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Abstract—Today, many individuals use smartphones or other
battery-powered mobile devices equipped with Wi-Fi to access
the Internet. Since the network interface cards (NICs) often use
a substantial portion of available energy, schemes such as the
802.11 power saving mode (PSM) have been used to limit the
amount of time a NIC is awake in an operable state so as to extend
battery life. However, since the NIC cannot retrieve packets while
sleeping, PSM may negatively impact packet delay. These delays
are also unbounded and can significantly increase communication
time, particularly in a mobile environment where server delays
may change drastically. To mitigate this, we present PSM-AW:
a PSM with adaptive wake-up. PSM-AW is a client-side solution
that allows the client device to sleep for a maximum time interval
while still keeping a tight bound on performance. We present and
prove a bound on performance using PSM-AW and demonstrate
its effectiveness through extensive simulations and experiments.

Index Terms—IEEE 802.11 WLAN, MadWifi, power saving
mode (PSM).

I. INTRODUCTION

TODAY, many individuals use smartphones or other
battery-powered mobile devices equipped with Wi-Fi to

access the Internet. Because of size and limitations in battery
capability, these devices often have strict power constraints.
Moreover, we know that the network interface cards (NICs)
on these devices use a substantial portion of available energy.
Often, a device will be on for long periods with little commu-
nication needs. In this case, constantly using a power-intensive
Wi-Fi card consumes a large amount of energy.

Further, a wireless connection may be required to perform
under various conditions. In particular, a connection on a mo-
bile device may undergo many changes as it moves between
environments, drastically changing the total delay experienced
by the user in the process. In light of this, we wish to design a
system that achieves small delays and low power consumption,
while still considering possible changes present in an unstable
or mobile environment.

A. Motivation

By default, the wireless NIC operates in constant awake
mode (CAM). Here, the wireless card is always in a high-
power state and operates with maximum performance but also
with minimal energy efficiency. To mitigate the large amount
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of energy used in CAM, a few different PSMs have been
developed and standardized.

1) Static PSM: The first of these is the 802.11 power saving
mode (PSM) (termed Static PSM) as introduced in [1]. PSM
achieves power savings by allowing packets destined for a client
to be buffered at the access point (AP) while the device is
sleeping. The AP then notifies the client of buffered packets
by setting a bit in the traffic indication map, which is included
in every beacon. If packets are waiting when the client wakes
up to listen to the beacon, it retrieves them by sending a PS-
POLL packet to the AP. Additional packets are indicated with a
MORE bit in the data frame, and the client continues to retrieve
packets until the MORE bit is clear, after which it reenters a
sleep state. In this manner, the wireless NIC is only awake when
transmitting or receiving data, thus allowing maximum energy
efficiency.

However, this scheme suffers from potentially long delays
due to the round trip time (RTT) round-up effect. Because a
station sleeps immediately after communication, the RTT is
effectively rounded up to the nearest beacon interval, even if the
actual RTT is much shorter. This effect is further compounded
for communications requiring multiple quick responses be-
tween the client and a server, which is common in the Trans-
mission Control Protocol (TCP).

2) Dynamic PSM: To partially mitigate these issues with
delay, many devices use a variation of PSM called dynamic
PSM [2]. In this mode, a client will selectively switch from
PSM to CAM operation during times of heavy data transfer.
Once in CAM mode, the device sends and receives data as
normal (without PS-POLL) and remains there until no activity
occurs for a time called PSM timeout (specified by the vendor).
The device notifies the AP of the switch to CAM (PSM) by
sending a NULL data frame with the Power Management bit set
to 0 (1).

Generally, Dynamic PSM performs much better than static
PSM as it eliminates the overhead of PS-POLL packets and
also allows the device to remain awake during short transac-
tions, eliminating any unnecessary delays. However, if staying
awake longer, both during an active communication and after
data transfer is completed, the device may miss out on sleep
opportunities and consume more energy than necessary.

3) PSM-AW: Ideally, a PSM would sleep when no data are
being transferred but wake up immediately when incoming data
are ready, thereby introducing no additional delay. A client that
knows exactly when data will be ready for reception can triv-
ially achieve an ideal PSM. Unfortunately, a client frequently
communicates with many remote servers of differing delay, and
each server may have greatly varying delay. Thus, we set out to
build a practical system that can achieve a performance close to
an ideal scheme, while accounting for these varying delays.
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In practice, an end user may accept either high energy usage
or long delays, but not both. To capture this tradeoff, we
introduce a metric called the PSM penalty to fully describe
the tradeoff between power efficiency and delay. Further, we
present PSM-AW, i.e., a PSM with adaptive wake-up. PSM-AW
strategically picks a time to wake up for an incoming packet
in an attempt to keep the PSM penalty low. In this way, the
device can still sleep with as much efficiency as static PSM,
while gaining the delay efficiency of dynamic PSM.

B. Contributions

Our main contributions are as follows.
• We define PSM penalty as a metric to capture the tradeoff

between power efficiency and delay in PSM schemes.
• We develop a model to objectively compare the user

experience of Wi-Fi power saving options by considering
both power consumption and response delay.

• We present PSM-AW, which is a scheme that exploits any
available knowledge of server delay to achieve maximum
user experience.

• We present and prove a bound on the PSM Penalty for the
PSM-AW scheme.

• We perform and present extensive simulation and exper-
imental results, which show that PSM-AW can achieve
energy savings while still maintaining a low delay.

The remainder of this paper is organized as follows. We
describe a unified model of power saving schemes in Section II
and evaluate both static and dynamic PSMs in terms of this
model. The PSM-AW scheme is introduced in Section III,
along with analysis of the scheme. We present a simulation-
based performance evaluation in Section IV. In Section V,
we describe an implementation-based performance comparison
to existing schemes. An outline of related work is given in
Section VI and we conclude in Section VII.

II. GENERIC POWER SAVING MODEL

To objectively compare the existing Wi-Fi power saving
schemes to any future work, we first need to establish a model
as a basis of comparison. To do so, we first discuss the param-
eters measured in the model in Section II-A and then offer an
evaluation of the schemes in terms of our model in Section II-B.

A. Model Description

Ultimately, any power saving scheme has one major set of
decisions that need to be made: when to turn the wireless NIC
on or off. In our model then, we are concerned with the times
that a wireless NIC is turned on (wakes up) or off (sleeps),
which are represented by twake,i and tsleep,i, respectively, where
i ∈ {1, . . . , n} is the index of the current sleep cycle. Between
cycles, we define Si = twake,i − tsleep,i−1 to be the amount of
time we sleep.

