
EDAD: Energy-Centric Data Collection with
Anycast in Duty-Cycled Wireless Sensor Networks

Mathew L. Wymore, Yang Peng, Xiaoyun Zhang, and Daji Qiao
Iowa State University, Ames, IA, USA

{mlwymore, yangpeng, zxydut, daji}@iastate.edu

Abstract—Recent efforts in applying anycast techniques to

duty-cycled wireless sensor networks have shown promising

results in terms of reduced delay and energy consumption. This

paper further increases the energy savings by introducing EDAD,

an energy-centric cross-layer data collection protocol designed for

anycast communications in asynchronously duty-cycled wireless

sensor networks. EDAD uses a new anycast routing metric,

EEP, that minimizes the expected energy consumed along the

path of a packet and automatically adapts to network settings.

Simulation results show that EDAD consumes less energy than

similar existing protocols, while maintaining a comparable delay

and high delivery rate.

I. INTRODUCTION
Emerging applications such as remote infrastructure health

monitoring demand reliable and cost-efficient methods for
collecting and reporting sensor data. Small, self-contained
sensing nodes connected in a wireless sensor network (WSN)
have the potential to fulfill this need. In WSNs, nodes commu-
nicate with each other using low-power wireless technology,
usually over multi-hop routes. These nodes are powered by
batteries or energy harvesting techniques and are tightly energy
constrained. Since energy use in WSNs is known to be
dominated by the radio hardware, routing and media access
control (MAC) protocols for WSNs have focused on reducing
radio on-time of nodes.

Primarily, this reduction in radio on-time is achieved with
duty-cycling. In duty-cycling, nodes spend most of their time
with their radios off, or sleeping, and only wake to commu-
nicate, as determined by the MAC protocol. MACs can align
duty cycles synchronously, as in S-MAC [1] or T-MAC [2], but
synchronous methods require significant overhead to propagate
schedules and maintain clock synchronization.

Therefore, most recent research has focused on asyn-
chronous MACs. These can be sender-initiated, such as X-
MAC [3], in which a node with a packet to send repeatedly
transmits short wakeup packets until a receiver wakes and
responds. BoX-MAC-2 [4] further streamlines this process by
repeatedly sending the full data packet, so a receiver only needs
to respond with an acknowledgement. Asynchronous MACs
can also be receiver-initiated, such as RI-MAC [5], in which
a node with a packet to send wakes and politely listens for an
advertisement beacon from the next hop receiver, leaving the
channel open for other nodes to communicate in the meantime.

A cross-layer technique that has recently been shown to
increase efficiency in WSNs is anycast, in which a packet
only needs to be sent to one of a set of potential forwarders,
neighbors that provide acceptable progress. Anycast has been
shown to reduce energy consumption and delay and to increase
reliability in duty-cycled networks by allowing nodes to dy-
namically take advantage of available links [6]–[8]. However,

This work is partially funded under the U.S. National Science Foundation
Grant No. 1069283.

existing anycast data collection schemes do not specifically
minimize energy consumption, and WSN nodes need as small
an energy budget as possible to achieve sustainable operation.

To address this need, this paper presents EDAD: Energy-
Centric Data Collection with Anycast in Duty-Cycled WSNs.
EDAD proposes a new anycast routing metric called Expected
Energy Consumed Along the Path (EEP) that, contrary to
previous anycast routing metrics,

1) is designed to minimize energy, and
2) automatically adapts itself to network settings.

The next section investigates related work. EDAD’s design,
including EEP, is presented in Section III. Section IV presents
simulation results that show EDAD reduces energy consump-
tion compared to state-of-the-art alternatives, and Section V
concludes this paper.

II. RELATED WORK
Data collection is an application scenario in which source

nodes generate data, such as sensor readings, and send the data
through a network to a special node known as the sink, which
typically transmits the data out of the network for processing.
The Collection Tree Protocol (CTP) [9] is a classic unicast
data collection protocol in which each node maintains a routing
metric value that estimates the node’s “distance” from the sink.
In CTP, the distance is measured as the expected transmission
attempts required to reach the sink (ETX). Nodes form a
routing metric gradient that spreads outward from the sink,
and packets are routed by forwarding to nodes with lower
routing metric values, or nodes that provide routing progress.
In CTP, each node chooses its neighbor with the lowest routing
metric value as its parent, forming a tree topology, as shown
in Fig. 1a. When anycast is applied to data collection, this
tree becomes a destination-oriented directed acyclic graph
(DODAG) [7], as shown in Fig. 1b.

