problem
under the practical constraints of minimum detection prob-
ability and maximum false alarm probability, we propose a
novel iterative algorithm, called BaCo, to identify a minimal
set of active sensors from a given deployment to build a barrier.
BaCo adjusts the alarm threshold of sensors iteratively to find
a compromise between detection probability and system false
alarm probability.

The paper is organized as follows: Section II presents the
probabilistic model and the problem statement. Section III
describes the proposed scheme. Section IV presents results
from our evaluation of BaCo. Finally, Section V discusses the
related work, and Section VI concludes the paper.

II. MODEL AND PROBLEM STATEMENT

A. System Model
We consider a network of N sensors randomly and uni-

formly deployed to monitor a long rectangular region with
two parallel sides: an entrance side and a destination side.
The size of the region is ` (length) by h (width). Let S denote
the set of N sensors. We assume that sensors in S know
their locations in the region and that they have an identical
communication range Rc. We also assume the sensors have a
finite sampling rate f and are synchronized in their sensing
activities. An intruder, or target, may take any path traversing
the region from the entrance side to the destination side. A
target is assumed to move continually at its maximum speed
v
max

in order to minimize the probability of being detected.

B. Sensing Model
We use a probabilistic sensing model, in which sensor

readings are affected by randomly varying noise and sensor
nodes use a decision threshold to determine if an intruder
is present or not. The model consists of a source model, a
detection model, and a false alarm model.

1) Source Model: We assume either the target or its motion
produces a physical signal, such as sound, electromagnetic
waves, or vibrations. We assume the strength of the signal
decays according to the power law, meaning that if the target
is at point t, the signal strength at the location of sensor si
is [12], [14]:

!i(t) =
⌦

1 +

�
d (si, t)

�↵ , (1)
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where ⌦ is the signal amplitude at the target, ↵ is a known
decay exponent, and d(·, ·) denotes the distance between two
points.

2) Detection Model: We assume that background noise
affects sensor readings. When a target is present at point t,
a sensor si observes a signal xi that depends on (1) and the
background noise n, as follows:

xi = !i(t) + n. (2)

When no target is present, xi = n. Let FN (n) denote the
cumulative distribution function of noise, and assume that it
is identical and independent for all sensors. We also assume
that FN is known by the base station.

To detect a target, sensors use a decision threshold T . When
a sensed reading exceeds T , the sensor generates an alarm
to report the presence of a target. Therefore, given T , the
probability that sensor si detects a target at point t is:

Pd(si, t) = 1� FN

�
T � !i(t)

�
. (3)

We apply the “OR” rule to fuse the decisions made by
all active sensors. Under the “OR” rule, a target is said to
have been detected if at least one active sensor reports its
presence. Thus, given SA, the set of active sensors, the overall
probability of detecting a target at a point t is:

PD,t = 1�
Y

si2SA

�
1� Pd (si, t)

�
. (4)

For the purpose of detection, a target’s intruding path ' is
composed of a set Q of discrete, evenly-spaced points qj that
correspond to the points on ' where the target is when the
sensors take samples. The target only needs to be detected at
one qj , so we apply the “OR” rule over all qj 2 Q as well.
Thus, given Q, the probability of detecting a target traveling
along ' is:

PD,' = 1�
Y

qj2Q

(1� PD,qj ), (5)

where PD,qj is calculated according to (4).
Given an intruding path ', the set Q depends on the target’s

maximum speed v
max

, the sensors’ sampling rate f , and the
sampling phase relative to the arrival of the target at the
entrance side. Since we want to place a lower bound on the
probability of detection, we are interested in the Q that yields
P l
D,', the minimum detection probability for a target taking

the path '. For a given f and v
max

, we define P l
D,' as follows:

P l
D,' = min

Q
PD,', (6)

where the choice of points qj 2 Q is constrained as described
above.

We extend this minimum detection probability concept to all
possible intruding paths and define PD as the system’s overall
minimum detection probability, as follows:

PD = min

'
P l
D,' = min

'
min

Q

�
1�

Y

qj2Q

Y

si2SA

�
1� Pd (si, qj)

��
.

