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Abstract. Oblivious RAM (ORAM) is a provable technique to protect
a user’s access pattern to outsourced data. Recently, many ORAM con-
structions have been proposed, but most of them are impractical due
to high communication and user-side storage costs. Motivated by Parti-
tion ORAM (P-ORAM) [15], a state-of-the-art communication-efficient
ORAM construction, this paper proposes GP-ORAM (Generalized Parti-
tion ORAM) as a new framework to assemble multiple ORAM partitions
together while overcoming the limitations of the P-ORAM construction.
GP-ORAM allows smaller and adjustable number of partitions, fully
utilizes the available user-side storage to reduce communication cost,
and can efficiently export the index table to the server. As a result,
GP-ORAM incurs low bandwidth cost (i.e., O(log N) data blocks per
query in practice) and has significantly less user-side storage cost than
P-ORAM. We demonstrate the security and practicality of GP-ORAM
through extensive performance analysis.

1 Introduction

Oblivious RAM (ORAM) [3], which was originally proposed by Goldreich and
Ostrovsky, has been a provable approach to preserving a user’s access pattern
to data outsourced to a remote storage server. The past decades have witnessed
numerous ORAM constructions [2,4–8,11–15,17,18] developed for various pur-
poses. Although many neat asymptotical results have been reported, the prac-
ticality of these constructions is still not satisfactory. Particularly, the designs
either demand for large user-side storage or incur high communication cost.

Partition ORAM (P-ORAM) [15] is one recent effort in developing practical
ORAMs. The P-ORAM construction was designed to achieve a low and thus
practically acceptable communication cost. Specifically, the server-side storage of
P-ORAM is organized as

√
N partitions, assuming N is the number of exported

data blocks, and each partition is an ORAM. The user-side storage includes an
index table recording the location of each block, a shuffling buffer that can store
and shuffle all data blocks of any ORAM partition, and

√
N stash slots. With

such a storage arrangement, it has been shown that the communication cost for
data query and shuffling is as low as log N data blocks per query. Compared to
other state-of-the-art ORAM constructions[9,16,19], P-ORAM achieves higher
communication efficiency.
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However, P-ORAM design has its limitations. First of all, it requires a large
and fixed local storage to store the index table and facilitate shuffling. For exam-
ple, when N = 232 and block size is 64 KB, 31 GB local storage is needed. Second,
the index table cannot be efficiently exported to the server. According to our
evaluation, if the index structure is exported to the server, in order to query
just a single block, more than 1000 data blocks on average have to be retrieved.
In addition, the user’s accesses to data blocks have to be entirely sequential in
order to compress the index table.

To address the above limitations of P-ORAM, while inheriting its nice fea-
ture of low communication cost, this paper proposes a generalized version of
P-ORAM, called GP-ORAM. There are a few key improvements of GP-ORAM
over P-ORAM. First, the number of partitions is adjustable in GP-ORAM. This
way, even with a smaller local storage than what P-ORAM requires, GP-ORAM
may still achieve a low communication overhead via properly adjusting the num-
ber of partitions. Second, each ORAM partition in GP-ORAM is redesigned (dif-
ferent from that in P-ORAM) to enable efficient query and shuffling. Finally, the
index structure in GP-ORAM is also redesigned to enable efficient exportation
of it and accommodate the above changes.

Rigorous security analysis has been conducted to prove that the proposed
GP-ORAM construction can preserve a user’s access pattern and the construc-
tion fails with only a probability of O(N− log log N ). Extensive cost analysis has
also been conducted to show that GP-ORAM is a more practical construction
than P-ORAM. Particularly, the local storage demanded by the recursive ver-
sion of our proposed GP-ORAM scheme is only 2.5%∼0.14% of that by the
non-recursive version of the P-ORAM scheme (note: as shown in Section 6, the
recursive version of the P-ORAM scheme is impractical due to its extremely
high communication cost, and therefore is not considered), while GP-ORAM
only yields 1 to 3 times higher communication cost than P-ORAM.