A
E

C

F

B

D

(a)

A
E

C

F

B

D

(b)

Fig. 1. The effect of anycast on a data collection topology. (a) shows a
traditional gradient-based tree topology, where node A is the sink. Each node
chooses one parent as its next hop forwarder. (b) shows anycast applied to
the same network, creating a DODAG topology in which each node can have
multiple potential forwarders.

Anycast for WSNs has been analytically studied in papers
such as [10] and [6], and in protocols such as GeRaF [11],
CMAC [12], and A2-MAC [13]. These studies do not define
a practical anycast routing metric, with most of them relying
on geographical positions of nodes acquired by an external

2015 IEEE Wireless Communications and Networking Conference (WCNC): - Track 3: Mobile and Wireless Networks

978-1-4799-8406-0/15/$31.00 ©2015 IEEE 1578

process. In contrast, EDAD presents EEP, a new anycast metric
that is calculated using only information from neighboring
nodes. [14] does propose an anycast routing metric, but for
a synchronous MAC protocol, while EDAD’s design utilizes
an asynchronous MAC protocol and the associated benefits.

ORiNoCo [8], a receiver-initiated anycast data collection
protocol, avoids the anycast metric problem by forwarding
a packet to any neighbor that advertises a path within a
difference ⇥ of the best known path. ORiNoCo relies on the
arbitrary choice of ⇥ to adjust the protocol to a particular
network, whereas EDAD’s EEP automatically adapts itself to
given network settings, such as the average amount of time
between node wakeups. Also, EDAD maintains a neighbor
table and an explicit forwarder set to allow EEP fine-grained
control over potential forwarders, allowing it to make routing
decisions based on energy considerations.

ORW [7, 15] and the follow-up ORPL protocol [16] use an
anycast metric called Expected Duty Cycled Wakeups (EDC),
an approximation of the expected number of wakeups required
to deliver a packet to the sink [15]. The EDC calculation
factors in both link qualities and the number of potential
forwarders available to a node. However, the physical meaning
of EDC is not intuitive, whereas EDAD’s EEP metric uses
a clearly defined unit of energy, allowing EEP to minimize
energy consumption. Additionally, similar to ORiNoCo, EDC
relies on an arbitrary tunable parameter w intended to reflect
the general cost of forwarding in a network, though the authors
do provide w = 0.1 as a reasonable default for most scenarios.

III. EDAD DESIGN
An overview of EDAD’s components is shown in Fig. 2. At

each node i, a neighbor table is kept updated with information
from all of i’s neighbors, as detailed in Section III-B4. A set
of forwarders Fi is selected from the table, using the process
described in Section III-A4, such that the minimum EEPi is
achieved. Data packets are then dynamically sent to the first
available forwarder in Fi.

This work focuses on a receiver-initiated implementation,
but the concepts of EDAD and EEP can be applied to any
MAC protocol. The following sections explain the design of
EEP, EEP forwarder set selection, anycast routing in EDAD,
and some practical considerations, such as data packet retries,
topology maintenance, and network initialization.

Forwarder
Set

Selection

EEP
Calculation

Neighbor
Table

Selective forwarding

Send

Receive

Away from sinkToward sink

Receive

Send
Data

Processing/
Generation

Embed EEP

Embed EEP

Data flow Control flow

Fig. 2. Overview of EDAD’s components at a node i. A neighbor table tracks
the EEPs of i’s neighbors, as well as estimates of the quality of their links
with i. Fi, i’s forwarder set, is selected from the neighbor table such that the
minimum EEPi is achieved. EEPi is embedded in every outgoing packet.
Data packets are forwarded to the first node in Fi that is available.

A. EEP: Expected Energy Consumed Along the Path
EEP is a new routing metric that estimates the expected

energy consumed by nodes along the path of a packet as they

relay it to the sink. EEP is designed to minimize energy for
anycast on duty-cycled, asynchronous MAC protocols. The
following sections describe the MAC model and simplifying
assumptions on which EEP is based, as well as the observations
that lead to EEP’s energy-centric design. Then, EEP’s calcu-
lation and forwarder set selection process will be presented.