We also seek to measure the delay experienced by the user.
As the communication delay between an AP and a remote
server is dependent upon many factors, such as the size of the
communication and the RTT to the server, we use a quantity

TABLE I
DESCRIPTION OF MODEL PARAMETERS: tREFERS TO AN

ABSOLUTE TIME, TREFERS TO DURATION

termed TSD,j or server delay, to measure the total communica-
tion delay. Because server delay is highly variable, we consider
each request/response exchange to have distinct TSD,j , where
j ∈ {1, . . . ,m} is the index of a particular exchange within
a given flow. Each request/response pair j is started at treq,j
and completed at time trecv,j . We are also interested when a
reply arrives at the AP (which may be different from when the
reply arrives at the client) and signify this time by trAP,j such
that TSD,j = trAP,j − treq,j . The flow is initiated at treq,1, and
any subsequent requests are made immediately following the
reception of the previous packet, such that treq,j+1 = trecv,j +
Tcomm,req,j+1, where Tcomm,req,j+1 is the time used to send the
(j + 1)th request. We summarize our notations in Table I.

With model parameters defined, we consider how to quantify
the performance of a given scheme. We note that the end user of
any mobile Wi-Fi device is primarily concerned with two items:
power consumption and response delay.

1) Power Consumption: The user is concerned with how
much power is consumed by the wireless device. For our
purposes, we are concerned primarily with the power consumed
by the wireless NIC. Now, as power is consumed quickest
when the NIC is in an awake state, our goal is naturally to
minimize the amount of time the NIC is awake. Further, since
the same amount of time (and energy) is consumed to transmit
and receive packets regardless of the PSM scheme used, we
don not consider the time the device spends transmitting and
receiving packets. Thus, we define the metric A, which is the
extra amount of time the NIC is awake for a particular flow. The
awake time during a particular wake cycle is Ai = tsleep,i −
twake,i − Tcomm,i, where Tcomm,i is the time spent transmitting
and receiving packets during this cycle. For a given flow then
with n sleep cycles, we have

A =
n∑

i=1

Ai =
n∑

i=1

(tsleep,i − twake,i − Tcomm,i). (1)

Simply being awake and idle is not the only form of power
consumption in Wi-Fi networks. The following also consume
energy but are not included in our model for various reasons:

• Wakeup Costs: A nontrivial amount of energy is required
to wake up the NIC. However, our scheme wakes up at
most once per packet request and remains awake until after
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Fig. 1. Sample communication when waking up early and late. The rectangles
represent the time when the devices are awake with idle portions shaded.
The unshaded parts of the rectangle thus represent any communication delays
while receiving and requesting information or Tcomm,recv,j and Tcomm,req,j .
(a) Waking up early with twake,1 < trAP,1. We show A1 as calculated with
(1). D1 = 0. (b) Waking up late with twake,1 > trAP,1. We show D1 as
calculated by (2). A1 = 0.

the reply is received, and as such, it does not introduce any
additional wake-ups compared with existing schemes.

• Computation Costs: As will be shown in Section III, the
proposed PSM-AW scheme requires more computation
overhead than other existing schemes. However, the power
consumption of these computations is trivial compared
with the power consumption of active communication;
thus, they are not included in our model.

2) Response Delay: The user is also concerned with the
delay in retrieving data once it is requested. For instance, a user
viewing a web site will notice the time between following a link
on the page to the time the page loads. To this end, we desire to
decrease the amount of time that the user waits for the flow to
complete. Now, since the server delay is variable, we only seek
to measure the amount of time that a user waits for a flow to
complete after the data are waiting at the AP. Thus, we define
the metric D to be the extra amount of delay time imposed on
a user by the scheme. The extra delay for a single response Dj

is the amount of time between the reception of the response
at the AP and the client without considering the processing
time, such that Dj = trecv,j − treq,j − TSD,j − Tcomm,recv,j =
trecv,j − trAP,j − Tcomm,recv,j . For a flow with m requests, we
have

D =

m∑
j=1

Dj =

m∑
j=1

(trecv,j − trAPj
− Tcomm,recv,j). (2)

Together, we have two metrics that measure different aspects
of user experience: power consumption and response delay. We
depict the tradeoff between these two metrics in Fig. 1, such that
only one of A or D will be large. In other words, if the device
spends less time sleeping, then the difference tsleep,i − twake,i

will often be large, leading to a large A. In this case, there
will rarely be large delays between packet reception at the AP
and the device such that trecv,j − trAP,j ; hence, D will often
be small. Conversely, if a device spends more time sleeping,
such that A is small, then we may often experience large delays,
and trecv,j − trAP,j and D will remain large. We examine this
tradeoff in more detail when we study the potential wake-up
intervals in Section III-B.

To capture the tradeoff mathematically, we define a param-
eter 0 ≤ γ ≤ 1 that allows us to give one metric priority over
the other. Since these two metrics effectively show the penalty
imposed on a client for utilizing a PSM scheme, we define the
PSM penalty X for a flow as follows:

X = γD + (1 − γ)A. (3)

This formula clearly captures the essence of PSMs: an attempt
to minimize the amount of time a device is awake while also
minimizing the delay experienced by the user. The user can then
select a value of γ that corresponds to their situational need—a
high value when performance is desired, and a low value when
power efficiency is desired.

B. Model Evaluation

In Fig. 2, we illustrate the given parameters across multiple
possible schemes by considering a simple TCP transaction
consisting of a SYN/ACK exchange followed by a request for
data that contains two data packets. We neglect Tcomm in the
figure for clarity.

1) CAM Client: We first consider a client that does not
utilize any PSM scheme, but rather remains in CAM at all
times, as shown in Fig. 2(a). We see that, since the client is
always awake, there are no wake-up or sleep times. Moreover,
packets received at the AP are able to be immediately delivered
to the client.

2) Static PSM Client: We next consider a device using static
PSM as shown in Fig. 2(b). Here, the device goes to sleep
immediately after sending a packet and does not wake up until
the next beacon. At a glance, we see that static PSM spends very
little time awake, but instead, it spends most of the time asleep.
However, since the client only wakes up at beacons, there are
significant extra delays.