In the rest of the paper, Section 2 formalizes the problem. Section 3 describes
the intuitions behind the proposed GP-ORAM design, and Section 4 elaborates
the details of the GP-ORAM construction. Sections 5 and 6 present the secu-
rity and cost analyses of GP-ORAM, respectively. Section 7 briefly reviews the
existing ORAM constructions. Finally, Section 8 concludes the work.

2 Problem Statement

We consider a system composed of a user and a remote storage server. The user
exports a large set of data to the server, and wishes to access these data without
exposing the access pattern to the storage server. Data is assumed to be stored
and accessed in the unit of block, and typically a block is no less than 64 KB [15].
Let N and B denote the total number of blocks exported and the size of a block
(in bits), respectively.

Server and user may have different storage capabilities. The cloud server
could hold terabytes to petabytes of data in its storage cluster. The user may
use thin devices such as tablets and smartphones, and thus may have only giga-
bytes of RAM and local storage available. Moreover, in practice, bandwidth is
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usually more expensive than computation and storage. Thus, we aim to design
an ORAM scheme that can utilize the given user-side storage efficiently so that
the bandwidth cost can be minimized.

In an ORAM system, each data request from the user, which the user wishes
to keep private, can be one of the following types: (1) read a data block Di of
unique ID i from the storage, denoted as a 3-tuple (read, i,Di); (2) write/modify
a data block Di of unique ID i to the storage, denoted as a 3-tuple (write, i,Di).
To accomplish a data request, the user may need to access the remote stor-
age multiple times. Each access to the remote storage, which is observable by
the server, can be one of the following types: (1) retrieve (read) a data block
Di from a location loc at the remote storage, denoted as (read, loc,Di); (2)
upload (write) a data block Di to a location loc at the remote storage, denoted
as (write, loc,Di).

Security Definition. We assume that the server is honest but curious. That is,
it behaves faithfully according to the ORAM design to store data and serve users’
read or write requests, but it may attempt to figure out the user’s data access
pattern. The network connection between the user and the server is assumed to
be secure; in practice, this can be achieved using well-known techniques such as
SSL [1].

We inherit the standard security definition of ORAM in [15] to define the
security of our proposed ORAM. Intuitively, an ORAM system is considered
secure if the server learns nothing about user’s access pattern. More precisely, it
is defined as follows:

Definition 1. Let x = 〈 (op1, i1,D1), (op2, i2,D2), · · · 〉 denote a private
sequence of user’s intended data requests, where each op is either a read or
write operation, and A(x) = 〈 (op′

1, loc1,D
′
1), (op′

2, loc2,D
′
2), · · · 〉 denote the

sequence of user’s accesses to the remote storage (observable by the server) to
accomplish the intended data requests. An ORAM system is said to be secure if
(i) for any two equal-length private sequences x and y of intended data requests,
their corresponding observable access sequences A(x) and A(y) are computa-
tionally indistinguishable; and (ii) the probability that the ORAM system fails to
operate is small, i.e., O(N− log log N ).

3 Intuition

As GP-ORAM is generalized from P-ORAM, we first review the key ideas
and limitations of P-ORAM. As shown in Figure 1, the server-side storage of
P-ORAM is organized as

√
N ORAM partitions, while the user-side storage

includes an index table recording the location (i.e., partition ID, layer num-
ber and layer offset) of each block, a shuffling buffer that can store and shuffle
O(

√
N) data blocks and

√
N stash slots each corresponding to one partition. To

query one data block, it needs to retrieve one data block from each layer of an
ORAM partition on the server, which results in O(log N) data blocks of com-
munication cost, and the query target block is relocated to a randomly selected
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Fig. 1. P-ORAM Storage Organization.

stash slot. Each query is followed by a background eviction, in which some data
blocks are evicted from stash slots into their corresponding ORAM partitions;
the evictions cause the ORAM partitions to be gradually reshuffled, and shuf-
fling causes O(log N) data blocks of communication cost per query, on average.
To summarize, as bandwidth is usually more expensive than storage, P-ORAM
was designed to achieve a low communication overhead at the cost of increased
local storage.