1) System model: EEP works with any duty-cycled, asyn-
chronous MAC protocol. An example of a receiver-initiated
version of such a protocol is shown in Fig. 3. Between beacons,
node i’s potential forwarders sleep for a random amount of
time in the interval [0.5TW , 1.5TW], where TW is a network
setting known as the wakeup interval, and the expected sleep
time for a node is TW . A node i with a packet to send wakes
and actively listens for an amount of time Xmin before any
potential forwarder j 2 Fi wakes and broadcasts a beacon to
advertise its availability as a receiver. Assuming the wakeups
of i’s potential forwarders are uniformly distributed on TW ,
the expected value of Xmin is well-known, as follows:

E[Xmin] =
TW

|Fi|+ 1
, (1)

where |Fi| is the number of nodes in i’s forwarder set.

t=0

sender i

receiver j1

Xmin

B

B DATA B

TF

receiver j2
B DATA B

t=TW

X2

X1

Fig. 3. Basic example of anycast with two potential forwarders and a receiver-
initiated MAC. A sender i waits Xmin before one of its forwarders, j1 or j2,
wakes and sends a beacon. In this case, j2 wakes first, so Xmin = X2, and i
sends the data packet to j2. Upon receipt, j2 replies with an acknowledgement.

This model for Xmin includes several simplifying as-
sumptions. Because the sleep time for each node is random
on an interval around TW , Xmin is actually expected to be
larger than (1) suggests, due to a phenomenon resembling the
hitchhiker’s paradox [17]. However, as discussed in [8], (1)
is a reasonable approximation and is used for its simplicity.
Another assumption of (1) is that the beacon from the first
j 2 Fi is successfully received by i. In reality, the beacon
could be missed or garbled, meaning i would wait for the next
j, which again suggests an expected wait longer than (1).

However, a counterbalancing assumption is that the wake-
ups of j 2 Fi are freshly uniformly distributed for each
sender i in the path. Because the uniform distribution is not
memoryless, this assumption pushes (1) toward overestimating
expected wakeup delays. For example, suppose a node i can
reach k either directly or through an intermediate node j. If
j wakes first and receive’s i’s packet, then j likely does not
need to wait as long as (1) suggests for k to wake, because
part of the time until k wakes has already passed while the
packet was queued at i and in transit to j.

Overall, these assumptions balance out well enough to use
(1) as a simple model of the amount of time that a node with a
packet to send has to wait until a forwarder wakes to receive it.
This model provides part of the foundation for EEP calculation,
described in Section III-A3.

2) Observations: EEP’s design is based on the above model
and the following observations of anycast routing in duty-
cycled networks:

• Different forwarders provide different amounts of
routing progress.

2015 IEEE Wireless Communications and Networking Conference (WCNC): - Track 3: Mobile and Wireless Networks

1579

• Different forwarders require different numbers of ex-
pected transmission attempts before a successful trans-
mission.

• A larger forwarder set for a node means less expected
time for the node to wait for a forwarder to wake.

• A different forwarder set for a node may yield a
different average routing progress per forwarder.

These observations reveal two tradeoffs in forwarder se-
lection. The first is between end-to-end delay and the number
of transmission attempts required to transmit the packet to
the sink. Choosing only forwarders that provide low rout-
ing progress on reliable links will decrease the number of
transmissions but increase the end-to-end delay. Choosing
only forwarders with high routing progress on unreliable links
will decrease end-to-end delay but increase the number of
transmissions.

The second tradeoff is in regard to the size of the forwarder
set. Adding more forwarders can decrease one-hop delay, but
if the forwarders do not provide enough routing progress,
the overall routing cost can be increased. EEP is designed to
balance these tradeoffs.

In order to do so, both delay and transmissions are trans-
lated into units of energy. A unit of energy is defined as the
amount of energy consumed by a node that is active (sending,
receiving, or listening) for the length of time TF required to
transmit a data frame, as shown in Fig. 3. Sending power
and listening or receiving power are assumed to be equal, a
reasonable simplification for WSN radio hardware [18]. Along
the path of a packet, one energy unit is consumed for each TF

of delay because the node with the packet currently queued is
always active. Two energy units are consumed per transmission
because both the sender and receiver are active, and each
transmission lasts TF .

As shown in Fig. 4, this translation to energy allows the
delay-transmissions tradeoff to be directly modeled. Fig. 4a
shows an example of more delay over more hops on reliable
links that require fewer transmissions, while Fig. 4b shows
an example of less delay over fewer hops on unreliable links
that require more transmissions. The shaded area is the energy
consumed in each case. As discussed in Section III-A4, a
forwarder set can be chosen that minimizes the expected
shaded area, thus balancing the second tradeoff and minimizing
energy consumed along the path of the packet.