(7)

3) False Alarm Model: Due to excessive noise, a sensor
may generate an alarm and report the presence of a target when
no target is present. This type of alarm is called a false alarm.
The probability of false alarms should be bounded in order
to avoid burdening the end user. For each sample taken, the
probability of a particular sensor generating a false alarm is:

Pf = 1� FN (T ) . (8)

Since we use the “OR” rule for target detection, a single sensor
reporting a false alarm for any given sample constitutes a sys-
tem false alarm. Therefore, we define the system false alarm
probability PF as the probability that any sensor produces a
false alarm for a particular sample, as follows:

PF = 1� (1� Pf )
|SA| , (9)

where |SA| is the total number of active sensors. This defini-
tion of PF is consistent with the system false alarm probability
defined in [4] and [12] and the network false alarm rate in [14].

C. Problem Statement
To summarize, we define strong (Pmin

D , Pmax

F )-barrier cov-
erage under the probabilistic models presented above as fol-
lows: strong (Pmin

D , Pmax

F )-barrier coverage is achieved if and
only if

1) the system’s minimum probability of detecting a target
taking any intruding path is at least Pmin

D , and
2) the system false alarm probability is at most Pmax

F .
In this paper, we study how to achieve strong (Pmin

D , Pmax

F )-
barrier coverage with the minimum number of sensors from a
given set S of static sensors in an `⇥ h region, given Rc, f ,
and v

max

. We seek the minimum number of sensors for cost-
effectiveness and energy efficiency. Formally, our problem is
to minimize |SA|, subject to PD � Pmin

D , PF  Pmax

F , and
SA ✓ S .

D. Transformed Problem
In order to simplify the calculation of detection probability

along a path, we transform the problem by adopting the
concept of detection gain introduced in [5]. The detection gain
G(p) associated with a probability p is defined as follows:

G(p) = � log(1� p). (10)

G(p) is a monotonically increasing function of p, with
G(0) = 0 and G(1) = 1.

We apply the gain concept by first substituting (4) into (5)
and rearranging to obtain:

1� PD,' =

Y

qj2Q

Y

si2SA

�
1� Pd (si, qj)

�
. (11)

By applying the log function to both sides of (11), we obtain
an expression for G', the total detection gain for a target that
takes intruding path ', as follows:

G' =

X

qj2Q

X

si2SA

G (si, qj) , (12)

where G (si, qj) is the detection gain of sensor si on a target
located at qj . We then define GD as the minimum detection
gain for all ', analogous to our definition of PD, as follows:

GD = min

'
min

Q

� X

qj2Q

X

si2SA

G (si, qj)
�
. (13)



We also define Gmin

D = G
�
Pmin

D

�
. Then our equivalent trans-

formed problem is to minimize |SA|, subject to GD � Gmin

D ,
PF  Pmax

F , and SA ✓ S . The following section presents a
practical method for obtaining a best-effort feasible solution
to this problem.

III. PROPOSED SCHEME

In this section, we present BaCo’s iterative design that
allows it to achieve strong (Pmin

D , Pmax

F )-barrier coverage
while minimizing the number of active sensors. The main
idea of BaCo is to first assume a number of active sensors
NA, which is used to set the decision threshold T . Then,
given that T , we check whether strong (Pmin

D , Pmax

F )-barrier
coverage can be achieved with NA sensors. If not, we update
our assumption for NA and iterate.

BaCo is divided into four modules, shown in Fig. 1. The
setup module takes NA as input and provides T as output. The
mapping and solution modules then identify a minimized set
of active sensors SA that satisfies the Pmin

D , or equivalently,
Gmin

D , constraint. The iteration controller either terminates the
algorithm or starts the next iteration, depending on whether
the Pmax

F constraint is met by SA.