However, P-ORAM has the following limitations. First, P-ORAM requires a
large local storage (O(

√
NB) bits), due to

√
N stash slots and a shuffling buffer

with a capacity of O(
√

N) blocks. This limits P-ORAM’s practical applicability
as it is impossible to implement P-ORAM if the user has less local storage than
required. Second, the index table cannot be efficiently outsourced to the server.
Each entry of the table has three fields: partition ID, layer number, and layer
offset. The layer number and layer offset need to be updated during both query
and shuffling processes. If the index table is outsourced to the server, the query
and shuffling processes need to frequently query and update the index table,
which leads to impractically high communication cost. Third, the user’s data
accesses have to be entirely sequential in order to compress the index table.

Motivated by P-ORAM and also to overcome its limitations, we present GP-
ORAM as a new framework to assemble multiple ORAM partitions together. It
has the following key ideas. First, the number of partitions is not fixed so that
the user can adjust the number of partitions according to the available local
storage. Second, the index table is re-designed so that it can be outsourced to
the server efficiently. Third, to make full use the available local storage, each
ORAM partition is based on a revised S-ORAM [19] construction. As a result,
GP-ORAM inherits the security property and the communication efficiency of
P-ORAM while being able to work with and fully utilize a wide range of available
local storage.

4 The Proposed GP-ORAM Construction

We elaborate the design of GP-ORAM in terms of storage organization, system
initialization, query process, and background eviction process. To simplify the
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presentation, we assume the user stores index entries of all outsourced data
blocks locally. In practice, to save the user’s local storage, the index entries can be
recursively exported to the storage server, following the same ideas used in tree
ORAM [13] and Path-ORAM [16]. Detailed description of the recursive version
of the GP-ORAM construction can be found in Appendix I of our technical
report [20].

4.1 Storage Organization

GP-ORAM stores both real blocks (i.e., user’s N actual data blocks outsourced
to the server) and dummy blocks (i.e., faked data blocks with random padding).
When a block is in plain-text, it can be split into pieces and the size of each
piece is b = log N bits. For each real block, the block ID i is contained in its first
piece, denoted as di,1, while the first piece of each dummy block is set to −1.
The remaining pieces store the content of that block, denoted as di,2, di,3, · · · ,
di,η−1.

Before being exported to the remote storage server, the plain-text block is
encrypted using CTR encryption mode (counter encryption mode) [10] piece by
piece with a secret key k. Specifically, the ciphertext of each block Di contains
η pieces, denoted as ci,0, · · · , ci,η−1, where

ci,0 = Ek(ctr), where ctr is a nounce generated by a pseudo-random function;
ci,1 = Ek(ctr + 1) ⊕ di,1;
· · · ;
ci,η−1 = Ek(ctr + η − 1) ⊕ di,η−1.

(1)

Thus, the encrypted block (denoted as Di) is Di = (ci,0, ci,1, ci,2, · · · , ci,η−1).

Server Storage. The server-side storage is divided into P smaller fully-
functional ORAM partitions, where P is a system parameter. Each partition
can hold 1.1N/P real blocks. As shown in Lemma 1 (Section 5), given that
log N log log N ≤ P ≤ √

N , the number of real blocks in each partition is upper
bounded by 1.1N/P with a probability of 1 − O(N− log log N ).

In GP-ORAM, each ORAM partition is a revised version of the S-ORAM [19]
construction. Specifically, each partition is organized as a pyramidical struc-
ture shown in Figure 2, where the total number of layers is denoted as L2 =
�log(N/P )	. The top layer, i.e., layer 1, is an array containing up to four blocks.
Each of the rest layers is organized as one or multiple segments. These layers
are further divided into single-segment layers (i.e., T1-layers, including layers 2
to L1 = 
log(3 log2 N)� − 1) and multi-segment layers (i.e., T2-layers, including
layers L1 + 1 to L2).