3) Dynamic PSM Client: We also consider the same com-
munication but with a dynamic PSM client, as shown in
Fig. 2(c). In this case, the server responds before the timeout
value expires; thus, the device never sleeps until well after the
entire communication is completed. This leads to delay times
that are identical to the CAM case but with much less power
efficiency than static PSM.

4) Ideal PSM Client: Finally, we consider an ideal client as
shown in Fig. 2(d), which sleeps only when there are no data
to be transmitted but is awake as soon as data are ready to not
introduce any delay.

III. PROPOSED POWER SAVING MODE

WITH ADAPTIVE WAKE-UP

A. Overview and Problem Statement

From the preceding schemes, we see that there is a distinct
tradeoff between power savings and delay in PSM schemes. We
also observed that we can maximize the total user experience if
the client wakes up precisely when a packet is ready at the AP.
Thus, our scheme has a simple primary goal. Given the history
of previous server delays, we seek to pick the next wake-up time
that minimizes PSM penalty. More specifically, we consider
previous server delays TSD,1, . . . , TSD,k along with previous
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Fig. 2. TCP communication between various clients and a server with Tcomm,recv,j and Tcomm,req,j (not shown for clarity). Rectangles represent the time the
device is awake with idle portions shaded. Also shown is extra delay, which is the time between data availability at the AP and reception at the client. (a) CAM
client: the device receives information as soon as it is available at the AP, where there is no extra delay. (b) Static PSM client: the wake-up times are determined
by beacons from the AP, which happen periodically every 100 ms. (c) Dynamic PSM client: delay is removed compared with the static PSM case, but the device
sleeps less. (d) Ideal PSM client: there is no extra delay and no extra awake time.

extra awake and delay times Ak and Dk, respectively. We define
a per-response PSM penalty metric Xk = γDk + (1 − γ)Ak,
and we then pick twake,k+1 attempting to minimize Xk+1. If we
knew beforehand the exact server delay of the next request, this
minimization would be trivial, and we would select twake,k+1 =
tsleep,k + TSD,k+1.

Unfortunately, server delays are uncontrollable and subject
to much variance; thus, we cannot directly minimize Xk+1 for
arbitrary TSD,k+1. Instead, we provide a connection-dependent
upper bound for Xk+1 as follows:

Xk+1 ≤ ρXk +ΔTSD,k (4)

where ΔTSD,k = |TSD,k+1 − TSD,k| is the change in server
delay, and 0 < ρ ≤ 1 is a bound parameter for merging speed.
In other words, we provide an upper bound on the next per-
response PSM penalty based on the previous PSM penalty
and the change in server delay. Consider the constant c =
E(ΔTSD,k) that measures the expected change in server de-
lay. We can use this value to calculate the expected PSM
Penalty. By applying the linearity of expectation to (4), we
have E(Xk) ≤ ρE(Xk−1) + c. Continuing recursively, we find
E(Xk) ≤ ρkE(X0) + c(ρk−1 + ρk−2 + . . .+ 1). For a long
flow, we have limk→∞ ρk = 0 and limk→∞(ρk−1 + ρk−2 +
. . .+ 1) = 1/(1 − ρ). Thus, we find

lim
k→∞

E(Xk) ≤
c

1 − ρ
. (5)

Over time, we can asymptotically converge to a connection-
dependent PSM penalty based on the expected change in server
delay c. If the connection is relatively stable, then an individual
ΔTSD,k is small and c is small, and we can have relatively
small PSM penalties. However, if the connection is unstable
with uncontrollable variance in ΔTSD,k and c is large, then
we may have large PSM penalties but which are still bounded
under c/(1 − ρ). We will discuss the choice of ρ more fully in
Sections III-D and IV-B3.

Our scheme PSM-AW performs the following.

1) A device sends a request to the server.
2) The device uses previous exchange to find a range of

valid values for twake,k+1 that guarantee the bound in (4)
(Range will be calculated in Section III-B).

3) The device uses a window of recent history to select
optimal twake,k+1 from the range of acceptable values
(Section III-C).

4) The device wakes up at time twake,k+1 and switches to
CAM to prepare for packet reception.

5) If more data are ready, we continue with Step 1.

B. Adaptive Wake-Up Interval

We now seek to analyze the given bound and determine a
range of valid wake-up times. We add to our list of definitions
Sk, the sleep time, which is the duration that a device will sleep
before waking up to attempt to retrieve a packet. Since there
will always be one request/response pair per awake/sleep cycle,
our indexes i and j line up, and we have the following:

Sk = twake,k − tsleep,k−1. (6)

Moreover, since we sleep immediately upon sending, we ob-
serve tsleep,k = trecv,k + Tcomm,req,k+1 = treq,k+1.

To determine valid wake-up times that satisfy the bound in
(4), we observe that we may have to act differently depending
on the result of the most recent request. Thus, we consider two
possible scenarios where: 1) the device sleeps too long and
wakes up “late” or 2) the device does not sleep long enough
and wakes up “early.”

1) Case Analysis:
a) Woke up “Late”: In the first case, the device woke up

“late” for the kth response because the reply arrived before the
device woke up such that TSD,k ≤ Sk. Since the packet is ready
immediately, we observe Dk = trecv,k − treq,k − TSD,k −
Tcomm,recv,k = twake,k − tsleep,k−1 − TSD,k = Sk − TSD,k.
Further, since we can sleep immediately, we have Ak = 0.
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Thus, when TSD,k ≤ Sk, we have the following relations:

Dk =Sk − TSD,k

Ak = 0.

b) Woke up “Early”: In the second case, the device woke
up “early” for the kth response because the reply arrived after
the device woke up such that TSD,k > Sk. Since the device
stayed awake and was ready to receive the packet when it
arrived, we have Dk = 0. Moreover, we have Ak = tsleep,k −
twake,k − Tcomm,k = TSD,k − Sk.

Thus, when TSD,k > Sk, we have the following relations:

Dk = 0
Ak =TSD,k − Sk.