Setup
Module

N
A
 

1

NA  |SA|

Pmax

F

Input Mapping
Module

⌦, v
max

, f, Rc

Solution
Module

Pmin

D
Iteration

Controller

|S
A
|=

=
N

A
or

@S
A

Output

T

Weighted graph G

SA

|SA|

SA

Fig. 1. Overview of BaCo. The dashed lines indicate parameter entry. Inputs
are labeled with the action taken upon receiving the input. Outputs are labeled
with any applicable decision criteria.

A. Setup Module

The setup module calculates the decision threshold T using
two inputs, NA and Pmax

F . In the first iteration, we set NA = 1,
starting with a small NA because we want to minimize |SA|,
the size of the set of active sensors. For all other iterations,
NA is set to the |SA| found in the previous iteration. This
influences T , as follows.

According to (9), to satisfy PF  Pmax

F , we need

Pf  1� (1� Pmax

F )

1/NA . (14)

Using (8), we then have

T = F�1

N (1� Pf ) � F�1

N

�
(1� Pmax

F )

1/NA
�
. (15)

According to (3), to maximize the probability of detection, we
minimize T ; therefore, we use

T = F�1

N

�
(1� Pmax

F )

1/NA
�

(16)

as the output of the setup module.

B. Mapping Module
The mapping module maps the sensor network to an undi-

rected weighted graph G, which consolidates the detection
gain and the network connectivity information. As shown in
Fig. 1, the mapping module takes T as input, as well as several
of the system-related parameters introduced in Section II.
These inputs determine the edges and edge weights of G.
Fig. 2 provides an example of the mapping procedure, which
is composed of the steps described below.
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Fig. 2. Example of the mapping procedure. Eight sensors are deployed in a
20 ⇥ 5 m region. The inputs are T = 1.64 mW, ⌦ = 10 mW, v

max

= 1 m/s,
f = 2 Hz, and Rc = 6 m. Sensors sl and sr are virtual sensors which
represent the left and right boundary of the monitored region, respectively.
The dashed lines are the Voronoi diagram of the sensors. The solid lines
between sensors are the edges of G, labeled with their weights.

1) Vertex Identification: The vertices in G include (a) all
physical sensors in S , and (b) two virtual sensors sl and sr,
which represent the left and right boundary of the monitored
region, respectively.

2) Edge Identification: The edges of G are all the edges of
the Delaunay triangulation of S whose lengths are shorter than
the communication range Rc. The Delaunay triangulation is
used because, according to the conclusion in [5], from all the
possible intruding paths, the path with the minimum detection
gain is composed of Voronoi edges. Each edge in G thus
corresponds to a section of a possible worst-case intruding
path.

If a section of the left or right boundary is contained within
the Voronoi cell of a physical sensor si 2 S , and si is within
Rc of the boundary, then an edge between si and a virtual
sensor is added to G.

3) Weight Assignment: The weight of the edge sisj in G
is the minimum accumulative detection gain of si and sj for
a target traveling along the Voronoi edge between si and sj ,
Vor(si, sj). According to [5], when an intruder travels along
the perpendicular bisector of the line segment sisj , sensors si
and sj will have the minimum accumulative detection gain if
the sampling points

• are symmetrically distributed on the two sides of the line
segment sisj , and

• the distance between two adjacent sampling points
is v

max

/f .
These requirements are illustrated in Fig. 3, where the crosses
show the worst-case sampling points for a target traveling
between s

3

and s
4

in the example in Fig. 2. The points are
v
max

/f apart, and they are symmetrically distributed on either
side of the line segment s

3

s
4

.
For an intruder traveling between a physical sensor si and

a virtual sensor sl or sr, the worst-case sampling points are
found along the section of boundary that is within si’s Voronoi
cell, and they are symmetrically distributed on either side of
the horizontal line between si and the boundary.
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Fig. 3. The worst-case sam-
pling points for a target trav-
eling between s

3

and s
4

. The
crosses represent the sampling
points and the dashed line is
the Voronoi edge between the
two sensors.
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Fig. 4. (Referenced in Section III-D) Illus-
tration of iteration progress for the example
shown in Fig. 5. The crosses show the out-
put |SA| value corresponding to each input
NA. The arrows show the progression of
the three iterations from Fig. 5. Only the
circled crosses are checked by BaCo.