Each T1-layer l has a single segment. The segment stores 2l+1 blocks, at
most half of which are real blocks, and one encrypted index block Il with 2l+1

entries. Each entry of Il corresponds to a block in the segment and consists



GP-ORAM: A Generalized Partition ORAM 273

Fig. 2. Organization of the server-side storage.

of three fields: ID of the block, location of the block in the segment, and access
bit indicating whether the block has been accessed since it was placed to the
segment.

For each T2-layer l < L2, it is composed of Wl = �2l/ log2 N	 segments,
while the bottom layer (i.e., layer L2) contains WL2 = �1.1 ∗ 2L2/ log2 N	 seg-
ments. The bottom layer has slightly more segments, because it should be able
to accommodate 1.1N/P real data blocks. A T2-layer segment has the same
format as a T1-layer segment except that it needs to contain exactly 3 log2 N
data blocks. Having 3 log2 N data blocks per segment is to ensure the security
property of the design and it has been proved in [19].

Inside each segment, there is an index block with at most 3 log2 N entries
and each entry contains three fields: ID of the block (needing log N bits),
location of the block in the segment (needing log(3 log2(1.1N/P )) bits), and
access bit (needing 1 bit). Thus, an index block needs at most 3 log2 N [log N +
log(3 log2(1.1N/P ))+1] bits. In practice, with N ≤ 232 which is considered large
enough to accommodate most practical applications, the size of an index block
is less than 32 KB, which can fit into a typical block assumed in P-ORAM [15].

In addition, each ORAM partition p maintains a counter Cp to keep track of
the times that the partition has been queried.

User Storage. The user-side storage consists of the following components. (i)
Stash with P slots: each stash slot corresponds to one of the ORAM partitions;
that is, it buffers the blocks that should be written to the corresponding partition
later. (ii) Shuffling buffer: the shuffling buffer (with the capacity of S blocks)
is used for data shuffling process. (iii) Index table: the index table records the
information of each block. Specifically, it has N entries and each entry (pi, li)
has two fields; the block is in partition pi and the block is latest stored on layer
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li. (iv) Secret storage: it stores all secrets including cryptographic keys for
encryption and authentication, and its size is negligible compared to the other
components.

4.2 System Initialization

To initialize, the user first selects a data encryption key, denoted as k. Then,
each real block is encrypted and randomly assigned to one of the P partitions;
the local index table is initialized to reflect the assignment.

After the above assignment, the user initializes each partition pi as follows.
For each of the real blocks Dj assigned to partition pi, the user selects a secure
hash function, denoted as Hpi,L2(∗), for the bottom layer L2, and assign Dj

to segment Hpi,L2(j). Then, the user adds dummies to ensure each segment
contains exactly 3 log2 N blocks. For each segment, the user randomly permutes
all blocks inside it and builds an encrypted index block for it. Finally, the index
and data blocks are uploaded to the server.

4.3 Data Query

To query a data block Dt, the user first searches the index table to get partition
ID pt and layer number lt for Dt. Then, the user searches the stash slot of pt. If
Dt is not found, the user will launch a query for Dt in partition pt; otherwise, a
dummy query to pt will be launched.

Algorithm 1. Query(Dt, pt)
1: L ← the set of non-empty layers of partition pt

2: Retrieve Cp from partition pt

3: if (Dt is a dummy block) then
4: S ← {segl|∀ l ∈ L, segl is a randomly-selected segment of layer l}
5: Retrieve the index block of each segment in S
6: From each segment in S, retrieve a dummy block that has not been accessed
7: Update, re-encrypt & upload the retrieved index block
8: else
9: Find layer l̂t where Dt is located; segl̂t

← Hpt,l̂t
(t)

//Secure hash function Hpt,l̂t
(t) decides which segment of layer l̂t in partition pt

stores Dt

10: S ← {segl|∀ l ∈ L \ {l̂t}, segl is a randomly-selected segment of layer l}
11: Retrieve the index blocks of segments in S ∪ {segl̂t

}
12: From each segment s ∈ S ∪ {segl̂t

}, retrieve a dummy block that has not been
accessed if s ∈ S, or Dt otherwise

13: Update, re-encrypt & upload the retrieved index block
14: end if

The algorithm for querying Dt in partition pt, i.e., Query(Dt, pt), is revised
from the query algorithm in S-ORAM [19] and formally presented in Algorithm 1.
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In the algorithm, the layer l̂t where Dt is located is found as follows: First, based
on the query counter Cpt

, the most recently shuffled layer l′ can be inferred.
Then, l̂t ← l′ if l′ ≥ lt because Dt must have been shuffled to l′ during the most
recent shuffling process; otherwise, l̂t ← lt.