2) Subcase Analysis: Thus, we consider the four different
combinations of waking up early and late that can occur in the
kth and the (k + 1)th packet.

a) Late, Late: Here, TSD,k ≤ Sk, and TSD,k+1≤Sk+1. In
this subcase, Ak = Ak+1 = 0, Dk = Sk − TSD,k, and Dk+1 =
Sk+1 − TSD,k+1. We could then rewrite (4) as follows:

Xk+1 ≤ ρXk +ΔTSD,k

⇔ γDk+1 + (1− γ)Ak+1 ≤ ργDk + ρ(1 − γ)Ak

+ΔTSD,k

⇔ Dk+1 ≤ ρDk +
1
γ
ΔTSD,k. (7)

We first recognize that satisfying Dk+1 ≤ ρDk +ΔTSD,k

will satisfy (7). Because the device wakes up late for the
(k + 1)th packet, the worst case for Dk+1 occurs when the
server delay decreases drastically, such that ΔTSD,k = TSD,k −
TSD,k+1. We consider the following calculations to determine
the range of acceptable sleep times:

Dk+1 ≤ ρDk +ΔTSD,k

⇔ Sk+1 − TSD,k+1 ≤ ρDk + TSD,k − TSD,k+1

⇔ Sk+1 ≤ ρDk + TSD,k

⇔ Sk+1 ≤ ρDk + Sk −Dk

⇔ Sk+1 ≤Sk − (1 − ρ)Dk.

Thus, to maintain the bound in (4), we can choose

Sk+1 ≤ Sk − (1 − ρ)Dk. (8)

b) Late, Early: Here, TSD,k ≤ Sk, and TSD,k+1 > Sk+1.
In this subcase, we have Ak=Dk+1=0, Dk=Sk − TSDk

, and
Ak+1 = TSD,k+1 − Sk+1. We can then rewrite (4) as follows:

Xk+1 ≤ ρXk +ΔTSD,k

⇔ γDk+1+(1 − γ)Ak+1 ≤ ργDk + ρ(1 − γ)Ak+ΔTSD,k

⇔ Ak+1 ≤ ργ

1 − γ
Dk +

1
1 − γ

ΔTSD,k.

(9)

Because the device wakes up early for the (k + 1)th packet,
the worst case for this scenario occurs when the server delay
increases drastically and ΔTSD,k = TSD,k+1 − TSD,k. Contin-
uing algebraically as before, we find that we can choose Sk+1

to maintain the bound in (4) according to

Sk+1 ≥ Sk −
(

1 +
ργ

1 − γ

)
Dk. (10)

Combining the two inequalities from (8) and (10), we find a
range to choose Sk+1 if we woke up late for the kth packet, i.e.,

Sk −
(

1 +
ργ

1 − γ

)
Dk ≤ Sk+1 ≤ Sk − (1 − ρ)Dk. (11)

c) Early, Late: Here, TSD,k > Sk and TSD,k+1 ≤ Sk+1.
In this case, Dk = Ak+1 = 0, Ak = TSD,k − Sk, and Dk+1 =
Sk+1 − TSD,k+1. We can rewrite (4) as

Xk+1 ≤ ρXk +ΔTSD,k

⇔ γDk+1+(1 − γ)Ak+1 ≤ ργDk + ρ(1 − γ)Ak+ΔTSD,k

⇔ Dk+1 ≤ ρ(1 − γ)

γ
Ak +

1
γ
ΔTSD,k.

(12)

Because the device wakes up late for the (k + 1)th packet,
the worst case for this subcase occurs with a drastic decrease in
server delay. Solving for Sk+1 as before, we can maintain the
bound in (4) by choosing Sk+1 according to

Sk+1 ≤ Sk +

(
1 +

ρ(1− γ)

γ

)
Ak. (13)

d) Early, Early: Here, TSD,k>Sk, and TSD,k+1>Sk+1.
In this subcase, Dk=Dk+1=0, Ak=TSD,k−Sk, and Ak+1=
TSD,k+1 − Sk+1 such that (4) becomes

Xk+1 ≤ ρXk +ΔTSD,k

⇔ γDk+1 + (1 − γ)Ak+1 ≤ ργDk + ρ(1 − γ)Ak +ΔTSD,k

⇔ Ak+1 ≤ ρAk +
1

1 − γ
ΔTSD,k.

(14)

Because the device wakes up early for the (k + 1)th packet,
the worst case for this subcase is a drastic increase in server
delay. Again, solving for Sk+1, we satisfy the bound in (4) by
choosing Sk+1 according to

Sk+1 ≥ Sk + (1 − ρ)Ak. (15)

Combining the two inequalities from (13) and (15), we find
a range to choose Sk+1 if we woke up early for the kth packet,
i.e.,

Sk + (1 − ρ)Ak ≤ Sk+1 ≤ Sk +

(
1 +

ρ(1 − γ)

γ

)
Ak. (16)

3) Summary: Thus, we have two ranges from which to
choose Sk+1 that satisfies our bound in (4).

• Woke up late for the kth packet, choose from

Sk −
(

1 +
ργ

1 − γ

)
Dk ≤ Sk+1 ≤ Sk − (1 − ρ)Dk.

• Woke up early for the kth packet, choose from

Sk + (1 − ρ)Ak ≤ Sk+1 ≤ Sk +

(
1 +

ρ(1− γ)

γ

)
Ak.

C. History-Based Fine-Tuning

Once we are given the range of acceptable values for Sk+1

shown earlier, we need to determine the optimum value for
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the sleep time. We consider a set Ω of all possible valid sleep
times governed by the equations in Section III-B3. We also
consider a window w of the most recent server delays T =
{TSD,k−w+1, . . . , TSD,k}. Once these sets are known, we desire
to choose an element from Ω that minimizes the expected PSM
penalty. Thus, we choose

Sk+1 = argmin
s∈Ω

(E[Xk+1]) . (17)

Now, E[Xk+1] = γE[Dk+1] + (1 − γ)E[Ak+1] by linearity
of expectation. The next Dk+1 is either 0 or s− TSD,t for a
given s ∈ Ω and k − w + 1 ≤ t ≤ k. Assuming that the pre-
vious w values are representative of reasonable future values,
they have an equal chance of occurring in the succeeding
request. Thus, to calculate E[Dk+1], we add up the calculated
value of Dk+1 for the previous w observed values and divide
by w, such that E[Dk+1] =

∑k
t=k−w+1 max(0, s− TSD,t)/w

for a given s ∈ Ω. Similarly, we can calculate E[Ak+1] =∑k
t=k−w+1 max(0, TSD,t − s)/w. Given these values, we can

then choose the s ∈ Ω with the smallest E[Xk+1] to be Sk+1.
Thus, Sk+1 represents the amount of time that we choose

to sleep for the following sleep cycle, such that we choose
Sk+1 to be the value that minimizes the expected value of the
PSM Penalty. Combining our choice of Sk+1 in (17) with the
definition of Sk given in (6), we have the relation twake,k+1 =
tsleep,k + Sk+1. From this perspective, our algorithm deter-
mines the next wake-up time (twake,k+1) so that the expected
PSM penalty is minimized.