As a final observation, because a packet is likely to spend
much more time sitting in a queue than in transmission, the
energy consumed is strongly affected by the delay. Therefore,
this energy minimization model also tends to minimize delay.

3) EEP calculation: Based on the above observations,
EEP is calculated at each node i using the EEP of nodes
j 2 Fi ✓ Ni, where Fi is i’s forwarder set and Ni is i’s set of
communication neighbors. The EEP calculation also uses an
estimate of the quality of the wireless link between i and j,
measured as packet reception rate (PRR) and denoted as pij .
The process for selecting Fi is detailed in the next section; for
now, assume Fi is known. Then,

EEPi =

P
j 2 Fi

[EEPj + 2/pij]

|Fi|
+

TW /TF

|Fi|+ 1
. (2)

The unit of EEP is the energy unit defined in the previous
section. An example topology using EEP is shown in Fig. 5,
where nodes B through F send to the sink node A. A solid

A

C

E

D
F

B D C BF

P
ow
er

Time

A

(a) Case when a path with many reliable hops is chosen. The end-
to-end delay is larger, but less transmission attempts are required.

A

C

E

D
F

B AEF

P
ow
er

Time

(b) Case when a path with fewer hops, utilizing unreliable links, is
chosen. The end-to-end delay is less, but many transmission attempts
are required.

Fig. 4. Illustration of the delay-transmissions tradeoff. The graphs show
system-wide power usage over time as a packet is sent from F to A. The
regions of lower power levels represent the times when a node along the path
is listening, waiting for a forwarder to wake. The regions of higher power
levels represent the time spent transmitting, when both sender and receiver
are awake. The shaded area represents the total energy expended to route the
packet from the source to the sink.

A
E

C

F

B

D

0

52

52

52

87

89

F ’s neighbor table
j EEPj pFj
C 52 0.8
D 52 0.5
E 87 1.0

Fig. 5. Example of a topology using EEP when TW /TF = 100. Links are
labeled with the pij of the link, and the EEP of each node is written below it.
A solid arrow from i to j indicates that j 2 Fi, while a dashed line indicates
j /2 Fi. As shown in the table, even though F has a link to E, and E has a
lower EEP than F , F does not include E in its forwarder set because adding
E would increase EEPF . In other words, with the given network settings,
E does not provide enough routing progress for F to use it as a forwarder.

arrow from i to j indicates that j is in Fi. The resulting EEP
of each node is written below it.

The EEP equation can be broken down into two distinct
terms. The first term is the average expected energy expended
along the multihop routes presented by the various j 2 Fi.
The energy for the route provided by a particular j is EEPj ,
plus the expected number of transmission attempts required
to reach j, multiplied by two because two energy units are
consumed during each transmission. All j 2 Fi are assumed
to have an equal probability of being the first to wake, so the
average is obtained by dividing by |Fi|.

The second term of (2) is the expected energy consumed
during the single-hop delay at i, meaning the time i spends
actively waiting for some j 2 Fi to wake. Since one energy
unit is consumed per TF of activity, this quantity is (1)
normalized to TF .

4) EEP forwarder set selection: The forwarder set selec-
tion component shown in Fig. 2 determines which k 2 Ni

are included in Fi to produce the minimum EEPi. This
process works as follows. All neighbors k 2 Ni are sorted
in ascending order by a sorting key ck = EEPk + 2/pik.
One at a time, the neighbors are added to Fi and EEPi is
calculated. When all neighbors have been added in order, and
EEPi has been calculated with each additional neighbor, the
set of neighbors that yields the minimum EEPi is used as Fi.
As an example, note how, in Fig. 5, node F does not include

2015 IEEE Wireless Communications and Networking Conference (WCNC): - Track 3: Mobile and Wireless Networks

1580

E in its forwarder set. Adding E would increase EEPF ,
because the route provided by E would increase the expected
average energy per route from j 2 Fi, outweighing the decease
in energy from the lower one-hop delay expected with one
additional forwarder. This is how the forwarder set selection
process balances the forwarder set size tradeoff discussed in
Section III-A2.