4.4 Background Eviction

After each data query, a background eviction process as described in Algorithm 2
should be launched to avoid stash overflowing. Similar to P-ORAM, this process
could be sequential or random. For simplicity, we adopt the sequential approach.
Suppose ψ records the last evicted stash slot and λ denotes the eviction rate
(i.e., the number of stash slots that should be evicted after each data query).
The eviction operation essentially pushes one data block from its stash slot to
layer 1 of its corresponding partition. As the capacity of layer 1 is limited, every
four eviction operations performed on a partition could result in layer 1 overflow
and thus should trigger a data shuffling of that partition.

Algorithm 2. Sequential Background Eviction (λ)
1: for k = 1 to λ do
2: ψ ← (ψ + 1) mod P
3: if (stash slot[ψ] does not contain real block) then write a dummy to layer 1 of pψ

4: elseremove a real block from stash slot[ψ] and write it to layer 1 of pψ

5: end if
6: Cpψ ← Cpψ + 1
7: if (Cpψ mod 4 = 0) then
8: Shuffle partition pψ

9: end if
10: end for

Different from P-ORAM, GP-ORAM shuffles data in pieces instead of blocks,
as in S-ORAM [19]. To shuffle a certain x number of blocks in the unit of piece,
only bx bits of local storage is needed, while Bx bits of local storage would
be needed if shuffling these blocks in the unit of block. Hence, GP-ORAM can
utilize the shuffling buffer more efficiently than P-ORAM. To facilitate fine-
grained shuffling, the shuffling buffer is split into the following two components
(as shown in Figure 2): (i) π, which is a buffer to store a permutation of up to
2m2 inputs and thus needs 2m2 log(2m2) bits, where m is a system parameter;
(ii) buf0, which is used to temporarily store up to 2m2 data pieces. Recall that
each data piece has b bits and the capacity of the shuffling buffer is S bits. In
GP-ORAM, we set the shuffling buffer size to

S = 4.4 · N

P
· (log(4.4 · N

P
) + b). (2)

The purpose is to ensure that, for any layer of each partition, each block is
downloaded and uploaded for only once during a shuffling process. The shuffling
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process is the same as in S-ORAM [19], and thus is skipped here due to space
limitation.

5 Security Analysis

To show that GP-ORAM is secure according to Definition 1 in Section 2, we
develop a proof in two parts: (1) GP-ORAM generates a random access pattern
independent of user’s actual access pattern, and (2) GP-ORAM fails with a
probability of O(N− log log N ). For the second part, there are three aspects to be
proved in detail: (i) the stash overflows with a probability of O(N− log log N ), (ii)
any partition overflows with a probability of O(N− log log N ), and (iii) any layer of
any partition overflows during data shuffling with a probability of O(N− log N ).

Lemma 1. Given that P ≥ log N log log N , the total number of real blocks in
the stash at any time during data queries is upper bounded by 2P (1 − 2/P ) with
a probability of 1 − O(N− log log N ).

Lemma 2. Given that log N log log N ≤ P ≤ √
N , the total number of real

blocks for any partition at any time during data queries is upper bounded by
Φ = 1.1N/P with a probability of 1 − O(N− log log N ).

Theorem 1. GP-ORAM is secure under the security definition in Section 2.

Due to space limitation, please refer to Appendices II, III, and IV of our
technical report [20] for the proofs of the above lemmas and theorem.

6 Cost Analysis

In this section, we analyze the costs of non-recursive and recursive GP-ORAM
constructions, and compare them to P-ORAM [15], Path-ORAM [16] and S-
ORAM [19], which are the most communication-efficient state-of-the-art ORAM
constructions.