To determine the window size w, we consider the effects
of different traffic types. For relatively stable connections, we
want a relatively large window to allow fine-tuning to pick an
appropriate wake-up time. If the window is too large, it may
take a long time to fill up the window, resulting in stale data;
therefore, we set a maximum window size of 30. On the other
hand, unstable connections should not use old history data;
thus, we want a small window size. Thus, we use the following
formula to determine w:

w = max

(
1, 30 −

⌊
ΔTSD,k

c

⌋)
(18)

where c =
∑w−1

k=1 |TSD,k − TSD,k+1|/(w − 1) is the mean dif-
ference of successive server delays. We thus choose a window
size between 1 and 30, such that smaller windows are used
when the most recent change is very large compared with the
mean difference. Full details on the implementation of our
algorithm are given in Section III-G.

D. Determining the Adaptive ρ

We consider the effect of the merging speed parameter ρ by
considering two general cases of potential traffic. In the first
case, the connection is relatively stable, and traffic history is
a good indicator of the future, such that we have a very low
mean difference c. In this instance, a low ρ such as ρ = 0 would
collapse the bound in (4) to Xk+1 ≤ ΔTSD,k. As a result, the
range of acceptable sleep times condenses to a single value

Fig. 3. Conceptual depiction of the effect of ρ for a relatively stable connec-
tion. A small ρ yields a higher PSM penalty but with a smaller upper bound. A
large ρ yields a smaller PSM penalty but with a larger upper bound.

and we eliminate the possible benefits from history-based fine-
tuning. A higher value of ρ closer to ρ = 1, however, would
enlarge the bound to Xk+1 ≤ Xk +ΔTSD,k and produce a
much larger range of acceptable sleep times, allowing history-
based fine-tuning to have a greater effect. Since the traffic is
relatively stable, this situation is ideal, and we prefer a large ρ.
We depict the effect of this situation in Fig. 3.

We must also consider a second general case of unstable
traffic such that history is not a good indicator of the future. In
this scenario, we have a large mean difference c. Since history
does not indicate future performance, history-based fine-tuning
would skew the results and be unhelpful. However, a low value
of ρ decreases the bound on PSM penalty, which is ideal.

We now consider the possibility of using a value of ρ
obtained through a statistical model. Depending on the model
chosen for TSD,k, we could solve for the mean difference c and
in turn choose an appropriate ρ. However, real conditions do
not conform well to any specific model; thus, both scenarios
aforementioned occur in practice. Specifically, any given con-
nection is likely to see periods of extended stability, followed by
short periods of erratic behavior. Thus, the value of ρ ought to
adapt to the observed traffic. We desire a value such that 0 <
ρ ≤ 1 with ρ dependent on (decreasing monotonically with)
c =

∑w−1
k=1 |TSD,k − TSD,k+1|/(w − 1). To do so, we first find

an upper bound on c in Lemma 1.
Lemma 1: For arbitrary ai and c =

∑w−1
i=1 |ai − ai+1|/(w −

1) across w observed values, 0 ≤ c < 2μ(w/(w − 1)).
Proof: We formally define mean μ =

∑w
i=1 ai/w and

mean difference c =
∑w−1

i=1 |ai − ai+1|/(w − 1), where ai is
a generic value to represent TSD,k. Now, because

∑w
i=1(μ−

ai) = 0 and ai > 0, we have
∑w

i=1 |μ− ai| < wμ.
We can now show the following:

0 ≤ c =
w−1∑
i=1

|ai − ai+1|
w − 1

=
w−1∑
i=1

|ai − μ+ μ− ai+1|
w − 1

≤
w−1∑
i=1

|ai − μ|
w − 1

+

w−1∑
i=1

|μ− ai+1|
w − 1

≤
w∑
i=1

|ai − μ|
w − 1

+
w∑
i=1

|μ− ai|
w − 1

< 2μ
w

w − 1
.

Thus, 0 ≤ c < 2μ(w/w − 1). �
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Since Lemma 1 shows that 0 ≤ c < 2μ(w/w − 1), we can
use the following relation to choose ρ such that 0 < ρ ≤ 1 and
ρ decreases monotonically with c:

ρ = 1 − c

2μ w
w−1

(19)

where w is the window size of the observed times, and c
and μ are the mean difference and mean of the server delay
times, respectively. We consider the effects of this adaptive ρ in
Section IV-B3 and then use it in our experiments.

E. Choosing γ

Another important parameter in our scheme is γ, which
directly illustrates the trade off in choosing between energy
efficiency and delay performance. We recall that the PSM
penalty is calculated with X = γD + (1 − γ)A. Thus, a low
γ heavily penalizes awake time, and we then spend more time
sleeping. Conversely, a high γ heavily penalizes delay time;
therefore, we spend less time sleeping so that we wake up early
enough to avoid any delay.

Since the choice of γ directly influences how much time we
spend sleeping, we may choose γ based on the actual power
consumption of our NIC. For instance, we may choose a low γ
to maximize sleeping if our device has a NIC with relatively
large power consumption, and a high γ to maximize delay
performance if our NIC has low power consumption, and we
are not as concerned with energy efficiency.

However, the raw power consumption does not tell the whole
story. The user may care about battery lifetime as well. For
instance, if the device’s battery is low (or if the device has a
full battery but the user will be unable to charge the device for
a long time), the user may want to conserve energy at all costs
and select a low γ.

As a result of these potentially conflicting inputs to determine
the choice of γ, we leave the choice to the user and simply
provide a range of options. In Section IV-B1, we look at the
effects of γ on awake and delay times. For our experiments in
Section V, we choose γ = 0.7 to favor a reduced delay.

F. Multiple Flows

In practice, a single device is very rarely occupied with only
one flow. Rather, many flows may be in operation over a given
time interval. Given this fact, our scheme intelligently handles
multiple flows with the following simple heuristics.

• Opportunistic Retrieval: While waiting on a packet for
Flow A, a packet for Flow B may arrive, which we may
not have been expected until later. In this case, PSM-AW
simply receives the packet.