This process guarantees the minimum EEP for a given Ni,
without checking all possible permutations of Fi, because of
the sorting of k 2 Ni by ck. In more detail, the first term
of (2) is the average cj for j 2 Fi. The second term of (2)
decreases monotonically with the addition of more forwarders
to Fi, regardless of the choice of forwarders added. Therefore,
given an Fi and the set of remaining neighbors k 2 (Ni�Fi),
the smallest EEPi obtained from adding one more k to Fi

will always be obtained by adding the k with the smallest ck.
Thus, only incremental Fi combinations, created by adding
each k in order of ck, need to be checked.

Some previous anycast works, such as [10], define a
stopping condition for the forwarder set selection algorithm
where the process can be stopped when the first ordered
node that increases the routing metric value is found. In
EEP, all incremental combinations, as described above, must
be checked. As shown in Fig. 6, the EEP function is not
necessarily convex, so a local minimum may occur, particularly
when a group of forwarders have similar EEPs. However, even
without an early stopping condition, forwarder selection for
node i is efficient, with a computational complexity of O(|Ni|).

j cj EEPi

1 502 902.0
2 775 905.2
3 775 884.0
4 775 866.8
5 776 853.9
6 778 844.5
7 780 837.3
8 780 831.5
9 920 842.3
10 974 856.2

Fig. 6. Example of an Ni with a non-convex EEP function when
TW /TF = 800. The graph shows EEPi as nodes are added to Fi, and
also the separate cost terms of the EEP calculation. The addition of the second
forwarder to Fi increases EEPi, causing a local minimum at |Fi| = 1, while
|Fi| = 8 yields the global minimum and therefore the optimal forwarder set.
The table shows each node’s cj and the value of EEPi if all nodes up to j
are included in Fi.

B. EDAD Operation
1) Framework: EDAD’s overall framework is similar to

that of other anycast data collection schemes. All nodes in the
network may be data sources. One sink is assumed, though
the concepts can be applied to a multiple-sink scenario. EEP
is used as the routing metric. The sink has an EEP value of
zero. All other nodes calculate their own EEP using a neighbor
table, as shown in Fig. 2.

2) Anycast forwarding: In EDAD, all nodes maintain an
explicit forwarder set, described in Section III-A4. A sender
uses this set to choose the next hop receiver, which is the
first j 2 Fi from which i hears a beacon. This dynamic
choice of forwarder is what makes EDAD anycast and creates
the DODAG topology shown in Fig. 1. Any beacon from a
j /2 Fi is ignored, even if the beacon advertises a low EEP.
This is because the potential cost of sending to that node could
outweigh the gain, either because the node does not provide

enough progress or because the number of transmission at-
tempts to transmit a packet to that node could be excessive.
This is a tradeoff that EDAD allows EEP to balance via the
forwarder set selection process.

3) Retries: EDAD maintains a separate retry counter for
each j 2 Fi. Sender i increments the corresponding counter
whenever a data packet transmission to j fails, meaning that
an acknowledgement from j is not received by i. If the counter
reaches a maximum, then i stops retrying to j and waits for the
next forwarder. Thus, EDAD retries a single data transmission
to a particular node to try to utilize the available connection,
but if the transmission is continually unsuccessful, EDAD
takes advantage of its anycast nature and sends to a different
forwarder instead of dropping the packet.

4) Maintenance: EEP calculation and forwarder set selec-
tion require that a node maintain an updated neighbor table, as
shown in Fig. 2, to track its neighbors’ EEPs and link quality
estimates. To this end, all beacons and data packets contain the
EEP of the transmitting node, allowing EDAD to handle new
nodes and changes in EEP. When a new neighbor is discovered,
or the EEP of a current neighbor changes, the neighbor table
is updated and the forwarder set is rebuilt. This potentially
results in a new EEP value, which is embedded in all outgoing
beacons and data packets.

Because of its multipath nature, anycast inherently mit-
igates node failure issues. In the extreme case, if i hears no
beacons from any j 2 Fi, all j 2 Fi are assumed to be at least
temporarily unavailable, so the EEP for each j is set to infinity
in i’s neighbor table. This will in turn increase i’s EEP, so
upstream nodes will avoid forwarding to i until i reestablishes
communication with its forwarders.

Failed transmission attempts have a similar, but slower,
effect on i’s forwarder set. Link qualities with forwarders can
be estimated as a moving average of successes per number of
attempts. A failed transmission attempt to j thus lowers pij . If
enough transmissions to j fail, pij will become small enough
that j will be excluded from i’s forwarder set.