Cost Analysis for Non-recursive GP-ORAM. The communication cost
includes query and background eviction costs. Each data query retrieves two
blocks (i.e., one index block and one data block) from and uploads only the
index block to each non-empty layer of the server. As there are L2 = �log(N/P )	
layers, query cost on average is: Cquery < 1.5 · log(N

P ) · B.
As for the background eviction cost, after each query, λ blocks are written to

λ consecutive partitions at the server. Thus, P/λ queries result in all P partitions
being accessed once. Therefore, for each partition, layer l (1 < l < L2) is involved
in a shuffling process every 2·2l ·P/λ queries, while layer L2 is shuffled every 2L2 ·
P/λ queries. Recall that shuffling a T1-layer l involves 2·2l blocks, shuffling a T2-
layer l involves 4·2l blocks, and shuffling layer L2 involves 5.3·2L2 blocks. Hence,
the amortized shuffling cost is Cshuffle = (

∑L1
l=2

2·2l·P
2·2l·P/λ

+
∑L2−1

l=L1+1
4·2l·P

2·2l·P/λ
+
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4.4·2L2 ·P
2L2 ·P/λ

)B, Therefore, the communication cost for non-recursive GP-ORAM is

CGP-ORAM(NR) = Cquery + Cshuffle = (1.5 + 2λ) log N
P · B − λ(log log N − 2.8) · B.

For storage cost, as stated in Lemmas 1 and 2, the user needs to maintain the
following amount of storage space: 2P (1 − 2

P )B + S + N · (log N + log log 1.1N
P ),

where P ≥ log N log log N . The size of the stash is 2P (1−2/P )B, the size of the
shuffling buffer is S, and the size of the index table is N · (log N + log log 1.1N

P ),
respectively. Note that, the shuffling buffer storage is temporary, while the stash
and index table spaces are permanently needed. For server storage, each partition
contains at most 5.3N/P blocks. Thus, the server storage is less than 5.3NB.

Cost Analysis for Recursive GP-ORAM. Suppose there are φ levels of
recursion in the recursive construction, and the ith level of recursion is imple-
mented by GP-ORAMi. Thus, GP-ORAM1, which is used to store the user’s
data blocks, requires a stash of size 2P (1 − 2/P )B and a shuffling buffer of size
S in the user’s local storage, while the index table is exported to the server as
GP-ORAM2. The compression rate for GP-ORAM2 can be smaller than 2−13

(i.e., the size of GP-ORAM2 can be less than 1
213 of that of GP-ORAM1) when

N ≤ 244 and B ≥ 64 KB, which covers the practical scenarios considered in [15].
Therefore, parameter φ is no more than 4; that is, no more than 4 levels of recur-
sion are needed in practice.

Since GP-ORAM1 has much larger capacity than other GP-ORAMs,
the extra communication cost introduced by recursion can be computed as
O(

∑φ
i=1 log(α−iN) · B) in practice. For the extra local storage cost, it mainly

comes from the stashes for extra GP-ORAMs (note that the shuffling buffer for
GP-ORAM1 can be reused for other smaller GP-ORAMs), and the total size of
these stashes is much less than that for GP-ORAM1. Specifically, a stash of size
3P (1 − 2/P )B is enough for recursive constructions. At last, the extra cost on
server storage is O(

∑φ
i=1 α−iN · B).

Tradeoff Between Local Storage Capacity and Communication Cost
in GP-ORAM. Suppose a user exports N data blocks each of B bits, and the
local storage capacity is Sl. The user could find an optimal P (i.e., number of
partitions) for GP-ORAM to minimize the communication cost.

According to CGP-ORAM(NR) in the non-recursive GP-ORAM cost analysis,
the larger is P , the smaller is the communication cost. Hence, the optimal P
should be the largest P without incurring a local storage cost higher than Sl.
Formally:

Maximize P,

subject to 2P (1 − 2
P

)B + S +
NB

α
≤ Sl for non-recursive GP-ORAM,

subject to 3P (1 − 2
P

)B + S ≤ Sl for recursive GP-ORAM.