• Delayed Sleeping: After we finish processing a packet for
Flow A, we may predict a packet for Flow B to arrive
shortly after. Instead of sleeping for only short duration,
PSM-AW opts to stay awake to wait for Flow B. The
threshold time for deciding whether to sleep is calculated
by comparing the energy saved by sleeping versus the
energy cost to wake up. In our experiments, we use a
Linksys WPC55AG NIC and select a threshold of 7 ms,
such that we will stay awake for Flow B if the packet is
predicted to arrive in the next 7 ms.

G. Summary

Overall, our scheme works in a simple two-step process.
First, we determine a range of wake-up times that satisfy the
performance bound given in (4). Then, we select the time
within this range that minimizes the expected PSM penalty.
Both of these steps occur at the client; thus, no AP modification
is necessary. More specifically, we choose Sk+1 according to
Algorithm 1.

Algorithm 1 Calculate TSD,k+1

� Calculate the acceptable wakeup range
ifTSD,k ≤ Skdo

l ⇐ Sk − (1 + (ργ/1 − γ))Dk

h ⇐ Sk − (1 − ρ)Dk

else
l ⇐ Sk + (1 − ρ)Ak

h ⇐ Sk + (1 + (ρ(1 − γ)/γ))Ak

end if
� Calculate c based on up to last w values
c ⇐ (

∑w−1
k=1 |TSD,k − TSD,k+1|)/(w − 1)

� Calculate μ based on up to last w values
μ ⇐ (

∑w
k=1 TSD,k/w)

� Fine Tuning: Choose next sleep time that minimizes
expected PSM Penalty
min ⇐ MAX_INT
fors = l : h : 1 msdo

EX ⇐ E[Xk+1]
ifEX ≤ minthen

Sk+1 ⇐ s
min ⇐ EX

end if
end for
� Update w—Slowly grow history
w ⇐ min(w + 1,max(1, 30 − (ΔTSD,k/c)))

As we can see, the algorithm is fairly efficient. We can
compute the lower and upper bounds on Sk+1 in constant time,
and c and μ in O(w) time. Since w is small, this also is quick.
The most complex part of the algorithm is searching through
possible s. Each computation of E[Xk+1] is also O(w), but
we may have to do as many as h− l + 1 such computations.
However, in practice, we can use simple heuristics (such as
noticing that the values of E[Xk+1] are concave up) to limit
the search space, thus making the entire algorithm efficient.

IV. SIMULATION STUDIES

We now seek to validate the previous analysis using exhaus-
tive simulation results.

A. Simulation Setup

We perform our simulations in a custom discrete event
simulator built with MATLAB. The simulator is capable of
using sample server delays from a collected trace or generating
its own sample server delays. We then simulate the sending
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Fig. 4. Trace of 30 requests to Twitter. The bars represent the range of valid wake-up times to ensure the bound from (4), which is shown by the dashed lines.
(a) γ = 0.2, with fine-tuning. (b) γ = 0.2, no fine-tuning (midpoint). (c) γ = 0.8, with fine-tuning. (d) γ = 0.8, no fine-tuning (midpoint).

and receiving of messages (using packet transmission times
according to N (1 ms, 0.2 ms), with the simulator tracking the
awake and sleep patterns for the device. From here, we calculate
the total time spent awake and asleep, additional delay due to
the PSM scheme, and the total PSM penalty.

For the majority of the simulations, we use a trace of 1000
requests gathered from a session with a Twitter application.
When an average of many traces with varying parameters is
required, we construct a traffic model with parameters similar to
this trace, which is a normal distribution defined by N (70 ms,
2 ms). Unless specified otherwise, we use a traffic model
consisting of an initial SYN packet followed by one or more
requests for data, similar to the communication shown in Fig. 2.

B. Observing Scheme Parameters

We use our simulator to observe the effect of our scheme
parameters and to choose optimal values when appropriate.

1) The Effects of γ: We look closer at a segment of the
Twitter trace to determine the effect of γ. In this simulation,
we consider a subset of 30 requests from the Twitter trace and
show the server delay, sleep time, and PSM penalty for each
request in Fig. 4. As expected, a large value of γ causes the
device to consistently wake up slightly early to avoid delay,
as shown in Fig. 4(c) and (d). Conversely, a small value of γ
results in waking up later, as shown in Fig. 4(a) and (b). This
effect can be substantial. For example, it is shown in Fig. 4(c)
that the algorithm always chooses the smallest of the possible
valid sleep times, resulting in a constant actual sleep time.

Additionally, we look at the effect of γ on the actual awake
and delay times. To do so, we generate 50 requests from a
normal distribution N (70 ms, 2 ms). We then repeat the
simulation 100 times for a range of γ values and plot the results
in Fig. 5. As expected, a low γ results in priority given to
minimizing A; thus, D remains high. Similarly, a high γ results
in priority given to minimizing D; thus, A remains high.

To understand the effect of γ in real-world conditions, we
consider values for energy consumption from [3], where idle

Fig. 5. X , A, and D for 50 requests of N (70, 2 ms) traffic. Each data point
is the average of 100 simulations and shows the average value of the respective
metric.

listening uses about 520 mW and light sleeping uses only
120 mW. According to the data for Fig. 5, using γ = 0.8
keeps the device awake for an extra 1.9 ms per request, and
using γ = 0.2 keeps the device awake for an extra 0.32 ms
per request. Thus, choosing a lower gamma saves us up to
(1.9−0.32) ms · (520−120) mW = 0.632 mJ per request. This
savings can add up quickly when many requests are involved.

2) The Effects of Fine-Tuning: We also seek to determine
the effect of fine-tuning on our strategy. We consider a version
of the scheme that simply uses the midpoint (calculated as
	(h− l)/2
, where h and l are the upper and lower bounds)
of the acceptable range for each request as the wake-up time,
rather than the fine-tuning process described in Section III-C.
Without fine-tuning Fig. 4(b) and (d), the midpoint provides a
reasonable strategy but not as good as using fine-tuning [see
Fig. 4(a) and (c)]. On average, using fine-tuning helps lower
the average PSM Penalty, as shown in Table II. If we repeat
this experiment hundreds of times, we find that fine-tuning
helps lower the PSM penalty by up to 34% on average, with
potentially even more improvement for unstable traffic.