Once the worst-case sampling points are identified, we can
obtain the minimum accumulative detection gain of si and sj
on an intruder traveling along Vor(si, sj). We use this value
as wij , the weight of the edge sisj in G. From (12), we have

wij =

mX

k=1

�
G(si, qk) + G(sj , qk)

�
, (17)

where qk is a sampling point, m is the number of sampling
points along Vor(si, sj), and G(si, qk) and G(sj , qk) are the
detection gains of si and sj on qk. Note that only the detection
gains of si and sj are considered, while in reality, other sensors
may also provide detection gain for an intruder traveling along
Vor(si, sj). Therefore, wij is a lower bound of the actual
detection gain from all si 2 S .

C. Solution Module

Given the weighted graph G, the solution module finds
a minimum set of sensors whose minimum detection gain
for any intruding path is larger than Gmin

D . With the edge
weight defined in the mapping module as the capacity of each
edge, the minimum detection gain GD of the system for any
intruding path, assuming that all sensors are active, is equal to
the maximum flow from sl to sr in G. Therefore, our goal is to
find a minimum subset of sensors in S whose maximum flow
is larger than Gmin

D . However, selecting the minimum number
of sensors in a graph which can deliver a certain amount of
flow is NP-hard [5]. Therefore, in BaCo, we use a two-phase
heuristic solution.

1) Phase 1: Prune all edges in G whose weights are no
more than Gmin

D and call the resulting graph ˜G. Run Dijkstra’s
algorithm on ˜G to find the shortest path, in terms of number
of hops, from sl to sr. If a path is found, then SA is composed
of the physical sensors on that path, and the solution module
is done. Otherwise, continue to Phase 2.

2) Phase 2: If Dijkstra’s algorithm cannot find a path, then
sl is disconnected from sr in ˜G, meaning that no single path
can deliver Gmin

D flow from sl to sr. In this case, we look
for a flow network that can deliver Gmin

D flow by running the
maximum-flow based algorithm proposed in [5] on G. Briefly,
in this algorithm, the edge weight in G becomes the capacity of
each edge, and the algorithm heuristically searches for an SA

which can deliver at least Gmin

D flow. The algorithm attempts
to minimize the number of nodes in the flow network, but the
solution found is likely sub-optimal.

We try Dijkstra’s algorithm prior to the max-flow based
algorithm because a solution with a single path tends to use
less sensors than a solution with multiple branches, due to
the sub-optimal nature of Phase 2’s algorithm. This intuition
is verified by simulation. However, we include Phase 2 as a
backup, because when Phase 1 fails due to the pruning oper-
ation disconnecting the graph, the max-flow based algorithm
of Phase 2 may still produce a solution. If Phase 2 does not
produce a solution, then for the purposes of BaCo, SA does
not exist.

Fig. 5 illustrates the heuristic two-phase algorithm with
three example graphs (see the next section for an explanation
of these graphs as iterations). In these examples, Gmin

D = 3,
which corresponds to Pmin

D = 0.95. In Fig. 5(a), ˜G is
identical to G, as all the edge weights are larger than Gmin

D .
Dijkstra’s algorithm finds a shortest path in ˜G that yields
SA = {s

1

, s
3

, s
4

, s
6

, s
8

}, so the solution module does not
run Phase 2. In Fig. 5(b), three edges are pruned in Phase 1,
but Dijkstra’s algorithm still works, so Phase 2 is again not
used. In the graph in Fig. 5(c), edges s

1

s
3

, s
1

s
2

, s
2

s
3

, s
4

s
6

and s
6

s
8

are all pruned in Phase 1, disconnecting sl from sr.
Therefore, this graph requires Phase 2, which produces the
solution shown in the figure, SA = {s

1

, s
2

, s
3

, s
4

, s
5

, s
7

, s
8

}.
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Fig. 5. An illustration of iterations in BaCo. The minimum detection gain
Gmin

D = 3, which corresponds to Pmin

D = 0.95, and Pmax

F = 0.05. The
thick edges compose the path or flow network which can deliver Gmin

D flow.
The dotted edges are pruned in G̃.