The example plotted in Figure 3(a) shows the relation between P and local
storage consumption in the recursive GP-ORAM. Recall that, the local storage
includes shuffling buffer and stash. As we can see from Figure 3(a), when P



278 J. Zhang et al.

is small, local storage consumption decreases as P increases; when P becomes
large, local storage consumption increases as P increases. This phenomenon can
be explained as follows.

– When P is small, the size of each partition is large; hence, the shuffling buffer
dominates the local storage. As P increases, shuffling buffer decreases which
causes the local storage to decrease as well.

– When P is large, the number of partitions gets large and so the stashes
dominates the local storage. As P increases, the size of stashes increases
which causes the local storage to increase too.
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Fig. 3. Examples illustrating the relation between P , local storage, and minimal com-
munication cost.

Based on the relation plotted in Figure 3(a), the user can find a range of
P , with which the required local storage does not exceed Sl. Because the com-
munication cost decreases as P increases, the maximum P within the range
becomes the optimal P that minimizes the communication cost. This way, for
any given Sl, the communication cost corresponding to the optimal P can be
found. Figure 3(b) plots an example to illustrate the relation between local stor-
age capacity and minimal communication cost in the recursive GP-ORAM.

GP-ORAM VS. P-ORAM. Table 1 compares GP-ORAM with P-ORAM
in terms of asymptotical performance. From the table, we have the following
observations: (i) When P is set to N c (c < 0.5) and S is set as in Equation (2),
the communication costs for both non-recursive and recursive GP-ORAM can be
re-written as O(log N · B), which is comparable to the cost for non-recursive P-
ORAM and much lower than that for recursive P-ORAM. (ii) The local storage
costs for non-recursive P-ORAM and GP-ORAM are both O(NB), as the costs
are dominated by the index table. The local storage cost for recursive GP-ORAM
is O(PB + S), which is asymptotically smaller than O(

√
NB) as P <

√
N .

Figures 4 and 5 compare the performance of GP-ORAM with P-ORAM under
the practical system settings used in [15] (i.e., block size ranging from 64 KB
to 1 MB; the number of blocks ranging from 224 to 232). From the figures, we
have the following observations: (i) The local storage demanded by recursive
GP-ORAM is only 2.5%∼0.14% of that by non-recursive P-ORAM, while GP-
ORAM only yields about 1 to 3 times higher communication cost than P-ORAM.
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Table 1. Asymptotical Performance Comparison.

Scheme Bandwidth Cost User Storage Server Storage Failure Prob.

P-ORAM (NR) O(log N · B) O(NB) < 4NB O( 1
Nc )

P-ORAM (R) O(log2 N · B) O(
√

NB) < 8NB O( 1
Nc )

GP-ORAM (NR) O( log3(N/P )

log2 S
· B) O(NB) < 5.3NB O(N− log log N )

GP-ORAM (R) O( log3(N/P )

log2 S
· B) O(PB + S) < 5.3NB O(N− log log N )

(ii) Recursive P-ORAM is impractical due to its extremely high communication
cost.
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Fig. 4. Comparing local storage and communication cost when B = 64 KB.
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Comparing GP-ORAM, Path-ORAM and S-ORAM. Table 2 shows the
asymptotical performance comparisons between GP-ORAM, Path-ORAM and
S-ORAM. Compared to S-ORAM and Path-ORAM, GP-ORAM introduces one
adjustable system parameter P , which makes it more tunable.

The performance comparison between GP-ORAM and Path-ORAM under
practical scenarios [15] is shown in Table 3. From the table, it can be seen that
GP-ORAM can fully utilize the local storage to achieve better communication
efficiency, and it incurs lower server-side storage cost.
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Table 2. Asymptotical Performance Comparison.

Scheme Bandwidth Cost User Storage Server Storage Failure Prob.