3) The Effects of ρ: We now verify the claims from
Section III-D regarding the effect of ρ on performance by
considering 50-request traces with the server delays drawn from
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TABLE II
COMPARISON OF AVERAGE Xk FOR DIFFERENT PSM-AW VERSIONS

BASED ON A TRACE OF 30 REQUESTS WITH N (70 ms, 2 ms)
TRAFFIC, AS SHOWN IN Fig. 4

Fig. 6. PSM penalty and upper bound for simulation of 50 requests with
indicated traffic pattern for varying ρ, with γ = 0.7. For normal distributions,
increasing ρ increases the upper bound but will allow fine-tuning to take greater
effect, resulting in a lower actual penalty. The final circle (labeled Adaptive)
represents the PSM penalty obtained with an adaptive ρ. (a) N (70 ms, 2 ms).
(b) N (70 ms, 20 ms).

a normal distribution in Fig. 6. In Fig. 6(a) and (b), we see
that larger values of ρ result in a higher upper bound, as (5)
suggests. However, because a high value of ρ also allows us to
use a larger range of acceptable wake-up times, fine-tuning can
strategically select a time closest to the mean; thus, our actual
performance is better. Finally, we show the result from the same
simulation with an adaptive ρ from Section III-D as a single
circle following the other data, which performs as well as or
better than the static values of ρ. In practice, the adaptive value
of ρ averages 0.98 when σ = 2 ms and 0.84 when σ = 20 ms.

4) Longer Example: Finally, we observe the performance of
the selected parameters for the full Twitter trace in Fig. 7. Here,
we use γ = 0.7 to place moderate importance on the delay. We
also use fine-tuning and an adaptive ρ. We notice that the trace
is relatively stable, except for a few minor disruptions. PSM-
AW accurately utilizes fine-tuning during the stable periods to
select the best wake-up time. During the disruptions, PSM-
AW adjusts the window size w and the merging parameter ρ
to bound the PSM penalty.

V. PERFORMANCE EVALUATION

A. Experimental Setup

To fully compare the performance of PSM-AW to other
schemes, we perform a series of experiments. To perform these
experiments, we create a working implementation of PSM-
AW by modifying the open-source MadWifi device driver. This
custom driver can be configured to use static PSM, Dynamic
PSM, or PSM-AW as its PSM. We then use this driver on a Dell
Latitude E5400 laptop equipped with a Linksys WPC55AG
NIC. For parameters, we choose γ = 0.7 to slightly favor
reduced delay, fine-tuning, and an adaptive ρ. When we need to

measure performance to a server with specific delay parameters
as in Section V-C2, we set up another laptop with an unmodified
driver and the ability to introduce additional delay.

B. Implementation Details

To implement PSM-AW, we modify the following modules
of the MadWifi device driver, as shown in Fig. 8.

• ieee80211_var: In MadWifi, this module is responsible for
keeping track of various data related to each device. For
PSM-AW, we modify it to keep track of all the current
possible destinations and ongoing flows that a client might
be using. Specifically, it keeps track of previous server
delays (up to the window size w), the most recent Ak and
Dk values, and other flow state information.

• ieee80211_input: The input module handles all incoming
messages to a device. We modify it to calculate the server
delay of the previous request.

• ieee80211_output: In MadWifi, the output module han-
dles all outgoing packets. The PSM-AW modified version
performs the bulk of the work for our scheme and is
responsible for calculating the bound of acceptable wake-
up times and for performing history-based fine-tuning to
choose the best wake-up time that satisfies the PSM-AW
bound. The results of the calculations are stored in the
flow data.

• ieee80211_power: This module handles the power state of
the device by either sleeping or waking up the device and
informing the AP of any changes as necessary. We modify
the module for PSM-AW by monitoring the flow data to
see when power status changes are necessary. When there
is no network activity, this module aggregates information
from all active flows and determines whether or not to
sleep. If any flow is currently waiting for a packet (as in
the case when the NIC wakes up early), this module will
prevent the device from sleeping. Otherwise, it determines
the earliest time that any flow needs to wake up and sleeps
accordingly.

We note that all of the necessary modifications are done at the
client and no modification to the AP is required. In this manner,
a working implementation of PSM-AW can be deployed with
relative ease.

C. Comparison to Existing Schemes

We now compare PSM-AW to existing PSM schemes, in-
cluding dynamic PSM and static PSM. We consider two dy-
namic PSM schemes with timeouts of 95 and 200 ms, which
are labeled Dyn-95 and Dyn-200, respectively. For our direct
comparisons, we are mostly concerned with measuring the
awake time and the flow time. Specifically, a good scheme will
have a low total awake time—the amount of time the NIC is
in an awake state—and thus use little energy. Similarly, a good
scheme will have a low total flow time—the total amount of
time a device waits for outstanding packets—and thus allow
the user to experience little delay.

1) A Simple Study: We first consider a simple study. On an
isolated network, we set up a simple web server that serves
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Fig. 7. Trace of 1000 requests to Twitter.

Fig. 8. Diagram of PSM-AW implementation in MadWifi.

Fig. 9. This figure shows a simple HTTP flow with a SYN packet, two TCP
windows, and a FIN packet for the four tested schemes. The solid lines represent
the awake (high) and sleep (low) status of the device. The square represents the
request made by the client, the diamond is when the response is available at the
AP, and the asterisk represents the reception of the response at the client.

a static website. We then equip one laptop with a modified
MadWifi driver capable of dynamic PSM, static PSM, and
PSM-AW. We then make a single HTTP request for the website
with each scheme, and observe the results. The entirety of the
HTTP flow is four separate requests, including a SYN packet,
two TCP windows, and a FIN packet.

As we can see from the results in Fig. 9, both Dyn-95 and
Dyn-200 are awake much longer than necessary, with Dyn-95
also incurring significant delays by sleeping immediately
before the response would arrive. Static PSM also experiences
very significant delays, although it spends very little time
awake. PSM-AW better responds to the actual traffic pattern
and experiences very little additional delay and very little awake
time.

Fig. 10. Experimental results. We adjust the RTT of the server to show the
performance for each scheme. Each data point is an average of ten trials with a
95% confidence interval shown. (a) Total awake time for varying RTT. (b) Total
flow time for varying RTT.