IV. EVALUATION
EDAD was implemented in the ns-2 network simulator

with an underlying MAC protocol based on RI-MAC and
extended to anycast. For comparison, single-parent ETX data
collection (as in CTP), ORW, and ORiNoCo were also imple-
mented. To directly compare EEP, EDAD’s main contribution,
to other metrics, these protocols were implemented on EDAD’s
framework. This means they all used the same MAC layer and
retry scheme, but their own respective routing metrics. ORW
was tested with w = 0.1 and w = 1.0, the extremes of the w
range tested in the ORW papers, where w = 0.1 was found
to be the best default configuration [15]. ORiNoCo was tested
with ⇥ = 0.1 and ⇥ = 0.9, the extremes of the allowable
range of ⇥, according to [8]. ORW with w = 0.1 is denoted
as ORW-0.1, and the other protocols are denoted similarly.

Nodes were distributed in a 250 x 250 m space in a grid
plus variance pattern, as seen in Fig. 10. A fully random
distribution was also tested, with similar results, so the grid
plus variance pattern was used for clarity of examples. The
sink was located in one corner and all other nodes generated
packets according to a Poisson process with rate �. Each link
quality pij was calculated based on the distance between i
and j using the shadowing propagation model, a fixed noise
level of -97 dBm, and a well-known function for estimating

2015 IEEE Wireless Communications and Networking Conference (WCNC): - Track 3: Mobile and Wireless Networks

1581

packet reception rate based on signal-to-noise ratio [19]. The
shadowing propagation model used a reference path loss of
61.4 dB at 2 m and a path loss exponent of 1.97, values that
were experimentally determined for a real WSN deployment in
[20]. No random variation was used in the propagation model;
instead, 30 different node layouts were tested for one simulated
hour each and averaged together for each data point.

A. General Performance
To test the general performance of EDAD relative to the

other protocols, simulations were run at a variety of network
densities, wakeup intervals, and data generation rates. The
effect of each parameter is shown by fixing two of the three
parameters at default values and varying the other. The default
number of nodes in the network is n = 100, the default wakeup
interval is TW = 2 s, and the default data generation interval
is 1/� = 30 s.

1) Network density: Performance under varying n, the
number of nodes in the network, is shown in Fig. 7. Energy
per packet for unicast ETX increases with density because,
after a point, ETX’s choice of forwarder remains similar, but
the number of collisions increases as packets converge along
similar routes to the sink, causing increased delay. However,
for the anycast protocols, energy per packet decreases as
n increases, because more nodes implies more forwarders,
leading to lower delay and, due to the greater path diversity,
fewer collisions. As expected given EEP’s design goal, EDAD
uses the least amount of energy, with a 25% decrease in energy
per packet over ORW-0.1 when n = 400.

ORiNoCo performs unpredictably over the range of den-
sities because of the way it uses the arbitrary ⇥ to determine
its forwarder set. For example, at low densities, ORiNoCo-
0.1 performs better than ORiNoCo-0.9, while the opposite is
true at higher densities. ORW performs more consistently, with
w = 0.1 generally providing better performance than w = 1.0,
an observation that holds through most of the results and agrees
with [15]. All protocols except EDAD show a small decrease
in E2E reliability above 100 nodes, with protocols with smaller
forwarder sets suffering more. This is likely because a smaller
forwarder set means less path diversity, resulting in more
collisions as routes from multiple nodes tend to converge on
the way to the sink. At higher densities, the reliability of
EDAD is expected to decrease as well.

2) Wakeup interval: Fig. 8 shows average performance
with different wakeup intervals. Most protocols reach an
energy minimum at around TW = 2 s. Below this, delay
is shorter, implying less routing energy, but this decrease is
outweighed by the energy of increased beaconing activity.
EDAD again consumes the least energy per packet, around
20% less than ORW-0.1 at TW = 2 s. EDAD also shows the
slowest growth in energy per packet for TW > 2 s.

These results also show how EDAD’s automatic adjust-
ment to TW gives it an advantage over other protocols. At
TW = 0.25 s, ORW-0.1 shows energy performance similar
to ORW-1.0, but as TW increases, ORW-0.1 uses less and
less energy than ORW-1.0. Also, at TW = 0.25 s, ORiNoCo-
0.1 shows energy performance similar to EDAD, but as TW

increases, the separation between ORiNoCo-0.1 and EDAD
grows. This behavior is because a larger TW leads to a greater
delay, implying more energy consumption. A larger forwarder
set counters that delay. But at a smaller TW , one-hop delay
matters less, so only forwarders that provide greater progress

(a) Energy vs. n. (b) Delay vs. n. (c) Reliability vs. n.