S-ORAM O( log3 N
log2 S

· B) O(S) < 6NB O(N− log N )

Path-ORAM (NR) O(log N · B) O(NB) 10NB N−ω(1)

Path-ORAM (R) O(log2 N · B) O(log N · B) · ω(1) > 10NB N−ω(1)

GP-ORAM (NR) O( log3(N/P )

log2 S
· B) O(NB) < 5.3NB O(N− log log N )

GP-ORAM (R) O( log3(N/P )

log2 S
· B) O(PB + S) < 5.3NB O(N− log log N )

Table 3. Practical Performance Comparison.

Scheme Bandwidth Cost User Storage Server Storage

Path-ORAM (NR) 10 log N · B N log N + log N · B · ω(1) 10NB

Path-ORAM (R) 10 log2 N · B log N · B · ω(1) 20NB

GP-ORAM (NR) < 4 log N · B N log N + PB + S < 5.3NB

GP-ORAM (R) < 6 log N · B PB + S < 5.3NB

Figure 6 shows the performance comparison between GP-ORAM and S-
ORAM under practical scenarios [15]. From the figure, we can see that S-ORAM
is not fully tunable as local storage increases. Especially when the local storage is
large enough, the communication cost cannot be further reduced. For example,
when N = 232, B = 64KB and the local storage size has exceeded 1.2 GB, the
communication remains the same regardless of the increase in local storage size,
while GP-ORAM can achieve 50%-60% savings in communication cost as the
local storage gets larger.

7 Related Work

According to local storage assumptions, existing ORAM constructions can be
roughly classified into the following categories.

ORAMs with O(1) Local Storage [2–9,11,13]. These ORAMs only have little
state information, such as secret keys and query counters, stored in local stor-
age. Among them, Balanced ORAM (B-ORAM) [8] proposed by Kushilevitz et.
al. incurs the lowest asymptotical communication cost O( log2 N

log log N ). In general,
these constructions are impractical as the hidden constants behind the big-O
notation are quite large due to the heavy data shuffling and background evic-
tion processes. Recently, S-ORAM [19] with constant local storage was proposed
to incur O(log2 N) communication cost but with practically small constants
behind the big-O notation. It leverages the fact that block size is usually large
and introduced segmentation-based design of query and shuffling. However, the
local storage was not fully utilized as in GP-ORAM.

ORAMs with O(logc N) Local Storage [4,12,16,18]. Among these construc-
tions, Path-ORAM [16] re-designed the tree structure ORAM [13] and reduced
the bucket size by adding an additional stash to local storage, which resulted
in only O(log2 N) communication cost. PrivateFS [18] modified and improved
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Fig. 6. GP-ORAM vs. S-ORAM with same given local storage.

a Bloom filter based ORAM solution [17] to approach practicality and concur-
rency, and resulted in O(log2 N log log N) communication cost. These ORAMs
still have high communication costs, needing to retrieve more than 1000 data
blocks per query.

ORAMs with O(N c) Local Storage [3,4,15–17]. The first ORAM with square-
root local storage appeared in [3]. Though the actual communication cost is
higher than

√
N data blocks per query, it is still an inspiring solution that opens

the door for subsequent research. Since then, a novel Bloom filter ORAM [17]
was proposed which integrates a more efficient shuffling method to achieve bet-
ter performance. ORAMs with O(N c) (c > 0) local storage were also studied
in [4]. Recently, P-ORAM, with sublinear local storage [15] (square-root local
storage in practice) and efficient implementation [16], has achieved much lower
communication cost of O(log N). However, as discussed in Section 6, the user-
side storage cost could be too high to be acceptable, especially when the number
of outsourced data blocks is large.

8 Conclusion

This paper proposed a new ORAM construction, called Generalized Partition
ORAM (GP-ORAM). GP-ORAM utilizes a new shuffling method, adjusts the
number of partitions according to the available user-side local storage, and out-
sources the index table to the server. Through these techniques, it achieves low
bandwidth cost (O(log N)) and has significantly less user-side storage cost than
P-ORAM. We demonstrate the effectiveness of GP-ORAM via extensive security
and cost analysis.
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