TABLE III
DETAILS OF SERVERS USED INSection V-C3

2) Variable Server Delay: In real networks, we may initiate
connections with servers that vary greatly in their server delays.
We desire to see the effect of these varying server delays
on different power saving schemes. To do so, we repeatedly
request an entire website from a local server with all its assets,
i.e., 12 files in all. We adjust the RTT introduced by the server
to test different server delays. As shown in Fig. 10(a) and (b),
PSM-AW and static PSM provide the smallest total awake time
and thus save the most power. Dyn-200 and Dyn-95 spend a
significantly longer time awake, as they do not sleep immedi-
ately after the flow ends or pauses. Further, PSM-AW offers this
savings in awake time without significantly increasing the total
flow time, as required by static PSM.

3) Multiple Flow Performance: Finally, we compare the
overall performance of PSM-AW to existing schemes in the
presence of multiple flows. To do so, we observe each scheme
while performing multiple concurrent flows, namely accessing
four different websites. The details of the connections can be
seen in Table III, which shows the server name, the amount
of data downloaded, and the average server delay. Fig. 11
confirms the results from Section V-C2 by showing that PSM-
AW requires less awake time than Dynamic PSM without
excessive additional flow time. On average, PSM-AW is only



PECK AND QIAO: PRACTICAL PSM SCHEME FOR VARYING SERVER DELAY 313

Fig. 11. Comparison of schemes for a simple web session involving four
different flows to different servers. Each data point is an average of ten trials
with a 95% confidence interval shown. PSM-AW requires significantly less
awake time than the Dynamic PSM schemes, but it does not take as long to
complete the flow as with static PSM.

awake for 23.6% (36.3%) of the time Dyn-200 (Dyn-95) needs
to be awake, while having a total flow time of only 63.6% of
static PSM.

Using the same method as in Section IV-B1, we can estimate
the actual energy savings of PSM-AW. Since PSM-AW is
awake for 962 ms, it consumes 962 ms · (520 − 120) mW =
0.38 J more energy than if the device were asleep the whole
time. Similarly, Dyn-200 and Dyn-95 use 1.6 and 1.1 J more,
respectively, whereas Static uses 0.21 J more. Thus, PSM-AW
can save considerable energy over a short scenario compared
with Dynamic PSM, while still having a reasonable flow time.

VI. RELATED WORK

A. Power Efficiency in Wi-Fi

Much work has been done to increase the efficiency of PSM,
attempting to allow devices to sleep for long time intervals
while still maintaining a small delay. In [4], the bounded-
slowdown (BSD) protocol is first presented. The paper de-
scribes how static PSM effectively rounds the RTT for arbitrary
connections up to the beacon interval by forcing the client
to sleep until the succeeding beacon period. To mitigate this
rounding, Krashinsky and Balakrishnan presented BSD, which
adapts to RTT for arbitrary connections by selectively skipping
beacons and sleeping for longer time intervals. Similarly, Perez-
Costa and Camps-Mur [5] sought to limit delay by altering the
transmission of PS-Poll packets in static PSM, whereas Qiao
and Shin [6] sought to determine the optimum sleep sequence
to bound the delay of downlink packets. PSM-AW, on the other
hand, seeks to bound both the delay and the awake time.

More recently, Ding [7] also sought to maximize power
savings from PSM techniques. To do so, Ding introduced
a proxy at the AP to complete a data exchange while the
initiating client sleeps. This allows the client to sleep while
data are transferred across the network and then only be awake
for the final data transfer. While this method may introduce
significant power savings, it still has the effect of rounding
up short RTTs to the nearest beacon interval and may result
in significant delays for otherwise brief connections. Similarly,
Dogar et al. [8] utilized the AP to buffer additional packets for
long data transfers to allow more sleep time for the client, so
long as the final transfer still finishes at the same time. PSM-

AW seeks to maintain the power savings from such methods
while also introducing a bound for the delay seen by the end
client. Another consideration in Wi-Fi power efficiency is the
impact of contention on channel access. In [9]–[13], ways to
schedule clients within an AP to minimize contention were
considered, whereas in [3], the effects of multiple nearby APs
were considered. While these works may eliminate unnecessary
power consumption due to idle listening, they still suffer from
the RTT roundup problem. Chen et al. [14] considered the
effects of mobility on PSM and predict the optimal time to
deliver packets based on a user’s proximity to the AP. Moreover,
Perez-Costa and Camps-Mur [15], [16] considered changes to
traditional static PSM to account for updates based on 802.11e
QoS enhancements. Finally, Liu and Zhong [17] discussed
hardware improvements in wireless NICs, which potentially
allow for more sleep opportunities. Most of these schemes
require modification of the AP to achieve their goals. PSM-
AW, however, is a client-side-only solution, requiring minimal
changes to the system.

Still other work targets voice over IP (VoIP) applications
specifically. In [18], SiFi dynamically detects silent periods
over a VoIP connection and suppresses those packets, allowing
the devices to sleep. GreenCall [19] considers ear-to-ear delay
in VoIP calls and selectively chooses sleep and wakeup sched-
ules to minimize playback jitter. PSM-AW, however, works
with generalized connections.

Outside the realm of Wi-Fi, Humar et al. [20] propose
a new model to consider not only the operating energy of
deploying base stations but also the total embodied energy,
which include manufacturing and fabrication costs as well. This
work is complementary to ours as we seek to consider the larger
implications of our energy savings decisions. Their work shows
that producing more low-energy devices may not actually be
helpful, whereas we explore the relation between energy saving
on client devices and resulting delay performance.

B. RTT Prediction and Modeling

Much work has also been done in an effort to predict end-
to-end delay between a client and a server [21]–[25]. They
describe various efforts to model sections of the Internet using
techniques such as graphs, learning algorithms, and queuing
networks. Unfortunately, all of the techniques are very limited
and often resource intensive. Further, even the most accurate of
prediction methods cannot predict server variability in every in-
stance; thus, guaranteed performance bounds must account for
this variability. PSM-AW, however, accounts for this variability
and thus offers a connection-dependent performance bound.

VII. CONCLUSION

Currently, Wi-Fi PSMs are not efficient in both energy and
delay efficiency due to difficulties in predicting the communi-
cation delay across a network. We propose PSM-AW, a power-
saving scheme capable of achieving both low energy use and
low delay by anticipating server delay and preemptively waking
up to retrieve packets from the AP. This scheme allows the
client more sleep opportunities as in static PSM, while avoiding
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delay penalties as in dynamic PSM. In our simulations and ex-
periments, PSM-AW achieves substantial awake time efficiency
over dynamic PSM with only a small increase in total flow time.
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