Fig. 7. Performance with different network densities.

(a) Energy vs. TW . (b) Delay vs. TW . (c) Reliability vs. TW .

Fig. 8. Performance with different wakeup intervals.

(a) Energy vs. 1/�. (b) Delay vs.1/�. (c) Reliability vs. 1/�.

Fig. 9. Performance with different data generation rates.

should be used. Only EDAD balances this tradeoff in forwarder
set size without parameter readjustment.

Above TW = 0.25 s, all protocols show very high reliabil-
ity. At TW = 0.25 s, some packet loss occurs due to excessive
collisions from beaconing activity.

3) Data generation rate: From Fig. 9, EDAD shows the
least energy consumed per packet over the tested range of data
generation intervals. In general, energy per packet increases
as the data generation interval increases because when less
packets are generated, relatively more of the network energy is
consumed by beaconing activity. With data generation intervals
above around 30 s, delay remains consistent. Below 30 s,
collisions increase delay slightly. Reliability is high for all of
the data generation intervals shown, but drops due to excessive
collisions at higher data rates.

B. Detailed Behavior
1) Anycast route selection: Fig. 10 shows traces of two

consecutive packets in a simulation using EDAD. At each
hop, the packet can go to any one of a number of potential
forwarders, resulting in widely different routes, even for back-
to-back packets.

2) Path diversity: Fig. 11a shows a sample cumulative
distribution function (CDF) for forwarder set sizes of four of
the protocols with the default simulation settings. In this case,
EDAD uses the most forwarders. Figs. 11b and 11c show traces
of 100 packets in a particular topology for EDAD and ORW-
0.1. EDAD shows a noticeably greater diversity in the paths
taken by the packets, due to its larger forwarder set sizes.
For this value of TW , more forwarders leads to less energy

2015 IEEE Wireless Communications and Networking Conference (WCNC): - Track 3: Mobile and Wireless Networks

1582

Fig. 10. Back-to-back traces of packets from a simulation using EDAD. The
source is in the upper-right corner and the sink is in the lower-left corner.
Arrows indicate the route taken by the packet. For each hop, the forwarder
set of the node is shown enclosed in a dashed circle segment, and the potential
forwarders are marked with blue stars.

(a) |F | (b) EDAD (c) ORW-0.1

Fig. 11. Path diversity. (a) shows the CDF of the size of forwarder sets
for a 100-node topology with default simulation settings. With these settings,
EDAD selects the most forwarders. (b) and (c) show traces, for EDAD and
ORW-0.1, of 100 packets sent diagonally across the simulated area. EDAD’s
path diversity spread is larger, leading to the energy savings seen for EDAD
with these settings.

consumption, so EDAD yields the lowest energy per packet,
as seen at n = 100 in Fig. 7. As previously discussed, at a
smaller TW , the lowest energy may be achieved with fewer
forwarders. Since EEP automatically adapts itself to TW , for
this case, EDAD’s forwarder set would be smaller.

3) Delay-transmissions tradeoff: Fig. 12 shows traces of
two consecutive packets from a simulation using EDAD, in
a format similar to Fig. 4, to illustrate a real example of
the tradeoff between shorter E2E delay with more time spent
in transmission and longer delay with less time spent in
transmission. EEP estimates the shaded area in the figure,
which allows the forwarder set selection process to balance
the delay-transmissions tradeoff, and thus minimize energy,
by minimizing the EEP for each node.

Fig. 12. The delay-transmissions tradeoff in real traces of consecutive packets
routed from the same source node in a network using EDAD. The number of
nodes along the path that are active is shown on the y-axis. Two nodes are
active during each transmission. EEP estimates the shaded area, which allows
the forwarder set selection process to balance the delay-transmissions tradeoff,
and thus minimize energy, by minimizing the EEP for each node.

V. CONCLUSION
EDAD has been shown to achieve its design goal of

further reduction of energy consumption in data-collection

WSNs using anycast. This reduction comes primarily from
EEP, a new anycast routing metric that judiciously selects
the forwarder set that minimizes the expected energy
consumed along the path of a packet. Future work includes
implementation and testing of EDAD in a WSN testbed,
including addressing implementation issues such as temporary
routing loops that may arise from topology changes under
dynamic channel conditions, and the possible increase in
communication overhead per packet from the relatively large
range of values that EEP can assume, compared to other
metrics.