D. Iteration Controller
To understand the iteration controller, we first give an

overview of BaCo’s iterations. In the first iteration, NA = 1.
At the end of any iteration, if |SA| == NA, or if SA does not
exist, we terminate. Otherwise, we set NA = |SA| and iterate.
Given these rules, we have the following property.

THEOREM 1. Let SA be the output of the solution module,
given NA as the input of the setup module. In each iteration
of BaCo, if SA exists, then |SA| � NA.



Proof: We will prove this with induction. Let N (k)
A and

S(k)
A denote the input and output of iteration k, respectively.

Let G(k) denote the graph created in iteration k. In BaCo,
N (1)

A = 1, so we have the following base case.
Base case: |SA|(1) � N (1)

A = 1. This is obvious, because
if a solution exists, it must have at least one sensor.

Inductive step: If |SA|(k�1) � N (k�1)

A , then |SA|(k) � N (k)
A

for k > 1. This is true because, in BaCo, if we do not terminate
in iteration k � 1, then we set N (k)

A = |SA|(k�1). Therefore,

N (k)
A = |SA|(k�1) � N (k�1)

A . (18)

From (16), we can then conclude that T (k) � T (k�1). Next,
from (3) and (10), we know that a higher T for a sensor si
leads to a lower detection probability and gain for si, given
an intruder at any point t:

T (k) � T (k�1) ) P (k)
d (si, t)  P (k�1)

d (si, t)

) G(k)
(si, t)  G(k�1)

(si, t), 8i, 8t. (19)

From (17), we see that this leads to the weight of any
particular edge in the graph G(k) being lower than the weight
of the corresponding edge in G(k�1):

G(k)
(si, t)  G(k�1)

(si, t)
G(k)

(sj , t)  G(k�1)

(sj , t)
) w(k)

ij  w(k�1)

ij . (20)

Consequently, the set of sensors S(k)
A which can deliver Gmin

D
amount of flow in G(k) can also deliver at least Gmin

D amount
of flow in G(k�1). However, there may exist a better solution
in G(k�1), because its edges can deliver more flow. Therefore,
|SA|(k) � |SA|(k�1), and since N (k)

A = |SA|(k�1) according
to our iteration rule, we have

|SA|(k) � |SA|(k�1)

= N (k)
A .

Given this property, we discuss the iteration controller in
more detail. The iteration controller takes SA as input from
the solution module and decides if another iteration is required,
according to the relationship between |SA| and NA, as follows.

1) |SA| = NA: Terminate and output SA. The assumption
for NA has been validated, meaning that SA is a feasible
solution because it meets the requirements for both GD (from
the solution module) and PF (from the setup module). Note
|SA| = NA means PF = Pmax

F . Furthermore, SA is the best
feasible solution that can be found by BaCo, because NA is
the smallest valid assumption. Thus, the iteration controller
terminates the algorithm and outputs SA. Note that |SA| < NA

also means that SA is a feasible solution. However, this case
will not occur in BaCo, as demonstrated by Theorem 1.

2) SA does not exist: Terminate. The solution module could
not find an SA that satisfies Gmin

D . Further iterations would
also not produce a solution, because S0

A would not exist for
any N 0

A > NA, as all the edge weights in G0 would be less
than the edge weights in G, using reasoning similar to that of
the proof of Theorem 1. This means that BaCo cannot find
a solution for strong (Pmin

D , Pmax

F )-barrier coverage with the
given sensor deployment.

3) |SA| > NA: Set NA = |SA| and iterate. The assumed
NA has not been validated and the solution SA violates the
Pmax

F constraint. The iteration controller outputs |SA| to the
setup module, which sets NA = |SA| and starts the next
iteration. Thus, BaCo does not exhaustively try all values of
NA. The proof of correctness for skipping the values between
NA and |SA| is detailed as follows.