REFERENCES
[1] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with

coordinated adaptive sleeping for wireless sensor networks,” IEEE/ACM
Transactions on Networking, vol. 12, no. 3, pp. 493–506, Jun. 2004.

[2] T. van Dam and K. Langendoen, “An adaptive energy-efficient MAC
protocol for wireless sensor networks,” in ACM SenSys, Nov. 2003.

[3] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: a short
preamble MAC protocol for duty-cycled wireless sensor networks,” in
ACM SenSys, Oct. 2006.

[4] D. Moss and P. Levis, “BoX-MACs: Exploiting physical and link layer
boundaries in low-power networking,” Stanford Computer Systems
Laboratory, Tech. Rep., 2008.

[5] Y. Sun, O. Gurewitz, and D. B. Johnson, “RI-MAC: a receiver-initiated
asynchronous duty cycle MAC protocol for dynamic traffic loads in
wireless sensor networks,” in ACM SenSys, Nov. 2008.

[6] G. Schaefer, F. Ingelrest, and M. Vetterli, “Potentials of Opportunistic
Routing in Energy-Constrained Wireless Sensor Networks,” in EWSN,
Feb. 2009.

[7] O. Landsiedel, E. Ghadimi, S. Duquennoy, and M. Johansson, “Low
power, low delay: opportunistic routing meets duty cycling,” in IEEE
IPSN, Apr. 2012.

[8] S. Unterschütz, C. Renner, and V. Turau, “Opportunistic, receiver-
initiated data-collection protocol,” in EWSN, Feb. 2012.

[9] R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P. Levis, and
A. Woo. The Collection Tree Protocol (CTP). [Online]. Available:
http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html

[10] J. Kim, X. Lin, N. B. Shroff, and P. Sinha, “Minimizing Delay and
Maximizing Lifetime for Wireless Sensor Networks With Anycast,”
IEEE/ACM Transactions on Networking, vol. 18, no. 2, pp. 515–528,
2009.

[11] M. Zorzi and R. R. Rao, “Geographic random forwarding (GeRaF) for
ad hoc and sensor networks: Multihop performance,” IEEE Transactions
on Mobile Computing, vol. 2, no. 4, pp. 337–348, 2003.

[12] S. Liu, K.-W. Fan, and P. Sinha, “CMAC: An energy-efficient MAC
layer protocol using convergent packet forwarding for wireless sensor
networks,” ACM Transactions on Sensor Networks, vol. 5, no. 4, pp.
1–34, Nov. 2009.

[13] H.-X. Tan and M. C. Chan, “A2-MAC: An Adaptive, Anycast MAC
Protocol for Wireless Sensor Networks,” IEEE WCNC, Apr. 2010.

[14] Y. Gu and T. He, “Dynamic Switching-Based Data Forwarding for Low-
Duty-Cycle Wireless Sensor Networks,” IEEE Transactions on Mobile
Computing, vol. 10, no. 12, pp. 1741–1754, Dec. 2011.

[15] E. Ghadimi, O. Landsiedel, P. Soldati, S. Duquennoy, and M. Johansson,
“Opportunistic Routing in Low Duty-Cycle Wireless Sensor Networks,”
ACM Transactions on Sensor Networks, vol. 10, no. 4, pp. 1–39, Jun.
2014.

[16] S. Duquennoy, O. Landsiedel, and T. Voigt, “Let the tree Bloom:
scalable opportunistic routing with ORPL,” in ACM SenSys, Nov. 2013.

[17] H.-J. Bungartz, S. Zimmer, M. Buchholz, and D. Pflüger, Modeling
and simulation: an application-oriented introduction. Berlin: Springer,
2014.

[18] Texas Instruments, “CC2420 2.4 GHz IEEE 802.15.4/ZigBee-Ready RF
Transceiver (Rev. C) Datasheet,” 2007.

[19] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate and
scalable simulation of entire TinyOS applications,” in ACM SenSys,
Nov. 2003.

[20] Y. Chen and A. Terzis, “On the implications of the log-normal path
loss model: an efficient method to deploy and move sensor motes,” in
ACM SenSys, Nov. 2011.

2015 IEEE Wireless Communications and Networking Conference (WCNC): - Track 3: Mobile and Wireless Networks

1583