THEOREM 2. For any N 0
A 2 [NA, |SA|), the solution module

cannot find a set of sensors S0
A which satisfies P 0

F  Pmax

F
and G0

D � Gmin

D , where G0
D and P 0

F are the minimum detection
gain and the system false alarm probability of S0

A.

Proof: Suppose there exists an N 0
A with

NA  N 0
A < |SA| that creates the graph G0 and produces a

feasible solution S0
A, meaning that N 0

A � |S0
A|.

Using reasoning similar to that of the proof of Theorem 1,
we know that

N 0
A � NA ) w0

ij  wij . (21)

Therefore, any solution S0
A that is feasible on G0 is also

feasible on G, but since G’s edges can deliver more flow,
there may exist a better solution in G. Thus, |S0

A| � |SA|.
Combining this with the assumption that S0

A is a feasible
solution for the input N 0

A < |SA|, we have

|SA| > N 0
A � |S0

A| � |SA|, (22)

which is a contradiction.
An example of BaCo’s iterations is shown in Fig. 5. Fig. 4

illustrates the iteration progress for this example, showing |SA|
versus NA. The algorithm terminates the first time it finds a
solution on the line |SA| = NA, and since we start with NA =

1 and |SA| increases with each iteration (Theorem 1), BaCo
thus attempts to minimize |SA|. The circled crosses and arrows
in Fig. 4 show the iterations in Fig. 5, starting with NA = 1

in the first iteration. This iteration outputs |SA| = 5, which
becomes the new NA for the second iteration. The second
iteration yields |SA| = 7 and with an input of NA = 7, the
third iteration yields |SA| = 7, and the algorithm terminates.

IV. EVALUATION

In this section, we evaluate the importance of considering
system false alarm probability, the performance of BaCo in
terms of the number of active sensors, and BaCo’s convergence
speed. In our simulations, 200 sensors are randomly deployed
in a 100 ⇥ 10 m belt region, similar to the simulation setups in
other barrier coverage papers [1]–[8]. The default simulation
parameters are shown in Table I.

TABLE I
DEFAULT SIMULATION PARAMETERS

Parameter Meaning Default Value
Pmin

D Detection probability constraint 0.95
Pmax

F System false alarm probability constraint 0.05
Rc Communication range 20 m
v
max

Target’s maximum moving speed 1 m/s
⌦ Source signal strength 30 mW
↵ Source signal decay exponent 2
f Sensor sampling rate 5 Hz
FN CDF of noise distribution CDF of Gaussian
µ Noise mean 0 mW
� Noise standard deviation 1 mW



A. System False Alarm Probability
We first demonstrate the importance of considering system

false alarm probability PF when designing a scheme. We
compare BaCo to a non-iterative version of itself, which we
call NiB, that is based on MWBA [5]. NiB uses BaCo’s source
and detection model, but like MWBA, it does not consider
system false alarm probability PF . Therefore, it uses a fixed
decision threshold T and only runs BaCo’s solution algorithm
once, selecting a set of active sensors SA that satisfies the
detection probability constraint PD � Pmin

D . The PF for NiB
is then calculated according to (8) and (9).

Fig. 6(a) shows PF and the decision threshold T versus �,
the standard deviation of the background noise, for BaCo and
NiB. By design, BaCo’s PF is constant at Pmax

F = 0.05. To
achieve this, BaCo automatically increases T as � increases,
effectively dealing with the larger fluctuations in noise. In
contrast, NiB’s PF grows quickly with �, reaching over 0.2
when � = 2 mW. The PF of NiB is lower than that of
BaCo when � is small, but as a tradeoff, NiB’s number
of active sensors |SA| is larger at small �, as can be seen
in Fig. 6(b). BaCo balances this tradeoff using its iterative
algorithm, achieving smaller |SA| when the PF constraint
allows, and sacrificing |SA| for PF when needed.
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Fig. 6. Comparison of schemes with and without the PF constraint.

B. Number of Active Sensors
We now evaluate BaCo’s performance in terms of the

number of active sensors |SA| versus the source signal strength
⌦ and the sampling frequency f . Since BaCo’s performance
cannot be fairly compared to schemes without the PF con-
straint, we compare BaCo to two reduced versions of itself:
Path, in which the solution module utilizes only the shortest-
path based algorithm (Phase 1 of the solution module), and
Flow, in which the solution module utilizes only the flow-
based algorithm of [5] (Phase 2 of the solution module). The
full BaCo scheme utilizes both, as described in Section III-C.
The results are collected from 500 runs of each scheme, with
random deployments for each run. If a scheme cannot achieve
barrier coverage for a run, an |SA| of 1 is recorded.

1) The Effect of Signal Strength ⌦: Fig. 7(a) shows the
CDF of |SA| when ⌦ = 12 mW, a weak source signal,
and Fig. 7(b) shows the CDF of |SA| when ⌦ = 50 mW,
a strong source signal. The curve of BaCo overlaps that of
the Path scheme for |SA| < 51 in Fig. 7(a) and completely in
Fig. 7(b). Note the left shift in the CDFs between Fig. 7(a)
and Fig. 7(b), indicating that |SA| is smaller when the source
signal is stronger. This is because, with a stronger signal, each
sensor has a higher probability of detecting the target, so fewer
sensors are needed.
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Fig. 7. CDFs of |SA| for two ⌦ values.

When ⌦ is low (Fig. 7(a)), the Path scheme can only
obtain a feasible solution 83.6% of the time, while the other
two schemes can achieve coverage 95% of the time. This is
because the Path scheme limits the search space to a single
path. However, when the Path scheme does produce a feasible
solution, it tends to use less sensors than the Flow scheme. At
the highest percentile for which the Path scheme produces a
feasible solution, BaCo uses 51 sensors, the Path scheme uses
53 sensors, and the Flow scheme uses 58 sensors. Thus, BaCo
achieves the performance of Path and the coverage percentile
of Flow by combining the two.

When ⌦ is high (Fig. 7(b)), all schemes are able to achieve
coverage in 100% of the runs. The Flow scheme activates
more sensors than both BaCo and the Path scheme, due to the
sub-optimal nature of the flow-based algorithm. BaCo and the
Path scheme use at most 38 sensors, while the Flow scheme
uses at most 56 sensors. Therefore, BaCo performs well with
both large and small ⌦ values.

2) The Effect of Sampling Rate f : Fig. 8(a) shows the
CDF of |SA| when f = 0.5 Hz and Fig. 8(b) shows the
CDF of |SA| when f = 10 Hz. Again, BaCo largely overlaps
the Path scheme. Comparing the two figures, we see that the
number of active sensors of all three schemes is smaller for the
higher sampling frequency. This is because a higher sampling
frequency gives each sensor more chances to detect the target,
so fewer sensors are required to achieve the same PD.

When f is low (Fig. 8(a)), BaCo and the Flow scheme
achieve a higher coverage percentile than the Path scheme.
The BaCo scheme achieves coverage in 97.2% of the runs,
with the Path scheme at 94% and the Flow scheme between
the two. The lower coverage percentile of Flow than BaCo
implies that the Path scheme (Phase 1 of BaCo) sometimes
finds a valid solution when the Flow scheme does not. This
can happen because the Flow scheme generally finds a solution
with a larger |SA| in each iteration. Then in the next iteration
the Flow scheme may not be able to find a feasible solution
using the larger |SA| as NA, because the threshold T will be
higher and the gains will be lower. We again see that BaCo
performs the best in terms of |SA| and that, in the cases where
the Path scheme achieves coverage, the Path scheme uses less
sensors than the Flow scheme. Therefore, BaCo’s two-phase
algorithm again proves advantageous in terms of both coverage
percentile and the number of activated sensors.

When f is higher (Fig. 8(b)), all schemes have a coverage
percentile of 100, and BaCo and the Path scheme activate
fewer sensors than the Flow scheme. Thus, BaCo also per-
forms well for varied sampling rates.
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Fig. 8. CDFs of |SA| for two sampling rates.

C. Convergence Speed
We also verified that BaCo’s iterative algorithm converges

quickly, regardless of N , the number of sensors. We found
that an average of around three iterations were required with
N = 200 in our test scenario. This low number of iterations is
explained as follows. Since each iteration outputs an SA that
would be a feasible solution if false alarm probability was
not being considered, |SA| from the first iteration is relatively
large. BaCo then skips from NA = 1 to this relatively large
value for the second iteration. At relatively large values of
NA, small changes in NA have little impact on the threshold
T , as can be seen in (16). Therefore, the detection gains do
not change much. An example of the gain change can be seen
in Fig. 5, where the decrease of the gain from Fig. 5(b) to
Fig. 5(c) is smaller than that from Fig. 5(a) to Fig. 5(b). So as
the iterations continue, with increasing probability, the solution
in the previous iteration is still available in the next iteration,
and hence the algorithm settles quickly.

V. RELATED WORK

The probabilistic sensing model was first applied to the
area coverage problem. Ahmed [10] proposed an algorithm
to evaluate area coverage under a probabilistic model. In
[11], the authors designed distributed protocols to achieve full
coverage under a probabilistic model. Clouqueur [9] compared
value fusion and decision fusion under the probabilistic model.
Following this work, Xing [12] analysed the impact of value
fusion on area coverage from a statistical perspective. Wang
[13] investigated the coverage region of sensors under the
value fusion model and proposed a greedy algorithm to select
the minimum number of sensors to achieve area coverage.
These works established the fundamentals of probabilistic
sensing models and provided insights for the application of
these models to the barrier coverage problem.

A majority of the work on barrier coverage [1]–[3], [7], [8]
adopted the disk sensing model. Under this model, Kumar and
Xing investigated the critical conditions of weak and strong
barrier coverage in [1] and [2]. They also proposed schemes
to identify barriers formed by randomly deployed sensors. In
[3], Kumar designed a scheme to schedule barriers such that
the lifetime of the sensor network is maximized. Mostafaei
in [7] proposed a distributed learning automata-based method
to find the minimum number of sensors to construct barriers.
Wang in [8] considered the barrier coverage problem in hybrid
sensor networks where both static and mobile sensors are
utilized. They investigated the impact of localization errors
on the minimum number of mobile sensors required. These
works provide the fundamental theories of barrier coverage.

However, the disk model adopted is overly simple and cannot
approximate the real world well.

Recently, the probabilistic sensing model is applied to
barrier coverage and intruder detection problems [4], [5], [14].
Tan [14] explored the detection delay of intruders under the
value fusion model. Yang proposed a scheme in [4] to achieve
weak barrier coverage under the value fusion model with a
system false alarm probability constraint. In this scheme, a
sensor’s coverage region is first modeled back to a disk by
cutting off the region with small detection probability, then
the coverage problem is solved with a disk model. No fusion
along the intruding path is considered, so this solution cannot
be applied to our problem. Chen proposed a scheme in [5]
to achieve strong barrier coverage under the decision fusion
model, where fusion along the intruding path is considered.
However, the scheme only considers detection probability
and ignores system false alarm probability. In contrast, BaCo
considers both fusion along the intruding path and system false
alarm probability, making BaCo a more practical scheme for
real-world applications.

VI. CONCLUSION

In this paper, we propose an iterative scheme, called BaCo,
to provide strong barrier coverage under the probabilistic
sensing model, with the objective of minimizing the number of
active sensors. BaCo considers both target detection probabil-
ity and system false alarm probability, hence providing a more
practical barrier coverage. Simulations show BaCo converges
quickly and achieves better results than previous work, and
it can automatically adjust the decision threshold to keep the
system false alarm probability under a constant threshold.
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